Leveraging both Structured and Unstructured
Data for Precision Information Retrieval

Yanshan Wang, Ravikumar Komandur-Elayavilli, Majid Rastegar-Mojarad,
and Hongfang Liu

Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
{Wang.Yanshan, KomandurElayavilli.Ravikumar, Mojarad.Majid,
Liu.Hongfang}@mayo.edu

Abstract. This paper describes the participation of the Mayo Clinic
NLP team in the Text REtreival Conference (TREC) 2017 Precision
Medicine track. The novelty of our systems is four-fold. First, compared
to our submissions in the previous year, our systems utilized an en-
hanced named entity recognition (NER) method to extract genes, vari-
ants, proteins, and diseases from PubMed articles. This NER method
combined several state-of-the-art NER tools including TaggerOne, be-
CAS, Reach and tmVAR. The extracted entities were indexed in differ-
ent fields and treated as structured data for retrieval. Second, we used
multi-field querying in a Pseudo Relevance Feedback (PRF) model. We
first query the unstructured fields (i.e., the fields of title and abstract)
and utilize information in structured fields from top-ranked documents
as feedback for query expansion. Third, we explored the use of MeSH on
Demand, a web service identifying MeSH terms in free-text and recom-
mending similar PubMed articles which are relevant to the text, to boost
the performance of our retrieval systems. The reason we used MeSH on
Demand is due to its effectiveness for recommending relevant PubMed
articles based on our manual judgments. Fourth, we utilized the demo-
graphic information (i.e., age and sex) as structured data to filter out
the clinical trials that did not meet the criteria in each topic.
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1 Introduction

Precision medicine can result in better treatment outcomes than using the same
strategy for everyone since it assigns preventive measures or treatment interven-
tions on the basis of individual characteristics [23]. Advances in next-generation
sequencing technology have led to the development of genetic testing for the
molecular diagnosis of diseases, particularly cancers. Genetic variants have been
shown to be factors implicated in various cancers, such as breast cancer (e.g.,
mutations in the BRCA1 and BRCA2 genes account for a small proportion of
breast cancer cases in the general population [I4]), lung cancer (e.g., variants



of large effect in BRCA2 and CHEK?2 affect risk of lung cancer [26]), colorec-
tal cancer (e.g., variants at the CRAC1 (HMPS) locus on chromosome 15q13.3
influence colorectal cancer risk [§]), prostate cancer (e.g., variants in three inde-
pendent regions at 8q24 and in one region at 17q12 and another at 17q24.3 are
significantly associated with a risk of prostate cancer [29]), etc. Since the genetic
variant indicates the risk level of a cancer, knowing the specific genetic variant
of a cancer should be informative for prevention and treatment [5]. For exam-
ple, ovarian cancer patients carrying a rare homozygous genotype of rs1425486
in PDGFC have poorer overall survival and worse treatment response than pa-
tients carraying common homozygous and heterozygous genotypes [10]. This
knowledge is commonly buried in the biomedical literature [6], however, finding
the most relevant and recent research can be quite challenging due to the high
volume of scientific literature [22].

Information retrieval (IR) provides an efficient and effective way to retrieve
relevant documents from a large corpus [25]. In order to evaluate IR methods that
retrieve useful precision medicine-related literature for clinicians treating cancer
patients, the Text REtrieval Conference (TREC) Precision Medicine (PM) track
was organized to encourage IR researchers to study the use of IR in such a clinical
setting to help clinicians make better decisions. In this challenge, 30 queries were
created by precision oncologists using synthetic cases at the University of Texas
MD Anderson Cancer Center. Each query represents a cancer patient, which
includes four fields, namely the patient’s disease (type of cancer), the relevant
genetic variants (which genes and /or which variant), basic demographic informa-
tion (age and sex), and other potential factors that may be relevant. Two corpus
were provided for participants, biomedical articles and clinical trials. Biomedical
articles were in the form of article abstracts from MEDLINE/PubMed, address-
ing relevant treatments for the given patient. Clinical trials were curated from
www.ClinicalTrials.gov, addressing relevant clinical trials for which the patient
was eligible. The first set of results represents the retrieval of existing knowledge
in the scientific literature, while the second represents the potential for con-
necting patients with experimental treatments if existing treatments have been
ineffective. Participants may submit a maximum of five automatic or manual
runs for each corpus, each run consisting of a ranked list of up to one thousand
documents.

