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ABSTRACT
Twitter has been developed as an immense information creation
and sharing network through which users post diverse information.
Although a user would regularly check her Twitter timeline to stay
up-to-date on her topics of interest, it is impossible to survive with
manual topic tracking techniques while tackling the challenges that
emerge from the Twitter timeline nature. Among these challenges
are the big volume of posted tweets, noise (e.g., spam), redundant
information (e.g., retweets), and the rapid development of topics
over time. This necessitates the development of real-time summa-
rization (RTS) systems that automatically track predefined topics of
interest and summarize the stream while considering the relevance,
novelty, and freshness of the selected tweets.

We tackle this problem as part of Qatar University’s participa-
tion in TREC-2017 Real-Time Summarization (RTS) track. Our RTS
system adopts a light-weight and conservative filtering strategy
that monitors the continuous stream of tweets over a pipeline of
multiple phases including pre-qualification, preprocessing, index-
ing, relevance filtering, novelty filtering, and tweets nomination.
The system also exploits life (explicit) feedback to update profiles
and pushing criteria (e.g., relevance threshold). The experimental
results show that the runs that exploit the live explicit feedback
exhibited a better performance in comparison to the baseline run
that has been the best (among our runs) for the last two years. Addi-
tionally, all submitted runs have scored above the median provided
by the track organizers in the batch evaluation.

1 INTRODUCTION
The rich and diverse stream of Twitter posts empowered users to
utilize it as a main source of information on ongoing topics and
events. However, due to the nature of the Twitter stream, manually
tracking topics of interests (e.g., events) is a tough task for users,
not to say impossible. This necessitates the need for a real-time
summarization system that automatically tracks order of millions
of topics of interest to users in parallel and produces a summary of
on-topic tweets in real-time for each topic. Given the tweet stream,
a real-time summarization (RTS) system aims to track predefined
interest profiles over the online stream and pick relevant, novel,
and fresh tweets out to suggest to the user. For instance, if a user is
interested in following the updates on the “Opinions on Al Jazeera
media network", the system should efficiently monitor the stream
and capture the on-topic tweets including all aspects of the topic
which might change over time. Accordingly, real-time summariza-
tion approaches should use simple and efficient approaches that
can scale to follow multiple interest profiles in parallel. Most impor-
tantly, the RTS systems are expected to overcome many challenges
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that stem from the nature of tweets, such as sparsity and topic
drift. The former challenge originates from the very short length
of tweets. One way to tackle such a challenge is by enriching the
tweet text by contextual terms. The latter challenge requires the
system to cope with the changes of the topic over time. One possible
solution to this challenge is to update the topic representation by
terms from the topic’s new aspects that are discovered over the live
stream.

In this paper, we present our real-time summarization system as
a participant in TREC-2017 Real-time Summarization Track. Given
a live stream of tweets and a set of interest profiles that represent
users’ topics of interest, the system simulates the scenario of push
notification in which it pushes few tweets per day as notifications
on the user’s mobile phone for each topic. The track organizers
hosted a broker through which participants can fetch the interest
profiles and push the filtered tweet immediately when the system
decides to elect one [2]. The interest profile is composed of three
main fields: title (short query), description (1-2 sentences describ-
ing the information need), and narrative (a paragraph describing
the information need). Most importantly, on the other side of the
broker, active online users receive the push notifications on their
mobile phones (for the topics of interest they subscribed to) and
judge them tweets for relevance and redundancy[5]. The users’
feedback is then sent back to participants’ systems. This live as-
sessment is a substantial learning resource for the system in which
they can adjust the preferences on the users’ interest for better
summarization.

Our RTS system adopts a light-weight and conservative filtering
strategy that listens to the English tweets over the 1% sample of
the Twitter stream and processes the incoming tweets successively.
It is a pure "streaming" system as it adopts "one-tweet at-a-time"
processing model to ensure the least possible latency in making
pushing decisions. To alleviate the sparsity and topic drift problems,
we exploit the live feedback in two ways: (1) profile expansion and
(2) dynamic thresholding. In the former, the system utilizes the
positive feedback (truly relevant tweets) to update the profiles rep-
resentation. In the latter, the system updates the relevance threshold
periodically.

