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1. INTRODUCTION 

The common core track is a new track for TREC 2017. The track will serve as a common task for a 
wide spectrum of IR researchers, thus attracting a diverse run set that can be used to investigate new 
methodologies for test collection construction. This track provides the structured NYTimes corpus. Its 
primary goal is to get the relative documents from the corpus with the given topics, and there are 1855660 
news across from 1987 to 2007 on NYTimes in this common core track. Two sets of topics are used for 
searching relative News, one of which is to be judged by NIST and crowd workers and the other is to be 
judged by crowd workers only. Participants need choose the first or the both topics according to the 
requirements. There are three common text information retrieval model: Vector Space Model, 
Probabilistic Model and Inference Network Model. BM25 is a probabilistic function to rank the list of 
matched documents according to a given query[4]. Solr uses the BM25 rank function when doing the 
search work. It is an open source enterprise search platform and can do the full-text search work. Solr 
runs in the servlet container. User can get the results from the web interface. In our work, we choose Solr 
as the tool for indexing documents and searching topics. 
    We have an exploration on the topics, which are distributed by the NIST. Most of the topics contain 
less than three words and some include even one word. Therefore, we need to expand the query words 
to query more information. We select the apache Solr[5] as our retrieve frame in order to improve the 
effectiveness on the automatic query expansion. Recently, neural network is widely used in NLP. We use 
the word-embedding model for automatic query expansion and the TextRank algorithm with the 
description of the topic to extract the keywords as the expansion words. Next, we build index for the 
corpus and get the query results with Solr. 

2. QUERY PREPROCESS 

    In this section, we mainly preprocess the query words. First, we train a model to convert words into 
vectors by the approach in Section 2.1. Second, we extend the query words following an incremental 
procedure based on word embedding in Section 2.2. Finally, using the TextRank algorithm in Section 
2.3, we obtain the keywords from the description of the topic. 

2.1. CBOW[6]  

Word2vec is a kind of algorithm used to generate the distributed description of words. In our experiment, 



we use the CBOW（Continuous Bag of Words Model)model to produce embedded word. We will 
introduce the CBOW model in detail. 
In the CBOW architecture, the model predicts the current word from a window of surrounding context 
words. The order of context words does not influence prediction (bag-of-words assumption)[7]. For the 
sentence, "the cat jumps over the lazy dog", we can set {“the”, ”cat”, ”jumps”, ”the”, ”lazy”, ”dog”} as 
the context to predict the current word “over”. The model can catch multiple different degrees of 
similarity between words such as semantic and syntactic similarity. 

There are two parameter matrices 푽 ∈ ℝ ×| |and 푼 ∈ ℝ| |×  in CBOW model.  In addition, 푛 
is the size of embedding space,	|푉| is the vocabulary size of training set. The specific calculation process 
is shown in Figure-1. First, it generates the one-hot word vectors for the input context of size 
k: (푥 , 푥 , … , 푥 ) .[8]Second, we multiply푥 , 푥 ,… , 푥 with the matrix푽 , obtain the 
vectors 푣 , 푣 ,… , 푣  , and calculate the average vector 푣  of these vectors. Third, we 
multiply푣  with the matrix 푼 to produce score vector	z.  Finally, we convert the score vector z into 
probabilities by using softmax function. The Loss function of model is cross entropy, using the gradient 
descent to update the parameter matrices 푽 ∈ ℝ ×| |and	푼 ∈ ℝ| |× . The rows of matrix 푽 are actually 
our word vectors. 
 

 
Figure-1 

2.2. Query expansion based on word embedding 

In this section, we implement two approaches to expand the query words according to the paper 
roy2016using[9]. 

2.2.1. Pre-retrieval kNN based approach 

We assume that the given query word set Q is {q1…qm}. We define the set of candidate expansion 
words is C as  

퐶 = 	⋃ 푁푁(푞)∈          (1) 
In Equation (1), NN (q) are the nearest k neighbors of q in extended query word set. We compute the 
mean cosine similarity between each candidate word and all the query words in C as shown in the follow 
formula. 

푆푖푚(푤, 푄) = 	
1
|푄| 푤 ∙ 푞

∈

 

The candidate word set is in descending order of the value of	푆푖푚(푤, 푄). The top K words are chosen as 
the final expansion words. 



