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Abstract—This paper describes the system architecture of the
University of Kentucky Natural Language Processing (UKNLP)
team’s entry for the TREC 2017 Precision Medicine Track. The
goal of the challenge is to retrieve useful precision medicine-
related information (abstracts, clinical trials) for the given
synthetic cancer patient cases, each of which consists of a
neoplastic condition, genetic variants, demographic details, and
any additional information (e.g., comorbidities). We explored
query expansion techniques using well-known broad knowledge
sources such as the Unified Medical Language System (UMLS)
and the Medical Subject Headings (MeSH) for each abstract, and
additional specialized sources such as the Catalogue Of Somatic
Mutations In Cancer (COSMIC) database, which allowed us to
construct boosted queries. We conducted several experiments with
model averaging techniques and our final system architecture
placed 6th (in terms of infNDCG and R-prec) among 29 teams
that submitted runs to the scientific abstract retrieval task.

I. INTRODUCTION

The 2017 TREC Precision Medicine (PM) Track is a
successor of the Clinical Decision Support (CDS) Track from
the previous three years. Previously the CDS track focused
on finding biomedical articles relevant for answering clinical
questions involving medical records. In 2017, the participating
teams are asked to provide useful precision medicine-related
information to the clinicians who treat cancer patients based on
specific patient case information. Each case is described by the
disease name (a specific type of cancer this year), the relevant
genetic variants (gene and mutation names) for the patient,
and other pertinent factors. Table I shows two examples of
such cases, termed “topics” for this track. Teams need to
construct an automated IR system that can (1) retrieve the most
pertinent scientific articles to the topic and (2) recommend
clinical studies that are suitable to the patient’s case. Two
corresponding document collections are provided:

1) Scientific abstracts: We were given the January 2017
snapshot of Medline abstracts for the scientific ab-
stracts scenario. This collection consists of roughly
26 million articles that are stored in a structured
XML format. Along with the textual content of
the abstracts, detailed metadata of the each article
is provided as well including journal information,
author list, and citation records. Additionally, the
TREC task organizers provided abstracts obtained
from the most recent AACR (American Association
for Cancer Research) and ASCO (American Society
of Clinical Oncology) proceedings. Documents in
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this collection do not contain any metadata, which
necessitates additional care in data pre-processing and
querying procedures.

2) Clinical trials: For the clinical trial retrieval sce-
nario, the April 2017 snapshot of ClinicalTrials.gov
database was provided in a structured XML format.

II. METHODS

Our system follows a traditional information retrieval (IR)
architecture with the following components.

1) Indexing: Document contents and attributes are the
main elements compared between documents and
topics for the retrieval task; Often such elements are
quantified through term frequencies, the positions of
terms in a document, and document lengths.

2) Topic analysis/expansion: The same term may be
used with a different meaning in a different domain.
Due to the ambiguity issues in natural language,
additional work, such as query transformation and
expansion, is often unavoidable.

3) Retrieval models: A variety of scoring techniques are
typically explored in the document retrieval phase.

4) Query-time boosting: Based on empirically deter-
mined or expert defined weights, query-time boosting
of terms/phrases can enhance the performance of an
IR system.

A. Indexing

We used Apache Lucene (version 6.5.1)1 to index our doc-
ument collections with the indexing process slightly differing
based on the collection type.

1) Fields of Interest: For each article, based on available
metadata, we have chosen a set of fields that we think is highly
useful in the precision medicine perspective. For indexing the
PubMed abstracts, we used the following fields.

• Document ID: PMID, the unique document identifier
that is assigned by the National Library of Medicine
(NLM)

• Journal title: the surface name of the journal title,
which assumably defines the domain of the article.

• Article title: the title of the article

• Abstract text: the abstract of the article in free text

• MeSH headings and corresponding UMLS identifiers

• Chemical names and corresponding UMLS identifiers

1https://lucene.apache.org/core/

https://lucene.apache.org/core/


patient 1 patient 2
Disease: acute lymphoblastic leukemia thyroid cancer
Variant: ABL1, PTPN11 RET, BRAF
Demographic: 12-year-old male 63-year-old female
Other: No relevant factors Ecog grade of 2

TABLE I: An example of topics that describes the patient’s case

We also indexed AACR/ASCO articles with the following
matching fields.