In this paper, we describe our participation in the TREC PM track. The
novelty of our systems is four-fold. First, compared to our submissions in the
previous year, this year’s systems utilized an enhanced named entity recognition
(NER) method to extract genes, variants, proteins, and diseases from PubMed
articles. This NER method combined several state-of-the-art NER tools includ-
ing TaggerOne, beCAS, Reach and tmVAR. The extracted entities were indexed
in different fields and treated as structured data for retrieval. Second, we used
multi-field querying in a Pseudo Relevance Feedback (PRF) model. We first
query the unstructured fields (i.e., the fields of title and abstract) and utilize in-
formation in structured fields from top-ranked documents as feedback for query
expansion. Third, we explored the use of MeSH on Demand, a web service identi-



fying MeSH terms in free-text and recommending similar PubMed articles, which
are relevant to the text, to boost the performance of our retrieval systems. The
reason we used MeSH on Demand is due to its effectiveness for recommending
relevant PubMed articles based on our manual judgments. Fourth, we utilized
the demographic information (i.e., age and sex) as structured data to filter out
the clinical trials that did not meet the criteria in each topic.

In the rest of this paper, we describe the methods utilized in our systems,
including the NER method, the PRF model, the Markov Random Field (MRF)
model, and the MeSH on Demand, in Section [2] We describe the details of each
submitted run in Section [3] and show the experimental results in Section [4
Finally, we conclude the study in Section

2 Methods

2.1 Named Entity Recognition

A state-of-the-art NER tool developed in our previous studies [21I20] was utilized
to extract gene and disease entities from the given texts. The tool used an
ensemble of the state-of-the-art named entity normalization tools, PubTator [27]
and beCAS [19], supplemented by a dictionary-based lookup for identifying the
entities and normalizing them to standard identifiers.

First we used the REST-API services provided by PubTator and beCAS to
detect entities from texts. Subsequently, we built a dictionary by compiling differ-
ent dictionaries from multiple knowledge sources such as Entrez [12], UniProtKB
[1], Gene ontology [3], CTD [I3], and MeSH [I1], and looked up gene and dis-
ease names in the composite dictionary. This dictionary lookup resolved three
problems where PubTator and beCAS failed: 1) noun phrases lacking morpho-
logical features were detected (e.g., PubTator and beCAS failed to detect “bone
morphogenetic protein-2” while the tokenization component in the dictionary
lookup translated the phrase to “bone morphogenetic protein 2” that could be
exactly matched in the dictionary Entrez); 2) acronyms were detected; 3) strings
with high surface similarity were detected (e.g., both “Gialpha(1)” and “Gi al-
pha(2)” were detected by the dictionary lookup while PubTator failed to detect
“Gi alpha(2)”).

We had certain priority rules to resolve conflicts between the entity recog-
nition systems. Specifically, we utilized the annotations of PubTator for genes,
proteins, variants, and diseases when conflicts existed between PubTator and
other systems. When PubTator failed to detect those entities, we considered
beCAS and the dictionary lookup. Moreover, when a phrase was matched more
than once in the dictionary lookup, we chose the dictionary that exactly matched
the phrase instead of those with partial matches.

2.2 Retrieval Models

Markov Random Field Model The MRF model is a general framework for
IR, which alleviates the bag-of-word assumption by modeling term dependencies



[15]. It takes into account the relationships between query terms by leveraging the
Markov property. The MRF model can be represented as an undirected graphical
model. Each node in the graph represents a random variable and each edge
between two random variables stands for the independence semantics between
the random variables. Since the Markov property states that every node in the
graph is independent of its non-neighbors given the observed neighbor nodes,
different edge configurations indicate distinct term independence assumptions.