We organize the remainder of the paper as follows.We lay out the
system approach in Section 2 and discuss the evaluation setting and
our results in Section 3. Finally, we conclude and present possible
future work in Section 4.

2 APPROACH
The push notifications scenario simulates a recommender system
that sends pop-up messages to users on their mobile phones after
capturing tweets that match their interests. We extended our RTS
system that we participate with in the real-time tweets summariza-
tion tracks in the past two years [6, 7]. In this section, we describe
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the system architecture for scenario A (i.e., Push Notifications sce-
nario) in detail. We also focus on how the system utilizes the explicit
feedback to improve performance.

2.1 Baseline System
Our system is conservative in a sense that it extensively filters out
the noise and narrows down the set of candidate tweets for efficient
scoring. Specifically, given a list of interest profiles (i.e., Topic in
traditional ad-hoc), the system tracks these profiles over Twitter
stream in a scalable manner and processes only the matching tweets
(i.e., tweets that match at least one term of the profiles’ titles) in a
pipeline of multiple components: pre-qualification, preprocessing,
indexing, relevance filtering, novelty filtering, and tweets nomina-
tion.

2.1.1 Pre-qualification. While the system monitors the stream
using Twitter Streaming API1, it filters out non-English and low-
quality tweets. The criteria by which we determine the quality of a
tweet is based on its length and number of hashtags and URLs it
contains. Specifically, the system ignores any tweet that has less
than five terms or more than one URL or more than three hash-
tags. Unlike previous years, the baseline system does not filter out
retweets as the original (underlying) tweets might not be gathered
among the 1% sample of Twitter stream.

2.1.2 Preprocessing. Once a tweet is qualified, the system pre-
processes it in a series of steps that aim at cleaning its text before
scoring it for relevance and novelty. These steps include expanding
the tweet with hashtags’ terms (i.e., after removing the ’#’ prefix), re-
moving special characters (e.g., emoticon and symbolic characters),
stopwords and URLs, and stemming.

2.1.3 Indexing. As we acquire term statistics in the components
of the system, we initialized the system with an index of a 10-days
stream of tweets prior to the beginning of the evaluation period.
The system also incrementally indexes all incoming English tweets
during the evaluation period.

2.1.4 Relevance Filtering. The system represents both interest
profiles (represented by profiles’ titles) and incoming tweets as
vectors in the vector space model. To construct the vectors, the
system computes an idf -based term weighting as follows:

w(t) = id f (t) = log
N − d f (t) + 0.75
d f (t) + 0.75 (1)

whereN is the number of tweets indexed at the time of constructing
the vector, and d f (t) is the document frequency of the term. We
chose this termweighting function due to being light-weight (which
is necessary for real-time and scalable systems) and also very similar
to the standard tf -idf weighting function noticing that terms rarely
appear more than once in a tweet due to the limited length (140
characters).

An incoming tweet is scored against a subset of profiles (the
profiles that it matches) for relevance independently using the
standard Cosine Similarity function. To compute the relevance
scores in real-time efficiently, the system constructs an in-memory
index of profile vectors to match an incoming tweet with interest

1https://developer.twitter.com/en/docs/api-reference-index

profiles. The relevance of a tweet is determined using a relevance
threshold τr . If the relevance score of a tweet is greater than the
predefined threshold, the systems add the tweet to the potentially-
relevant tweets for the corresponding profile.

2.1.5 Novelty Filtering. The system then measures the novelty
of the potentially-relevant tweet by computing the overlap between
it and already-pushed tweets using a modified version of Jaccard
similarity:

J ′(Q,T ) = |Q | ∩ |T |
max(|Q |, |T |) (2)

Where Q and T are the profile and the tweet term sets, and |Q | and
|T | are their lengths (in terms) respectively. To consider a tweet in
the tweets nomination step, it must not exceed a predefined degree
of overlap, i.e., a novelty threshold τn , with already-pushed tweets.
This way the system does not overwhelm the user with redundant
notifications.

