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ABSTRACT
We report on our participation as the CSIROmed1 team in
the TREC 2017 Precision Medicine track. We submitted five
runs for the scientific abstracts collection (MEDLINE and
Cancer Proceedings), and five runs for the clinical trials col-
lection. We experimented with a number of query expan-
sion and search result re-ranking techniques. We used ci-
tation and MeSH-based re-ranking methods, as well as re-
ranking based on a merging algorithm proposed for feder-
ated search. Our results show that boosting the gene variant
in the query increases the relevance of the retrieved results.
One of our five runs for clinical trials task was ranked in top
10 runs out of 133 runs submitted for this task.

1. INTRODUCTION
Precision Medicine (PM) is the development of treatment

plans beyond observable signs and symptoms. It takes into
account the patients’ unique genetic markup, environmental
influences, and lifestyle choices, as well as other biomarker
information for an individual’s prevention, diagnosis, and
treatment strategies [2].

The TREC Precision Medicine track2, a specialisation of
the TREC Clinical Decision Support track, aims to tackle
the challenge of including genetic information in designing
treatment strategies. Concretely, it aims to provide, to the
medical staff, clinical decision support for cancer patients
with an emphasis on precise treatments based on the pa-
tient’s genetic makeup. The task this year was to retrieve rel-
evant biomedical literature and clinical trials for clinical de-
cision support given a query with the patient’s genetic mu-
tations, past medical history, and demographic attributes.

In this report, we outline our approach, discuss the exper-
imental setup and present our results.

2. DATASET
Three datasets were utilised for the Precision Medicine

track (PMT). The first set of documents for the PMT’17 was
taken from published medical literature on PubMed Cen-
tral. It contained approximately 26.8 million journal ab-
stracts from a January 2017 snapshot in XML format. The
second set of documents were taken from an April 2017

1CSIRO: Commonwealth Scientific and Industrial Research
Organisation.
2http://trec-cds.appspot.com/2017.html (Accessed 16 Jan
2018)

< t o p i c number="1" >
<disease >Liposarcoma </disease >
<gene>CDK4 Ampli f icat ion </gene>
<demographic>38−year−old male</demographic>
<other >GERD</other >

</topic >

Figure 1: A TREC PM topic (Topic 1).

snapshot of ClinicalTrials.gov. It contained 241,006 clini-
cal trials in XML format. Finally, the last set of documents
was taken from AACR (American Association for Cancer
Research) and ASCO (American Society of Clinical Oncol-
ogy) proceedings that were focused on cancer therapy. It
contained 70,025 documents in plain text.

Topics for PMT’17 detailed four key pieces of information
about the patient: disease, genetic variation, demographic
attributes, and other relevant medical information. Figure 1
shows one of the topics which is related to a male patient
in his late 30’s with Liposarcoma with amplification of the
CDK4 gene. The patient also has gastroesophageal reflux
disease (GERD).

3. INDEXING
We created three separate indices (clinical trials, MED-

LINE abstracts, and extra conference abstracts) using the
default settings of the Apache Solr search engine3. We re-
moved excess whitespace and newline characters in a pre-
processing step on the MEDLINE abstracts. The Stop word
removal and stemming was performed on the documents
and queries automatically by Solr. Processing the abstracts
was done at index time and only the following fields were
retained in the index: pmid (Pubmed ID), pmcid (Pubmed
Central ID), title, abstract, article type, MeSH headings, arti-
cle keywords, and date published.

Likewise, only the following fields: title (brief and of-
ficial), brief summary, detailed description, nct-id (clinical
trial registry numbers), intervention type and intervention,
inclusion and exclusion criteria, condition browse (a field
containing MeSH keywords), and primary outcome were
processed in the clinical trials. Inclusion and exclusion cri-
teria were preprocessed from eligibility criteria by apply-

3Solr version 6.6.0 http://lucene.apache.org/solr/ (Ac-
cessed 24 Oct 2017)



ing simple regular expressions and were used to restrict the
query demographics for clinical trials. The age of patients
was recorded in days in order to avoid floating point arith-
metic. Any MEDLINE ids that were referenced by the clin-
ical trial were also included in the index. Finally, the ex-
tra conference abstracts were processed with the included
fields: id, meeting, title and abstract.

