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1 Introduction 
 The OpenSearch track explores The "Living Labs" evaluation paradigm for IR that involves real users 
of operational search engines. The task in the track will continue/expand upon the ad hoc Academic Search 
task of TREC 2016. It is difficult to define who is better in the ranking experimentation, because the real 
users in the natural environments search a key word with their own purpose. The best way to evaluate two 
ranks is let the real users make use of them. So TREC 2017 Open Search Track provides this platform 
which is a new form to assess the ranks good or bad. 
 The Open Search provide the training queries, testing queries and candidates documents, but it did not 
tell us which document is more relevant to a specific query which is necessary to train our model. So first 
we need to crawl the rank of all the documents on each query from an existing web search engine. Then we 
try a serial of features in order to find the relevance between the queries and the documents. And we also 
designed scoring rules to give each document a score. Finally, we used XGBoost to train models for each 
training query and then found a way to predict testing data based on the models. 
 Feedback data is the key to this track. We find a simple way to integrate the feedback into our model. 
Unfortunately, there is so little feedback that can hardly improve the result. 
2 Approach 
2.1 Crawl Training Data 
 Since we only know the candidate documents of each query, we should use external information to rank 
candidate documents. We crawl the top 100 documents for each query from real search engine SSOAR. If 
the number of returned documents is less than 100, we just retain all the documents. 
 We discover that the training data and SSOAR returned documents contain various languages, so we 
uniformly translate them into English by Google Translate. Then we try to match candidate documents with 
SSOAR returned documents in order to get a ranked document list. 
 We use the function below to measure the similarity of a candidate document and a returned document. 

푠푖푚 (푑 ,푑 ) =
#푤표푟푑푠	표푐푐푢푟	푖푛	푏표푡ℎ	푑표푐푢푚푒푛푡	푡푖푡푙푒푠

#푤표푟푑푠	표푐푐푢푟	푖푛	푐푎푛푑푖푑푎푡푒	푑표푐푢푚푒푛푡	푡푖푡푙푒 
 Practically, we set a threshold at 0.6 to judge if two documents match, which we find all candidate 
documents match with a distinct returned document. 
2.2 train the model  
 We use 3 types of features to train XGBoost models. topic model similarity, sentence embedding 
similarity and document meta-data features are used. In order to learn scoring functions, each ranked 
document is given a score. 
2.2.1 Topic Model  
 Topic Model is an effective way to gain semantic similarities of documents2. We considered several 
models and finally decided to use Latent Dirichlet Allocation (LDA)3. We use all the training documents to 
learn the model and infer the topic distributions of each document and query. 
 Then we can get the similarity just by calculating the cosine similarity of two topic distributions. 

푠푖푚 (푑, 푞) =
퐿퐷퐴(푑) ∙ 	퐿퐷퐴(푞)

||퐿퐷퐴(푑)|| ∙ ||퐿퐷퐴(푞)|| 
Where 퐿퐷퐴(푑) refers to the topic distribution of document	푑. 
 
2.2.2 Document Embedding 
 We use pre-trained 300-dimensions vectors generated by word2vec4 as word embedding. Then we use 
bag-of-words model to represent a document, which embedding is the average of all word embeddings occur 
in it. 



풆풅 =
1
푛

풆풘풊
∈

 

where 푤  represents the 푖 th word in document d which consists 푛  words. 풆풅  and 풆풘풊  represents 
embeddings of the document and the word respectively. 
 Again, we just use cosine similarity to measure the similarity of document-query pair. 

푠푖푚 (푑, 푞) =
풆풅 ∙ 	풆풒

||풆풅|| ∙ ||풆풒||
 

2.2.3 Meta data 
 We use author, publish time and type and other five meta data as discrete features. 
2.2.4 Scoring Rules 
 We give each ranked document a score in order to learn a scoring function. The score of a candidate 
document is decided by its position in the returned document list given by SSOAR. This way is like last 
year’s paper5. The scoring rules are as follows: 
 score = 5.0 − 0.05 × position:   ranked position between 1 to 5 
 score = 5.0 − 0.10 × position:   ranked position between 6 to 10 
 score = 4.5 − 0.10 × position:   ranked position between 11 to 20 
 score = 2.5 − (1.0/30) × position:  ranked position between 21 to 50 
 score = 1.0 − 0.01 × position:   ranked position between 50 to 100 
 score = 0:        document isn’t in the returned document list. 
2.3 predict testing queries 
 Since we just train models for each training query, how to predict document scores on a testing query 
becomes a problem. We find the top 5 training queries that is most similar to the testing query, and use their 
models to approximate the testing query model. The final score of a document on a testing query is the 
average of its scores given by the five training query models. Cosine similarity between query embeddings 
is used to determine the relevance of a testing query and a training query. 
 If a training query is less similar to the testing query, it is also less credible, so we set a threshold at 0.5 
to select credible training query models for prediction. A training query model should be abandoned if its 
relevance to the testing query is less than the threshold, though it may already be the top 5 most similar to 
the testing query. 
2.4 exploit feedback data 
 Generally speaking, feedback is essential to our system. If a document gets “win”, we should increase 
its score. We will decrease its score if it gets “loss”. The score should be maintained unchanged if it gets 
“tied”. Then we will retrain our models to get a better performance. Unfortunately, we get too many “tied” 
that could hardly improve our system. 
3 Experimental Results 
 Our results are shown in tables below. 

Training Data Results for SSOAR 
OUTCOME WINS LOSSES TIES IMPRESSIONS 

0.36 3 4 22 29 
Testing Data Results for SSOAR 

 OUTCOME WINS LOSSES TIES IMPRESSIONS 
Round 1 0.43 5 9 2588 2602 

 As shown in the figure above, training data results are too small, so the way to exploit feedback is hard 
to have an impact in train models. Maybe the data that we crawled is from SSAOR, so there are many ties in 
testing data results. If that is the case, we should use another authoritative web search engine ranks as training 
data. 
4 Conclusion& Acknowledgements 
 We use external information on the Internet to train models on training data, and use them to predict 
ranks on testing data. We also considered feedback to improve our system. We also find some shortcomings 
of our system. First, more external information could be used such as Google Scholar. Second, we train a 
model for each training query, which may not make full use of training data. If we separate queries into serval 
types, and learn a model for each type of queries, our system may be more robust. Finally, we did not make 
good use of feedback because of the lack of feedback.  
 In a word, we think we have done our best so far, and we expect to get a better result next time. 
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