2.1.6 Tweets Nomination. Thus far, the system identified the
relevant and novel tweets. To satisfy the users’ need while avoiding
inundating them, the system has to take into account pushing a
maximum of 10 tweets per day per profile. Moreover, the system
has to consider the freshness of candidate tweets. Thus, the system
should intelligently select the optimal candidate tweets to nominate
to the user.

While following all interest profiles in parallel over tweets stream,
the system maintains a list of candidate tweets for each of the inter-
est profiles. The candidate tweets are the potentially relevant and
novel tweets that the system identifies so far for a specific profile.
For each profile, the RTS system periodically selects the next tweet
to elect to user from the candidate list through a broker [4]. This
selection component is triggered when the systems exceed a silence
period δ or it has already found l candidate tweets for that profile.

To wisely select the best tweet to send to the user, the system
re-ranks tweets in the candidate lists while considering relevance
and freshness using equation 3. This re-scoring linearly penalizes
the tweets based on their posting time, hence favoring fresh tweets.
The top tweet is then pushed to the user.

S(t) = Sr (t) ∗
100 − (CurTime − time(t))

100
(3)

Sr (t) is the relevance score of tweet t (computed using Cosine sim-
ilarity as we discussed earlier), curt ime is the current system time
(in minutes), and time(t) is the tweet creation time (in minutes).

2.2 Exploiting Live Feedback
Unlike previous years, the system receives live explicit feedback for
pushed tweets from online assessors, simulating the real settings
of RTS system, through the broker. Based on the responsiveness
assessors, the system might obtain multiple assessments or noth-
ing for every pushed tweet. Although the explicit feedback is a
valuable resource that could improve the system performance, it in-
troduces many challenges. Among these challenges are the latency
(when users are not responsive enough) and aggregating multiple
judgments (as each tweet might receive multiple judgments). To
mitigate the effect of these two challenges and for simplicity, the
system only considers the first judgment for each tweet and ignore
the remaining.

https://developer.twitter.com/en/docs/api-reference-index
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Our RTS system exploits the live explicit relevance feedback
(ERF) that it fetches periodically from the broker, in two methods:
(1) Profile Expansion, and (2) Dynamic Thresholding. In this section,
we explain each of these methods in detail.

2.2.1 Profile Expansion. Topics discussed on Twitter develop
over time which causes the so-called drift challenge. To cope with
the Topic change on the live stream, the system periodically updates
the profile representation periodically using a modified version
of Rocchio’s relevance feedback as shown in equation4. We only
consider the truly relevant tweets as our experiments show that
penalizing nonrelevant tweets, badly effects the RTS performance.

®q′
= ®q + β

|Fr |
∑
d ∈Fr

®d (4)

Herein, Fr is the set of truly relevant documents (judged by the live
assessors), |Fr | is the number of truly relevant tweets, and β is a
parameter used to control the influence of relevant tweets’ terms
on the new profile vector.

2.2.2 Dynamic Thresholding. The default thresholding tech-
nique in RTS system is to use a static global relevance threshold τr
across all topics. Although the static threshold can be tuned over
past tweet collections, it is still difficult, if not possible, to find a
static threshold that maintains its optimality across time especially
when topics evolve over time in the live stream. In other words,
while considering the topic development, the RTS system is ex-
pected to elect a satisfying number of relevant and novel tweets
to the user for a long time (spans over days to years). Moreover,
considering the difference in difficulty level between interest pro-
files, where difficult profiles typically have less number of relevant
tweets, makes the global threshold non-promising method.

To mitigate the effect of using a static global threshold on the
RTS system performance, we utilize the live assessments to update
the relevance threshold over time. The system uses an initial static
global relevance threshold τr for all profiles and periodically up-
dates per-profile pi relevance threshold. To update the threshold,
the system uses the number of pushed tweets that received positive
feedback in the past period. If a profilepi got no positive feedback in
the last period, the system slightly decreases the relevance thresh-
old τr by 0.05 with a lower bound of 0.5. Otherwise, the threshold
is increased using the following equation:

τ
′
ri = τri +min(

Rpi
100
, 0.15) (5)

Where τri is the current threshold of profile pi , τ
′
ri is the updated

threshold of that profile and Rpi is the number of truly relevant
tweets for profile pi within a time period tT . The threshold upper
bound is set to 0.8. Controlling the upper and lower bounds of the
relevance threshold prevents extreme updates that might harm the
system performance; using a very low threshold allows the system
to overwhelm the user with many uninteresting updates, otherwise,
the system would be strict and pushes no updates.