Since IR applications mostly consider three independence types, namely full
independence (FI), sequential dependence (SD), and full dependence (FD), the
corresponding three generalized graph structures are considered in the MRF
model. Figure [I] depicts an example of three clique sets in this MRF model given
three query terms. As one can see, in the FI structure each query term is as-
sumed to be independent of each other given the document D. The SD structure
assumes dependence between adjacent query terms and the FD structure makes
the assumption that all query terms are dependent on each other. An ensemble
of the three structures can be utilized to rank the retrieved documents. Since
there is no existing training data for this task, we intuitively set the weights for
FI, SD, and FD to 0.8, 0.1, and 0.1, respectively [25].

T: Full Independence (FT) O: Sequential Dependence (SD) U: Full Dependence (FD)

Fig. 1: Alternative dependence structures for an MRF model with three query
terms.

Multi-field Pseudo Relevance Feedback The PRF model is a query ex-
pansion and refinement technique [4]. It simply assumes that the top-ranked
documents retrieved by an IR system are relevant, and words occuring in these
documents may be used to expand the initial query. The PRF model has been
extensively investigated in the literature, and has been shown to be an effec-
tive technique for improving ranking [28/24]. The expansion terms generated by
the conventional PRF model depend on the term frequencies in the top-ranked
documents. However, this strategy may not be appropriate to use in the PM
challenge. The most frequent terms from the top-ranked documents may not
be relevant to the query and thus, the expansion terms may worsen the final
document ranking.



Since we can extract gene and disease entities from each document, we hy-
pothesize that these genes and diseases are important for retrieving relevant
documents. Thus, we expanded the queries by adding these entities from the
top-ranked documents (top 20 in our systems). As genes, diseases, and full-text
articles were indexed in multiple fields, we called this approach multi-field PRF.

2.3 MeSH on Demand

MeSH on Demancﬂ is a tool developed by the National Library of Medicine
(NLM) and can be used to identify Medical Subject Heading (MeSH) terms from
free text and retrieve similar PubMed or MEDLINE articles according to the
MeSH terms. This tool uses the NLM Medical Text Indexer (MTI) [2II8/17] to
find MeSH terms. Figure[2shows a screenshot of MeSH on Demand on the exam-
ple query “Liposarcoma CDK4 Amplification 38-year-old male GERD” into the
web application. Four MeSH terms, namely “Liposarcoma”, “Cyclin-Dependent
Kinase 4”7, “Male”, and “Gastroesophageal Reflux”, can be identified and ten
most similar PubMed articles are suggested by MeSH on Demand using both
keywords and these MeSH terms. Though the MTI was developed in 2002, it is
still relevant and useful for automated indexing recommendations based on re-
cent findings [16]. In order to evaluate the performance of MeSH on Demand for
recommending relevant PubMed articles, we manually judged the recommended
PubMed articles for the first three topics. We found that these articles were very
relevant to the topics, which is consistent with the findings in Mork et al’s study
[16]. Therefore, the ten MeSH on Demand recommended articles were placed on
the top of the final relevant document list with the ranking order computed by
our IR systems.

2.4 Query Preprocessing

The query topic in this challenge consists of disease, genetic variants, demo-
graphic, and potentially other information about the patients. An example of
the provided topics is shown below:

<disease>Melanoma< /disease>

<gene>NRAS (Q61K)</gene>

<demographic>55-year-old male< /demographic>

<other> Hypertension< /other>.

First, we split the “gene” field into two fields, i.e., “gene” and “variant”, and put
the variant into a “variant” field if a variant is found for a specific gene. Second,
we split the information in the “demographic” field into three fields, i.e., “age”,
“agedes”, and “sex”. The “age” field contains the age value, the “agedes” field
contains the MeSH description for that age (i.e., “aged” for the age older than
65, “middle aged” for the age between 45 and 65, “adult” for the age less than
45), and the “sex” field contains “male” or “female”. After the processing, the
above query becomes:

! https://meshb.nlm.nih.gov/MeSHonDemand
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Fig. 2: Screenshot of MeSH on Demand on example query “Liposarcoma CDK4
Amplification 38-year-old male GERD”.

<disease>Melanoma< /disease>
<gene>NRAS < /gene>
<wariant>Q61K< /variant>
<age>55< Jage>
<agedes>middle aged</agedes>
<sex>male< /sex>

<other> Hypertension< /other>.

2.5 Indexing

We utilized ElasticSearc}ﬂ an open-source Lucene-based text search engine, for
indexing.