The indexing of these corpora was done on a single PC
(8 physical cores), with parallel processing (8 processes), in
approximately 8 hours. MEDLINE abstracts took the longest
to index at seven hours.

4. QUERY PROCESSING
The topics were preprocessed before they were used as

queries in the search engine. Aside from using topic terms
as bag-of-words, where word order is discarded, we ex-
panded the queries for the fields: disease, gene and other.
The query expansion terms were weighted lower than the
original query terms at 0.2 or 0.3 depending on the run. Ev-
ery topic is always expanded with the term neoplasm. This
is because all the topics are cancer-related. An example of
query processings executed on the topic in Figure 1 is shown
in Figure 2. These steps are explained in the following sec-
tions.

Gene Expansion
As the gene mentions in the query topics were often ex-
pressed in abbreviated forms, the abbreviations were ex-
panded using the Human Gene Ontology4. All genes were
expanded using the first result found in the ontology. For
example, CDK4 was expanded to cyclin-dependent kinase 4.

The expanded versions were already present in the docu-
ments in the corpus.

Disease Expansion
We expanded the disease names in the topics in two differ-
ent ways: Metamap filtering and semantic variation.

In the Metamap filtering method, we use a combination
concepts extracted by MetamapLite [1] and Wikipedia sug-
gested terms, to expand mentions of diseases in the top-
ics. That is, we queried each disease name on Wikipedia5

through its similar terms API and retrieved the most similar
words (TW ). We then ran Metamap over the retrieved terms
TW to find a new set of terms (TM). We subsequently used
the intersection of these two sets (T) as expanded terms:
T = TW ∩ TM. This helped limit the number of words added
to the query to ensure that the retrieved documents were fo-
cused more on the query terms, rather than the expanded
terms. This is important because the query itself is very
short.

In the second method, we generate semantic variations of
diseases mentioned in the queries using Wikipedia and MED-
LINE word embeddings. These were trained using Word2Vec6.
By using a high threshold, we limited the results to a maxi-
mum of three most similar words per query.

4http://www.geneontology.org/ (Accessed 16 Jan 2018)
5https://pypi.python.org/pypi/wikipedia (Accessed 24
Oct 2017)
6https://radimrehurek.com/gensim/models/word2vec.
html (Accessed 16 Jan 2018)

Demographic Attribute Expansion
Demographic attributes are precisely specified in clinical tri-
als. By normalising the demographic attributes in the queries,
we found exact matches in the clinical trial corpus. For
example, a query containing the string person at the age of
6 was replaced with the word child, and a query contain-
ing the term female was expanded with the words woman
women. We normalised the ages by counting them in days in
order to avoid date arithmetic. We then used Solr’s boolean
query operators to exclude all clinical trials that don’t match
the patient’s demographic attributes. The corresponding
boolean query is shown below.

fq :"−gender : male AND maximum_age : [ 0 TO 5 1 1 0 ] "

This operator will exclude documents that are either for
males or for individuals over the age of 15 (5,510 days). Con-
versely, this will restrict the results to only include patients
that are female and under the age of 15.

5. NEGATION DETECTION
By performing negation detection (removing negated terms)

we reduced false-positives in the retrieved results. For exam-
ple, documents matching the query term ’CDK4’ sometimes
contained sentences like ’CDK4 amplification was negative’.
Clearly, this document is irrelevant for the patient. We per-
formed negation detection using the NegEx algorithm im-
plemented in MetamapLite, which detected medically re-
lated negated terms.

Due to the long processing times of negation detection,
we processed the top 300 documents of each query for each
of the three indices and built a cache to speed up future
queries.

6. RE-RANKING USING CITATIONS AND
MESH TERMS

Clinical trials often reference MEDLINE articles. Since
retrieved trials strictly match the patient’s demographic at-
tributes, we can boost the MEDLINE articles that they cite
in their references, as they are more likely to be relevant. We
do this by extracting the PMIDs from the retrieved clinical
trial documents and boosting these by the reciprocal rank
of the trial document. That is, a document in the retrieved
MEDLINE set was boosted by the maximum amount if it
was found in the most relevant clinical trial.