• Document ID: the provided filename of the abstract is
used as the identifier

• Journal title: the name of the meeting/conference

• Article title: the subject line of the article

• Abstract text: the abstract of the article in free text

• MeSH headings and corresponding UMLS identifiers

• Chemical names and corresponding UMLS identifiers

For clinical trials we extracted and used the following fields.

• Document ID: NCT ID, the unique clinical study
identifier as it appears on ClinicalTrials.gov

• Brief title: a short title of the clinical study

• Official title: the full title of the clinical study

• Brief summary: a short description of the clinical study

• Detailed descriptions: extended description of the pro-
tocol

• Overall status: the recruitment status

• Phase: N/A, Early Phase 1, or Phases 1–4

• Study type: the nature of the investigation

• Condition: the names of disease or conditions being
studied (corresponding MeSH terms or SNOMED CT
terms)

• Intervention: the intervention(s) associated within the
study

• Eligibility criteria: a limited list of criteria for selec-
tion of participants (inclusion/exclusion criteria)

• Eligibility gender: All, Female, or Male

• Eligibility age: minimum/maximum age of potential
participants eligible for the study

• Keywords: keywords that best describe the protocol

2) Normalizing Age Groups: The age and gender infor-
mation is given in a demographic field (e.g., “45-year-old
female”). For a particular disease, this information is cruicial
in filtering relevant scientific articles and clinical trials. For the
scientific articles, age-related temporal phrases are transformed
into corresponding MeSH terms as shown in Table II. The
same patterns in the topics are transformed accordingly.

In trials data, the format used for the age information in the
eligibility section is not inconsistent. The unit used in this field
ranges from ‘minute’ to ‘year’. We normalized this temporal
information into a numeric value in ‘days’. Given Lucene
query parser allows us to use “range queries”, the results can
be restricted to the range of the numeric age values.

3) Data Pre-processing for the AACR/ASCO Collections:
AACR/ASCO abstracts do not contain metadata such as MeSH
terms or chemical components. In order to construct a con-
sistent document index, we parsed them by using NLM’s
Medical Text Indexer (MTI) to obtain MeSH terms and corre-
sponding UMLS concepts. After adding these MeSH terms of
the AACR/ASCO documents, we have noticed 10–15% more
occurrences of these documents in our top-ranked results.

B. Query/Topic Expansion

In several cases, topic representations are ambiguous lead-
ing to irrelevant results. To counter this, query expansion
strategies are generally incorporated – Song et al. [4] used
Google search results to expand the initial query and You et
al. [5] obtained the MeSH terms from the citations of the
retrieved documents. We have focused more on disease and
gene variations by utilizing UMLS concepts and MeSH terms.
The same query expansion techniques are used for searching
both the scientific articles and the clinical trials.

1) UMLS Atoms for the Disease: We queried with the
disease name mentioned in the topic to find the best matching
UMLS concepts through NLM’s UTS service. The “preferred”
name of the identified UMLS concept often does not align
with MeSH descriptions or the name mentioned in the topic.
However, it provides a set of highly related key terms to
the topic. We obtained up to five closest UMLS concepts
and subsequently restricted the results to those arising from
the National Cancer Institute (NCI) Thesaurus terminology.
From the concept set, we further retrieved atomic phrases
(from UMLS) of each concept. All such unique phrases are
appended to the disease group when formulating the query.
Listing 1 shows how a disease name can be expanded through
an example.

2) MeSH Headings for the Disease: MeSH is a frequently
used biomedical terminology specifically designed to index
biomedical articles to aid in subsequent retrieval by users
through the PubMed search engine. Each article is typically
assigned 10-15 MeSH headings. MeSH is hierarchical in
nature which aids in better understanding a subject at several
levels of specificity. We note from Section II-A that we already
index MeSH terms for scientific literature abstracts. To be able
to do exact matching in the MeSH heading field, we need to



Age Groups MeSH Terms Normalized in Days
Birth – 1 month Infant, newborn 0 – 30

1 month – 24 month Infant 30 – 720
2 years – 6 years Child, preschool 730 – 2,190