For PubMed articles, the title and abstract of each article were merged and
indexed into a abstract field. The extracted gene and disease entities were in-
dexed in gene and disease fields, respectively. In addition, we extracted MeSH
terms using MetaMap for each PubMed article and indexed them in a mesh
field. Fields such as the abstract field which contained unstructured free-texts
were regarded as unstructured fields, and fields such as gene and disease fields
which contained named entities were regarded as structured fields. Various IR
models could be applied to query unstructured fields while exact matching was
sufficient for the structured fields. For clinical trials, we indexed brief_summary,
condition, detailed_description, keyword, mesh_term, gender, minimum_age, and
mazimum_age fields. Since many clinical trials contained intervention drugs, we

2 https://www.elastic.co/



utilized semantic MEDLINE [9] to find the ten most related genes to a drug, and
indexed the genes in a gene_semantic_medline field. Figure [3]shows the indexing
fields for both data sources.

PubMed Clinical
Index Trial Index
wnsinciured amiracinred 7T Cadaned i :
brief_summary
rrrrrrrrrrrrrrrrrr condition gene_semantic_ | }
T medline :
detailed_description [ng]
l keyword l l minimum_age l

Fig. 3: Indexing fields of PubMed articles and clinical trials.

2.6 Re-ranking

Since both queries and documents contained structured fields, we used exact
matching to re-rank the retrieved documents with structured fields. Specifically,
a document was ranked higher then other documents if more terms in structured
fields were exact matched.

3 Runs

In this section, we describe our submitted runs. Three boolean operators are
defined as follows. MUST(q(+), d(+)) denotes that all the terms in the query field
q(-) must be matched in the document field d(-). SHOULD(q(+), d(-)) represents
that at least one of the terms in the query field q(-) should be matched in the
document field d(-). MATCH(q(+), d(+)) represents exact matching when ¢(-) and
d(-) are both structured fields, which is similar to the WHERE clause in SQL
for relational database. The boolean operators in Elasticsearch takes a more-
matches-is-better approach, so the score will be added together to provide the
final ranking score for each document.

3.1 PubMed article retrieval task

Figures [}[7] illustrate the pipelines of submitted Runs 1-4. In Run 5, we utilized
the pipeline in Run 4 and additionally conducted the re-ranking step before
applying the MeSH on Demand. The re-ranking step is the same as used in Run
3 (note that we used the original query terms without query expansion).



Yes MUST(q(disease), d(abstract))
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v
SHOULD(“variant”, d(abstract)), No
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Fig. 4: Pipeline of Run 1 for the PubMed article retrieval task.

MATCH(q(disease), d(disease))
MATCH(q(gene), d(gene))

if q(variant)
is empty

Boost by
P MeSH on
Demand

MATCH(q(disease), d(disease))
MATCH(q(gene), d(gene))
MATCH(q(variant), d(gene))

Fig. 5: Pipeline of Run 2 for the PubMed article retrieval task.
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Re-rank l

MATCH(q(disease), d(disease)) Boost by
MATCH(q(gene), d(gene)) —»{ MeSH on
MATCH(q(variant), d(gene)) Demand

Fig. 6: Pipeline of Run 3 for the PubMed article retrieval task.

3.2 Clinical trial retrieval task

Figures[§}[I2]illustrate the pipelines of Runs 1-5 for the clinical trial retrieval task.
In Runs 3 and 5, we first expanded queries by searching PubMed articles and
then used the expanded queries to search clinical trials. Note that a filtering step
was applied for each run where we checked whether d(gender) in each retrieved
document matched q(sex) and whether q(age) was between d(minimum_age)
and d(maximum_age). Documents that did not qualify these two criteria were
removed from the final list.
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Demand MATCH(q(mesh), d(mesh))

Fig. 7: Pipeline of Run 4 for the PubMed article retrieval task.

SHOULD(q(disease), d(brief summary))
SHOULD(q(disease), d(detailed_description))
SHOULD(q(disease), d(condition))
SHOULD(q(gene), d(detailed_description))

Fig. 8: Pipeline of Run 1 for the clinical trial retrieval task.