Another way that we approached re-ranking the search re-
sults using citations was for clinical trials. We used the rank-
ing of the cited MEDLINE abstracts to change the ranking of
the trial that cites it. That is, we ran searches separately on
clinical trials and MEDLINE, and then re-ranked trials based
on the reciprocal ranks of their cited articles. The intuition
behind boosting the clinical trial is that if the clinical trial is
ranked low, but it is linked to the most relevant MEDLINE
abstract, then we assume the clinical trial is at least partially
relevant and rank it higher. We note that, we did not use
AACR and ASCO abstracts for citation boosting because we
could not find any of the clinical trials in our set that had
referenced those abstracts.

We also used MeSH terms to create a link between the
MEDLINE and Clinical trial indices. In other words, we
used MeSH terms in order to compute how similar two doc-
uments were: the more MeSH terms that matched between



Query processing step Orginial or expanded terms
Demographic Attribute Expansion
Age (map age to word): 38 adult
Gender (semantic variation of gender) : male male men man
Gene Expansion
Ontology expansion: CDK4 Amplification amplification dependent cyclin kinase 4
Metamap: CDK4 Amplification technique abnormality amplification gene
Metamap/Wikipedia set intersection for gene amplification dependent cyclin kinase cks1b 6 9 p14arf inhibitor d1
Disease Expansion
Metamap/Wikipedia set intersection for liposar-
coma

sarcoma liposarcoma lipoblastomatosis myxoid lipoblastoma

Word embeddings (MEDLINE and Wikipedia) sarcomas thymoma epithelioid osteosarcoma meningioma chon-
drosarcoma fibroma myxoid leiomyosarcoma hamartoma

Metamap/Wikipedia set intersection for GERD gastroesophageal reflux disease
Word embeddings (MEDLINE and Wikipedia) gord
Final query:
(male 38 gerd) (male man men adult amplification dependent cyclin kinase cks1b 6 9 p14arf inhibitor d1 sarcoma
liposarcoma lipoblastomatosis myxoid lipoblastoma gastroesophageal reflux disease sarcomas thymoma epithelioid os-
teosarcoma meningioma chondrosarcoma fibroma myxoid leiomyosarcoma hamartoma amplification dependent cyclin
kinase cks1b 6 9 p14arf inhibitor d1 gord technique abnormality amplification gene neoplasm)^e (liposarcoma)^s (am-
plification cdk4)^g

Figure 2: An illustration of the query processing steps on Topic 1. In the final query, e is the expansion weight, s is the
disease boost, and g is the gene boost factor. Note that ^in solr query format is in fact multiplication.

two documents, the more similar the documents are. We ap-
plied a small boost that was unlikely to displace the overall
ranking but to push up a relevant document by one to two
ranks. The boost was applied to both the rankings of the
MEDLINE documents and clinical trials and was guided by
the cosine similarity between MeSH terms in the documents
returned by both indices.

It is important to note that both citation and MeSH boosts
were small, decreasing exponentially with the reciprocal rank-
ing, Rd, of the corresponding document in the result sets:

Sd = Sd + b(Rd), (1)

where Sd is the score of a document, and b is a boosting
function that uses the reciprocal ranking of a matched doc-
ument in the second document set:

b(Rd) =
1

exp(Rd)
. (2)

7. MERGING SEARCH RESULTS USING FED-
ERATED SEARCH

Our choice of having three different indices for the three
document sets in this track led us to solve the problem of
merging the search results for abstract runs. The two indices
for the abstracts (MEDLINE and Cancer Proceedings) did
not have directly comparable BM25 scores as the MEDLINE
documents were much longer. As a result, we decided to
use a merging algorithm proposed for federated search to
normalise the scores. Specifically, we used the Generalised
Document Scoring [3] (GDS) algorithm to achieve this.

The GDS algorithm calculates the generic document score
by using the size of the intersection between the document
and the query. This score is normalised to be between 0
(no overlap, lowest score) and

√
2 (complete overlap, highest

possible score).

A drawback of using this method was that the query was
treated as a bag-of-words (each term was given the same
weight) even though the most important aspects of the query
were the disease name and gene mutation. In order to mit-
igate this, after applying GDS, we applied a separate boost-
ing factor to documents containing the disease name and
gene mutation.