6 years – 13 years Child 2,190 – 4,745
13 years – 19 years Adolescent 4,745 – 6,935
19 years – 45 years Adult 6,935 – 16,425
45 years – 65 years Middle aged 16,425 – 23,725
65 years – 80 years Aged 23,725 – 29,200
80 years – 200 years Aged, 80 and over 29,200 – 73,000

TABLE II: Normalized age groups for search strategies

Listing 1: The expansion details of the disease name “Pancreatic ductal adenocarcinoma”
{

"disease name": "Pancreatic ductal adenocarcinoma",
"UMLS": [{

"code": "C1335302",
"concept name": "Pancreatic Ductal Adenocarcinoma",
"atoms": [

"ductal adenocarcinoma of the pancreas",
"pancreatic infiltrating duct carcinoma",
"pancreatic tubular adenocarcinoma"

]
}]

}

identify the MeSH term from the disease name in the input
topic. For this, we ran NLM’s concept mapping tool MetaMap
on the disease name to identify UMLS concepts restricted to
the MeSH source vocabulary to obtain the corresponding code.
Furthermore, we used the synonymous UMLS atoms for the
corresponding UMLS concept as part of the query expansion
for the disease (in addition to atoms from NCI Thesaurus
concepts from Section II-B1).

3) The Genetic Variations: The gene names are often
abbreviated (JAK2 for ‘Janus Kinase 2’) and the variant names
are more involved due to mutational information including the
amino acid symbols and the loci. For the gene and mutation
names, we have separately used the same expansion methods
that leverage MetaMap in order to obtain UMLS concepts and
associated MeSH terms. For the gene part, the retrieved set
of the atoms are strongly relevant to the gene name from the
topic and hence there are no concerns in using these phrases
as synonyms. However, the UMLS atoms of the mutation part
do not always present the mutation at a level that can lend
itself to retrieval tasks. For example, V617F corresponds to
the following set of atoms: "JAK2 Val617Phe", "Janus
Kinase 2 V617F", "NP 004963.1:p.V617F" . Al-
though the last atom gives us additional information (NCBI
mutation accession number), searching Medline articles with
the accession number does not improve the retrieval quality.
Alternatively, adding ‘Val617Phe’ to the query string does
widen the range of relevant results. We used the contiguous
numeric part of the mutation (which is mostly the reference se-
quence position number) to identify potentially useful tokens,

such as ‘Val617Phe’ from 617. Consequently, our method also
covers the one/three-letter amino acid codes as well.

C. Query Term Weight Optimization

In the scoring procedure for IR systems, each component
(term or phrase) in a query can be emphasized to the desired
relevance level based on the corresponding perceived level
of importance. Popularly called “query-time boosting”, this
approach can aid in assigning different weights (or boosts)
to different sections of each query. In our query template, we
introduce multiple boost factors on the constituent groups for
each patient case. The Lucene disjunctive query used in our
system is

+ [(D1 D2 . . . )
w1 (mt : D′

1D
′
2 . . . )

w2 ]

+ [(G1 G2 . . . )
w3 (M1 M2 . . . )

w4)]

(mt : G′
1 . . . )

w5 (mt : M ′
1 . . . )

w6 (mt : F ′
1 . . . )

w7 ,

which consists of seven components: (1) the disease names
(Di), (2) the disease MeSH codes (D′

i), (3) the gene names
(Gi), (4) the mutation names (Mi), (5) the gene codes in
MeSH (G′

i), (6) the mutation codes in MeSH (M ′
i ), and (7) the

demographic codes in MeSH (F ′
i ). Each query component has

a specific boost factor (w1, . . . , w7) that needs to be tuned. We
notice from the ‘+’ components of the query that we at least
require a disease and a gene/mutation variant to be part of the
document with all other combinations being disjunctions.