SHOULD(g(disease), d(brief_summary))
SHOULD(g(disease), d(detailed_description))
MUST(qg(disease), d(condition))
MATCH(q(gene), d(gene_semantic_medline))
SHOULD(g(gene), d(detailed_description))

Fig.9: Pipeline of Run 2 for the clinical trial retrieval task.
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MUST(q(gene), d(abstract))
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A

Fig. 10: Pipeline of Run 3 for the clinical trial retrieval task.



SHOULD(q(disease), d(brief_summary))

Get MeSH terms from SHOULD(q(disease), d(detailed_description))
MeSH on Demond for each P SHOULD(q(disease), d(condition))
query and create q(mesh) SHOULD(q(gene), d(detailed_description))

MATCH(q(mesh), d(mesh_term))

Fig. 11: Pipeline of Run 4 for the clinical trial retrieval task.

MUST(q(disease), d(abstract))
MUST(q(gene), d(abstract))
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SHOULD(q(disease), d(abstract))
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No MSSTégEgcnc), (}(alfs&ract)) ) SHOULD(“variants™, d(abstract)
MUST(q(variant), d(abstract))
MATCH(q(agedes), d(mesh)) l
MUSTH
SHOULD("variant”, d(abstract)),
SHOULD("variants”, d(abstract) expand q(gene) by genes in d(gene),
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SHOULD(q(disease), d(condition)) <
SHOULD(q(gene), d(detailed_description))
MATCH(q(mesh), d(mesh_term))

Expand q(mesh) by adding MeSH terms
from MeSH on Demond for each query

Fig. 12: Pipeline of Run 5 for the clinical trial retrieval task.

4 Results

Tables [[ and 2l list the overall results of the official runs for the PubMed article
retrieval task and clinical trial retrieval task, respectively.

As shown in Table [T} the performance of Runs 3 and 5 is identical and the
best among the submitted runs. Since Run 5 utilizes the same strategy as Run
4 with an additional re-ranking component as used in Run 3 and since Run 4
underperforms Run 3, we can conclude that the re-ranking by structured data
contributes to ranking relevant articles high in the final list. Comparing the
performance of Run 4 with other systems in terms of P@Q10, we find that query
expansion decreases the P@10 dramatically. This may be because the query
expansion adds too many noisy terms to the original query. It is also interesting
that the query expansion fails to improve recall since Run 5 performs as well
as Run 3. Thus, query expansion using multi-field PRF fails to improve the IR
performance for this task.

Run 2 is inferior to other systems significantly. Since Run 2 only uses the
structured field, we can view it as a relational database system. This result im-
plies that adding an IR component to a conventional relational database system
will significantly improve the system performance.

TableRllists overall results of our submitted runs for the clinical trial retrieval
task. As shown in the table, the simplest method, Run 1, has the best perfor-
mance among the 5 runs. This result indicates that the unstructured free-text



Table 1: Overall results of official submitted runs for the PubMed article retrieval
task.

Run Name|infNDCG| P@10 | R-prec
Run 1 0.2383 |0.3793|0.1352
Run 2 0.2199 [0.3724|0.1271
Run 3 0.2864 |0.3931|0.1698
Run 4 0.2359 |0.0975|0.1370
Run 5 0.2864 |0.3931|0.1698

description in each clinical trial is crucial for searching relevant clinical trials.
The fact that Run 5 outperforms Run 3 and Run 4 outperforms Run 2 shows that
the MeSH terms provided by the MeSH on Demand contribute to the retrieval.
Another observation is that incorporating genes from the gene-drug mapping us-
ing semantic MEDLINE decreases the performance significantly (Run 2 versus
Run 1). The performance of Runs 3 and 5 is worse than Runs 1 and 4, which
indicates that query expansion by using feedbacks from relevant biomedical lit-
erature fails to improve retrieving relevant clinical trials. This result is consistent
with a study that discovers information discrepancies between clinical trial data
from ClinicalTrials.gov and biomedical publications from PubMed [7].

Table 2: Overall results of official submitted runs for the clinical trial retrieval
task.