We note that in the clinical trials runs where we applied
citation boost, we also used the GDS algorithm because it
let us re-rank the retrieved documents based on important
sections of the clinical trials (title, inclusion criteria and key-
words).

8. SUBMITTED RUNS
We submitted 10 runs to TREC PM: five runs on clinical

trials and five runs on medical literature. Details of these
runs are described in Table 1. For expansion terms, we used
a weight of e = 0.2 for the GDS runs, and 0.3 for the BM25
runs. The disease and gene expanded terms were boosted
higher than the original query. Genes were boosted by g =
1.3 for GDS and 1.5 for BM25 for both clinical trials and
scientific abstracts. Diseases were weighted s = 1.15 for
GDS in scietific abstracts and 1.70 in clinical trials. In our
additional post-TREC runs, disease boost was set to 1.5 in
the solr query.

9. RESULTS
An overview of our results for the abstracts runs are shown

in Table 2. The top row shows TREC Median results over
125 runs submitted by different teams as reported in the
TREC Overview [4]. Two of the runs, aCSIROmedAll and
aCSIROmedNEG, were higher or close to the TREC median
for all three metrics of infNDCG, P@10 and R-Prec. Our
best run in terms of infNDCG was aCSIROmedNEG which



Technique
Run Ranking Citation Boost Gene Boost Disease Boost Negation MeSH Demographic Filtering

Abstracts
aCSIROmedAll BM25 X X
aCSIROmedNEG GDS X X X X
aCSIROmedPCB GDS X X X X X
aCSIROmedMGB GDS X X X
aCSIROmedMCB GDS X X X X

(PostTREC) aAll+DB BM25 X X X
(PostTREC) aNEG-Neg GDS X X X X

Clinical Trials
cCSIROmedAll BM25 X X
cCSIROmedNEG GDS X X X X X X
cCSIROmedMCM GDS X X X X
cCSIROmedHGB GDS X X X X X
cCSIROmedMCB GDS X X X X

(PostTREC) cAll+DB BM25 X X X
(PostTREC) cNEG-Neg GDS X X X X

Table 1: Specification of the CSIROmed submitted runs as well as additional runs (PostTREC).

Run infNDCG P@10 R-prec

TREC Median 0.2766 0.3733 0.1761

aCSIROmedAll 0.2813 0.3933 0.1759
aCSIROmedNEG 0.3092 0.3733 0.2000
aCSIROmedPCB 0.2705 0.3176 0.1793
aCSIROmedMGB 0.1257 0.2200 0.0762
aCSIROmedMCB 0.2668 0.3233 0.1811

(PostTREC) aAll+DB 0.3023 0.4067 0.1885
(PostTREC) aNEG-Neg 0.2444 0.2733 0.1665

Table 2: CSIROmed results for search over abstracts.

Run P@5 P@10 P@15

TREC Median 0.2896 0.2517 0.2253

cCSIROmedAll 0.4138 0.3586 0.3172
cCSIROmedNEG 0.2828 0.2552 0.2529
cCSIROmedHGB 0.3172 0.2897 0.2644
cCSIROmedMCB 0.2828 0.2655 0.2552
cCSIROmedMCM 0.2414 0.2552 0.2368

(PostTREC) cAll + DB 0.4345 0.3793 0.3241
(PostTREC) cNEG - Neg 0.2759 0.2621 0.2276

Table 3: CSIROmed results for search over clinical trials.

used negation detection, GDS ranking and demographic fil-
tering. This could indicate the effectiveness of negation de-
tection in this task. In one of our runs (aCSIROmedMGB)
we had turned off gene boosting. Not surprisingly, that run
achieved lowest scores for all three metrics which empha-
sises the importance of gene boosting for this task.

We analysed our best run for the abstracts, aCSIROmed-
NEG, per queries to see which queries were more success-
ful and which were not (Figure 3). This run did substan-
tially worse than average for two queries (Topic 10 and Topic
29). It substantially did better than average for Topic 13
(infNDCG of 0.2116 versus 0.0588), Topic 14 (0.2887 versus
0.0300 TREC median) and Topic 26 (0.3270 versus 0.0900 of
TREC median). Note that the TREC best is the best submit-
ted per query, and it does not correspond to one run.