Given the PM track is a new task introduced in 2017, we
do not have a dataset with relevance judgments for tuning



Average performance for Task A
infNDCG R-prec P@5 P@10 P@30

UKY BASE 0.3800 0.2303 0.5267 0.4667 0.3756
UKY CJT 0.3897 0.2333 0.5267 0.4800 0.3711
UKY AGG 0.3852 0.2518 0.5533 0.4933 0.3944
UKY COM 0.2572 0.1906 0.3933 0.3833 0.2933
UKY MAN 0.3666 0.2354 0.5267 0.4867 0.3500

TABLE III: Performances of our runs for TREC PM Track (Task A)

Fig. 1: infNDCG score distribution across all topics for our runs

the systems. To handle this, we used the genetic database of
the Catalogue of Somatic Mutations in Cancer (COSMIC)2

as a proxy for relevance judgements for this task. COSMIC
provides a wide range of resources for somatic mutations in
human cancer. Via its search engine, we were able to collate
research articles with regards to cancer types and associated
genes/mutations from our input topics. This allowed us to
evaluate our system with ranking measures (infNDCG, infAP,
p10, and bpref) and helped us tune the boost factors for our
queries based on validation experiments.

D. Retrieval Models

As mentioned above, the relevance judgment data was not
available for this year. In order to compare the relevance
models with respect to the topics and collections of interest,
we examined the results over the previous years’ datasets from
TREC Clinical Decision Support tracks. For this experiment,
we ran tests using the open source Terrier3 system for the
following methods:

• Vanilla TF-IDF without smoothing functions

• The DFR version of BM25 (DFR BM25) [1]

2http://cancer.sanger.ac.uk/cosmic
3http://terrier.org/

• Poisson estimation for randomness (PL2) [1]

• Log-logistic DFR model (LGD) [2] [3]

• Inverse expected document frequency model for ran-
domness (In expB2 and In expC2) [1]

The In expC2 was the best among the models in this exper-
iment. Even though BM25 was not the best model in this
experiment, the difference was negligible compared to the
results of the Lucene platform; thus we used Lucene’s default
BM25 model without changing any of its settings.

III. EXPERIMENTS

Five models were prepared for the submission in different
aspects.

• RUN1 (UKY BASE): This is our baseline run where
each query component (disease, gene, mutation, de-
mographic info) is combined in a disjunctive query.

• RUN2 (UKY CJT): To our baseline, we add an
additional conjunctive component in which the terms
from the initial disjunctive query are ANDed. The idea
is to have those documents that match all criteria rise
to the top of the ranked results.

http://cancer.sanger.ac.uk/cosmic
http://terrier.org/


• RUN3 (UKY AGG): The results of RUN2 and RUN4
(see next) are aggregated via Borda count to impose
a new ranking

• RUN4 (UKY COM): In this run, the query-time
boost factors are optimized based on the COSMIC
reference, and additional MeSH terms are added us-
ing the MeSH on Demand (MOD) service (https:
//meshb.nlm.nih.gov/MeSHonDemand) in addition to
the MetaMap results. With some topics, we noticed
that the MoD results had slightly more general con-
cepts which may have a slight positive effect on the
retrieval performance.

• RUN5 (UKY MAN): Each query is manually modi-
fied based on manual observations of the topic.

IV. RESULTS

The scope of our experiments is focused on Task A
(retrieval of scientific abstracts) alone although we submitted
some baseline runs for the clinical trial dataset. Table III
shows the average performances for infNDCG, R-prec, and
P@5/10/30. The best infNDCG was achieved by UKY CJT,
which added a conjunctive query of the baseline query terms to
the original disjunctive query. UKY AGG returned the highest
scores in all other measures except infNDCG. The worst score
in the same category is from UKY COM, in which the MoD
terms are appended to the queries. This indicates that the
topic expansion technique if not handled properly may result
in weaker outcomes. Overall, the combination of query-time
boosting and knowledge-based query expansion resulted in our
best results.

V. CONCLUSION

This paper describes our IR system and its results based
on runs submitted to the the TREC 2017 Precision Medicine
track. We imbued both input topics and document collections
with external knowledge (from UMLS and MeSH) to improve
the recall and ranks of relevant documents. Overall, the topic
expansion techniques using the UMLS concepts and MeSH
terms improved the results (specifically for the AACR/ASCO
collection). Our systems ranked 6th (in terms of infNDCG and
R-prec) among 29 teams that submitted runs to the abstract
retrieval task. In the future, we would like to experiment with
well-known learning-to-rank and recent neural approaches to
rerank the top few results to improve our performances.
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