Run Name| PQ@Q5 | P@Q10 | PQ15
Run 1 0.2857(0.2393|0.2095
Run 2 0.1357{0.1250 | 0.1262
Run 3 0.2143|0.1821 | 0.1690
Run 4 0.2571]0.2250 | 0.1905
Run 5 0.235710.1929 | 0.1690

Figures and [I5] depict results across topics for the PubMed article
retrieval task in terms of infNDCG, P@10, and R-Prec, respectively. Our best
runs (Runs 3 and 5) outperform the median infNDCG on 17 out of 30 topics.
A very interesting observation is that Run 2 performs promisingly on the topics
where the best runs perform bad (e.g., topics 3, 11, 13, and 14). Take topic 14
below as an example:
<disease> Cholangiocarcinoma< /disease>
<gene>IDH1 (R152H)< /gene>
<demographic;64-year-old male< /demographic>
<other> Neuropathy< /other>
Runs 1, 3 and 5 fail to retrieve relevant articles. We also find that the PQ10 is 0
for this topic for all submitted runs. This result means that the ten articles sug-
gested by MeSH on Demand are judged nonrelevant. The MeSH terms extracted



by MeSH on Demand for this topic are “Cholangiocarcinoma”, “Isocitrate De-
hydrogenase”, “Bile Duct Neoplasms” and “Bile Ducts, Intrahepatic”. The sug-
gested articles contain “IDH1” and “IDH1 (R132H)” in the title or abstract,
however, most of them are related to “glioma” instead of “cholangiocarcinoma”.
Our IR systems also failed to find relevant articles for this topic. The reason
might be that the term frequency of “IDH1” or “IDH1 (R132H)” is much higher
than “cholangiocarcinoma” so the score of matching the term “cholangiocarci-
noma” is underweighted in the IR model. The same reason accounts for topic
26 where most retrieved articles are about ”NRAS mutations” and “melanoma”
instead of “breast cancer”.

Figure [14] shows the performance of MeSH on Demand. We observe that it
performs well on some topics, such as topics 2, 16, and 23 where P@10 is 1.0 but
performs poorly on other topics, such as topics 14, 26, 27, and 30.
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Fig. 13: Distribution of infNDCG over topics compared to median infNDCG for
the PubMed article retrieval task.



m—mayonlppm3

s mayonlppmd

=== mayonlppms

Median

Fig. 14: Distribution of PQ10 over topics compared to median P@Q10 for the
PubMed article retrieval task.

Il ]
03
| — mayonippm1

s mayonlppmd

== mayonlppm5

s
2
<\

Median

12 3 4 5 6 7 8 9 10 11 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Fig. 15: Distribution of R-Prec over topics compared to median R-Prec for the
PubMed article retrieval task.

Since the judgment sets for this task were created using simple depth-15 pools
and there existed very few relevant trials, only the precision at cut-off levels of
5, 10, and 15 were used as the official metrics for the clinical trial retrieval task.
Moreover, topic 10 was dropped from the evaluation for this task since there were
no known relevant trials for it and topic 12 was dropped since the judgments
were not completed. Figures [16] [[7] and [1§] provide results across topics for the
clinical trial retrieval task in terms of P@Q5, P@Q10, and P@15, respectively. The
performance of our best system, Run 1, is better or equal to the median PQ5
for 21 out of 28 topics, which implies that the simplest method performs well
for the clinical trial retrieval task.

5 Conclusion

This paper describes the participation of Mayo Clinic NLP team in the Text
REtreival Conference (TREC) 2017 Precision Medicine track. We explored dif-
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Fig. 16: Distribution of PQ5 over topics compared to median P@5 for the clinical
trial retrieval task.
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Fig. 17: Distribution of PQ10 over topics compared to median P@Q10 for the
clinical trial retrieval task.

ferent approaches in the submitted runs, including the novel NER tool, the PRF
model, MeSH on Demand, re-ranking using structured data, and filtering us-
ing demographic information. From the experimental results, we conclude that
1) query expansion using PRF in our method failed to improve the IR perfor-
mance for the PubMed article retrieval and query expansion by using feedbacks
from searching biomedical literature failed to improve the IR performance for
the clinical trial retrieval; 2) MeSH on Demand performs well on some topics
and poorly on others; 3) re-ranking by structured data contributes to ranking
relevant articles high in the final list; and 4) unstructured free-text descriptions
in clinical trials are crucial for retrieving relevant clinical trials.
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