Our results for the clinical trials runs are shown in Table 3.
The top row shows TREC Median results over 133 runs sub-
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Figure 3: Per query comparison of our best run for ab-
stracts versus the TREC best and median.

mitted by all the participants. For these runs, evaluation
metrics were precision at the cut-off of 5, 10, and 15. Our
best-submitted run was cCSIROmedAll which made it to
the top-10 submitted runs to this task as well. It used BM25
for ranking, without GDS re-ranking, plus boosting the tri-
als using gene and disease names. It achieved P@5 of 0.4138,
while the median of all the runs was 0.2896. Our second best
run was cCSIROmedHGB which used every technique but
negation detection. It used GDS ranking as well. This run
led to above the median precision in all three cut-offs. We
found all clinical trial runs that using document reranking
performed considerably worse than the cCSIROmedAll, that
used no re-ranking.

Per query analysis of the results for clinical trials runs is
shown in Figure 4. For two of the topics (3 and 10) our
submission was (or one of) the TREC best. Out of 30 topics,
our run was better than the TREC median for 17 topics (57%)
and equal to the median for another five. Topic 28 (Figure 5)
led to zero p@5 and p@10 for best and median for all the
133 submitted runs. Only for p@15, there was a ’best run’
achieving a low score of 0.0667. This query had two partially



● ●

●

●

● ●

●

●

● ●

●

●

●

● ●

● ●

● ●

● ●

●

● ●

●

●

● ●

●

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Query

P
@

5

● cCSIROmedall
TREC best
TREC median

Figure 4: Per query comparison of our best run for clinical
trials versus the TREC best and median.

< t o p i c number="28" >
<disease > P a n c r e a t i c ducta l adenocarcinoma </disease >
<gene>ERBB3</gene>
<demographic>73−year−old female </demographic>
<other >hipple , FNA</other >

</topic >

Figure 5: Most difficult topic in TREC PM 2017 (Topic 28).

relevant clinical trials identified by the assessors.
Results produced from Post-TREC runs are included in

Tables 2 and 3. These runs were produced to test the ef-
fectiveness of the boosting of diseases and the effectiveness
of negation across clinical trials and abstracts. We found
that there was a statistically significant improvement of 7.5%
infNDCG in abstract retrieval when disease boosting was
added (paired t-test, p-value= 0.0003). Adding disease boost
for clinical trials (aCSIROmedall versus aAll+DB) led to im-
provements, but that was not significant (paired t-test, p-
value= 0.0830). One way to see how much negation detec-
tion contributed to the submitted runs was to turn them off
in post-TREC runs. For abstracts, turning off negation de-
tection led to significant drop of infNDCG from 0.3092 to
0.2444, which translates to nearly 21% drop (aired t-test, p-
value= 0.0002). Similarly we observed a drop in precision
for clinical trials runs (cCSIROmedNEG versus CNEG-Neg);
however, the drop was only statistically significant for p@15
(p-value= 0.0136). That means ignoring the negation detec-
tion step hurts abstract runs much more than clinical trial
runs. This may be attributed to the facts that negation terms
are much more common in the abstract indexes than the
clinical trials, and that diseases and genes were commonly
negated in the MEDLINE index.

10. CONCLUSIONS
In our submitted runs to the TREC Precision Medicine

track, we experimented with a range of query expansion
techniques as well as targeted boosting of disease and gene

mentions, and negation detection and removal. When ex-
panding the queries, we weighted the disease names and
genetic variation(s) higher than the other terms. We limited
the number of words added by query expansion to increase
the number of relevant documents retrieved.

We submitted runs for both abstracts and clinical trials doc-
ument sets. Our best run for the abstracts used negation
detection, gene, disease and MeSH boosting. The best run
for clinical trials, however, was a plain BM25 ranking where
gene mentions were boosted. Our Post-TREC experiments
showed varying importance of the disease name boosting
and negation detection. In the future, we will extend our
analysis of these results through query analysis in order to
identify where these techniques improve and hurt retrieval
effectiveness.
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