3 EXPERIMENTAL EVALUATION
Thus far we discussed the major components of the RTS system.
We now discuss the evaluation settings, configurations, and perfor-
mance (in terms of effectiveness) of our RTS system.

3.1 Evaluation Measures
The participating systems were evaluated using batch evaluation
measures and live evaluation. For the former, there are three main
batch evaluation measures: the expected gain (EG), the normalized
cumulative gain (nCG), and the Gain minus Pain (GMP) measures.
For the latter, there are two main measures: precision (P) and utility
(U). Each of these evaluation measures is evaluated for each topic
per day and then averaged over evaluation days. The final score of
a run is the average of scores over all topics.

Similar to last year, the evaluation measures do not penalize
systems for temporal latency. The latency was reported separately
using mean (MLT ) and median (MedLT ) of the difference between
the pushing time of each pushed tweet and the first tweet of the
cluster which the pushed tweet belongs to (i.e., reference tweet).

3.1.1 Batch Evaluation: Following the traditional TREC evalua-
tion, all participating systems’ output are used to construct a pool of
potentially-relevant tweets and to be labeled by in-house assessors.
Systems are evaluated using this resultant qrels as follows:

• Expected Gain (EG):

EG =
1
N

∑
t ∈P

G(t) (6)

P is the set of tweets that are pushed by the system and N is
the number of those tweets (i.e., N must be ≤ 10 tweets).

• Normalized Cumulative Gain (nCG):

nCG =
1
Z

∑
t ∈P

G(t) (7)

Z is the maximum possible gain for that topic in that specific
day based on all judged pushed tweets.

• Gain minus Pain (GMP):

GMP = α
∑
t ∈P

G(t) − (1 − α)P (8)

P is the number of non-relevant tweets pushed by the system
and α is a parameter to balance between gain and pain.

For all above measures, G(t) is 0 if the tweet is judged as non-
relevant, 0.5 if it is judged as relevant, and 1 if it is judged as highly-
relevant. The RTS system in the push notifications mode is allowed
to push a maximum of n = 10 tweets daily per profile during the
evaluation period. All extra tweets will be discarded. All measures
also penalize redundancy in pushed tweets using the semantic
clusters (each contains a set of relevant tweets that are semantically
similar to each other) that are released as part of the relevance
judgments; once a tweet from a cluster is pushed, all upcoming
pushed tweets from the same cluster are considered non-relevant.

Each of the aforementioned measures has two variants there are
two variants of treating the silent days. Silent days (in contrast to
eventual days) are the days when there are no relevant tweets (for
a specific profile). The measures that have “1” as a suffix reward a
system by a score of 1 if it kept quiet on silent days, while measures
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Table 1: Official TREC 2017 results of QU runs for the push notifications scenario (batch evaluation). Best value per column is
boldfaced.

Run EG-p EG-1 nCG-p nCG-1 GMP.33 GMP.5 GMP.66 MLT MedLT
QUBaseline 0.2422 0.2146 0.2260 0.1984 -0.2326 -0.1459 -0.0644 64812.8 1
QUExp 0.2356 0.2185 0.2159 0.1987 -0.1498 -0.0909 -0.0354 63943.6 1
QUExpDyn 0.2547 0.2068 0.2475 0.1996 -0.5182 -0.3457 -0.1833 77033.4 19
Median 0.2194 0.1951 0.2095 0.1826 - -0.1707 - - -

Table 2: Official TREC 2017 results of QU runs for the push notifications scenario (live evaluation). Best value per column is
boldfaced.