2.2.2. Pre-retrieval incremental kNN based approach 

The second method is a simple extension of the Pre-retrieval kNN based approach. Compared with 
the method in Section 2.2.1, it follows an incremental procedure rather than the procedure that the words 
are selected according to the similarity to each query word in a single step. The second method is based 
on the assumption that the most similar words have lower drift than the words occurring later in the list. 
Because the most similar words are the most appropriate candidate expansion words, we assume that the 
expansion words should be similar to each other. According to the assumption above, we use an iterative 
process to prune words of NN (q).  

First, we arrange the nearest neighbors of 푞 in descending order of similarity to	푞. The candidate 
word list is 	푤 , 푤 ,… ,푤 . Then, we prune the K least similar neighbors to obtain word 
list	푤 , 푤 ,… , 푤 . Next, we add the first word 푤  to the expansion word set and reorder the list 
푤 ,… ,푤  in descending order of similarity to	푤 . We repeat the process, prune the K least similar 
neighbors in the new list to obtain list 푤′ ,… , 푤′  and add the first word 푤′  to the expansion word 
set, for 푙 times. At each step, the nearest neighbors list is reordered and pruned based on the list obtained 
in the previous step. Finally, we get the candidate expansion word set of 푞 as	푁푁 (푞). In this set, the 
words are similar to each other and the query word	푞.  With regards to the parameter	푙, high value may 
cause query drift while low value will perform similarly to the first method. In our model, we choose	푙 =
5. Finally, we construct the expansion words set as in Section 2.2.1, except that use 푁푁 (푞) in place 
of	푁푁(푞).  

2.3. TextRank 

TextRank[10] algorithm is based on PageRank [11]. It is usually used to generate keywords and summaries 
from the text. We use TextRank with the description of the topics to generate keywords for extending the 
query words. 
First, we split the text into words. Every word is considered as a node in the network. We set parameter 
k as the window size. For example, in the sentence, "the cat jumps over the lazy dog", we could set k to 
four. Then we obtain the windows, which consist of “the cat jumps over”, “cat jumps over the”, “jumps 
over the lazy” and “over the lazy dog” .if two words are included in one window, there will be an 
unbounded edge to connect them. At last, we call the PageRank algorithm to generate keywords from 
text. 

3. EVALUATION 

    In our work, we make six submissions about 50-topic set judged by NIST assessors. In the 
submission of ICT17ZCJL02, query word are manually expanded, while in other submissions the 
expansion is automatic 

Run Tag MAP NDCG P@10T Description 
ICT17ZCJL01 0.1837 0.4117 0.4508 Title only Solr Retrieve Framework 
ICT17ZCJL03 0.1513 0.3785 0.4080 Query expansion with google news corpus  
ICT17ZCJL05 0.1434 0.3607 0.3794 Query expansion with NYTimes corpus 
ICT17ZCJL06 0.1620 0.3821 0.4284 Use the description below the topic 
ICT17ZCJL07 0.1816 0.4103 0.4672 Trim the weight for the query term 
Best 0.5377 0.7699 0.9160 Best trec results 
Median 0.2280 0.6787 0.5480 Median trec results 

Table 1. Performance of different Run Tag, compared to the best and the median results of the track 



 Table 1 shows the results of different submitted runs and the average of best and median score of 
this common core track. We find that weight of query word causes many retrieve differences according 
to ICT17ZCJL06 and ICT17ZCJL07. Additionally, there is a decrease on the ICT17ZCJL03 and 
ICT17ZCJL05 compared with ICT17ZCJL01, which shows the phenomenon called “query drift” as we 
add new query words. This problem causes the semantics of new query terms drift from the originals, 
but this effect is weakened when we add to the keywords of description in ICT17ZCJL06. We raise the 
weight of the original query words on ICT17ZCJL07. This method improves the hit rates on top 10 
performance and keep the overall performance stable at the mean time. 

4. CONCLUSION& Acknowledgements 

    In this paper, we study how to extend the query word automatically and compare the effects of 
several approaches. The evaluation shows that query expansion using the word-embedding model and 
TextRank to extract the key words from the description below the topic perform badly because of the 
query drift. We solve the problem of query drift by trimming the weight of query word and the expansion 
words. Word-embedding based on the given NYTimes can enhance the Top@10 hit rates, but it costs 
much more time for build the word embedding model and its scalability is poor when adding new 
document. 
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