Run # Rel. # Redun. # Nonrel. # Unjudged Ps Pl Us Ul MLT MedLT
QUBaseline 875 139 1298 111 0.3785 0.4386 -562 -284 212.7 1
QUExp 664 100 940 79 0.3897 0.4484 -376 -176 232.2 1
QUExpDyn 1399 274 2589 175 0.3282 0.3925 -1464 -916 310.2 1
Median - - - - 0.3403 0.4174 -805 -456 - -

that have “p” as a suffix penalize systems by 0.1 multiplied by the
number of pushed tweets by the system (fraction of the ten-tweet
daily limit).

3.1.2 Online Evaluation: Using the explicit relevance feedback
gathered from the the live assessors, systems are evaluated using
two online precision measures:

• Strict Precision (Ps ) = | R
R+RR+NR |

• Strict Utility (Us ) = |R − RR + NR |

Where R, RR, and NR are the set of relevant, redundant and
nonrelevant tweets, respectively. There are two variants of these
measures: strict measures, that have “s” suffix, penalize systems
on redundant tweets and lenient measures, that have “l” suffix, are
more flexible in which they do not evaluate on novelty.

• Lenient Precision (Pl ) = | R+RR
R+RR+NR |

• Lenient Utility (Ul ) = |(R + RR) − NR |

3.2 Official Runs
In this section, we discuss our submitted runs for both scenarios in
detail including the configuration and results. We tuned all system
parameters over two test collections of microblog tracks: TREC-
2015 Real-time Filtering track [3] and TREC-2016 Real-time Tweet
Summarization track [3].

We submitted three automatic runs that we describe below:

• QUBaseline is the baseline run that activates the core sys-
tem components without exploiting the live relevance feed-
back.

• QUExp has a similar configuration to QUBaseline run, ex-
cept that it uses utilizes the live relevance feedback to hourly
update the textual representation of profiles. It expands the
profile representation by the positive relevance feedback
after weighting them by a factor β = 0.2 to avoid the topic
drift.

• QUExpDyn in addition to performing hourly expansion,
this run adopts a simple adaptive thresholding in which it
dynamically updates the relevance threshold per profile.

In all runs, we set both relevance τr and novelty τn thresholds to
0.6 as it was the best value in the experiments that we conducted.

Table 1 shows the performance of our official runs in compar-
ison to median scores provided by the track organizers for EG,
nCG, and GMP.5 measures. Note that both the mean latency (MLT)
and median latency (MedLT) are reported in seconds. Surprisingly,
QUExpDyn and QUExp runs outperform the baseline QUBaseline.
This never happens in our participation in the last two years. QUEx-
pDyn is the best run in EGp andnCG measures andQUExp performs
well in EG1 all variants of GMP measure compared to other runs.
These results show how exploiting explicit live feedback improves
the system effectiveness in contrast to our attempts when using
pseudo-relevant feedback[6, 7]. Additionally, when comparing to
Median scores, all QU runs outperform them in all measures, except
for QUExpDyn in GMP .5 measure.

In table 2 we present the system results using the online evalua-
tion. It can be clearly seen thatQUExp run outperform all other runs
in all measures. Additionally, we notice that QUBaseline and QUExp
runs outperform the median in all measure, however, QUExpDyn
fails to beat the Median in the online evaluation.

4 CONCLUSION AND FUTUREWORK
We presents our RTS system participated in the real-time summa-
rization track in TREC-2017. The baseline system filters tweets in
a simple pipeline that includes multiple stages: pre-qualification,
preprocessing, relevance filtering, novelty filtering, and tweets nom-
ination. The system also exploits live explicit feedback to update
profiles in two ways: (1) profile expansion and (2) per-profile dy-
namic thresholding. Generally, the results show that, runs that use
the explicit relevance feedback outperform the baseline in batch
evaluation. Surprisingly, the results show that the run that performs
dynamic thresholding is the best in batch evaluation, however, it
poorly perform in online evaluation (scoring below the median
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score). We plan to further perform failure analysis on all compo-
nents of the system to better understand the results. Additionally,
we are planning to experiment with different relevance models (e.g.,
the so-called Relevance Model [1]) when utilizing the live explicit
feedback.
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