
BJUT at TREC 2017: Real-Time Summarization Track

Qingwei Meng1, Kai Wang1, Zhen Yang1)
1. College of Computer Science, Faculty of Information, Beijing University of Technology, China

)yangzhen@bjut.edu.cn

Abstract

This paper describes our effort for the TREC Real-Time Sum-
marization task in 2017, which is pushing notifications to the
users mobile phone (Task A) and submitting periodic email
digest according to tweets posted on the previous day (Task
B). In essence, both of the tasks are about a process of ex-
tracting the relevant data from tweets stream with respect to
the users’ interest profiles. For each task we submitted three
runs, in this paper, we presented the system framework and
experimental results briefly.

Introduction
We are in an era of information, that is filled with varieties
of data every day. As one of the most popular social net-
work platforms, Twitter has a total of more than 300,000,000
users, millions of tweets are posted on the web every day. In
this case, its of great importance to help people find useful
and non-redundant information the user wanted.

The TREC 2017 Real-Time Summarization (RTS) Track
aims to explore techniques and systems that automatically
monitor streams of social media posts such as Twitter to
keep users up to date on topics of interest. We might think
of these topics as ”interest profiles”, specifying the user’s
prospective information needs. There are two tasks about the
Real-Time Summarization (RTS) Track this year:

• Track Scenario A: Push notifications. As soon as the sys-
tem identifies a relevant post, it is immediately sent to the
user’s mobile device via a push notification. At a high
level, push notifications should be relevant (on topic),
novel (users should not be pushed multiple notifications
that say the same thing), and timely (provide updates as
soon after the actual event occurrence as possible).

• Track Scenario B: Email digests. Alternatively, a user
might wish to receive a daily email digest that summarizes
”what happened” that day with respect to the interest pro-
files. At a high level, these results should be relevant and
novel; timeliness is not particularly important, provided
that the tweets were all posted on the previous day.

Since the core tasks in A and B are the same, the similar
approaches are used in task A and B. The paper is mainly
organized as follows: in Section 2, we present our approach
for Tweets message recommendation based on users interest

profiles. In Section 3, we report our experimental results and
in Section 4, the concluding remarks are given.

Real-Time Summarization Framework Design
To address the two tasks mentioned above, we construct a
system to catch the relevant tweets. Figure 1 shows our sys-
tem framework. It consists mostly of five parts: Query Ex-
pansion, Tweet Preprocess, Relevance Verification, Redun-
dancy Detection, Ranking and Submission.

Query Expansion
For this year, 188 interest profiles are given in the same form
of ”topid” ”title” ”description” ”narrative”. The ”title” con-
tains a short description of the information need, similar to
what users would type into a search engine. The ”descrip-
tion” and ”narrative” are sentence- and paragraph-long elab-
orations of the information need, respectively.

In order to find the synonyms and related keywords from
the interest profiles to measure the relevance better, we do
the query expansion. For every topic, we feed the topic title
into the search engine (e.g. Bing News Search, Wikipedia)
and get top 100 search results snippets as the expanded
items.

Tweet Preprocess
During the evaluation period (from July 29, 2017 00:00:00
UTC to August 5, 2017 23:59:59 UTC, 8 days in total),
we listened to the tweet stream using the Twitter streaming
API. We can receive a log file every minute, and in each log
file it contains about 1000 tweets, that is to say more than
1,440,000 tweets every day.

In consideration of efficiency, it is necessary to preprocess
a vast amount of tweets to filter out most of the trash or
irrelevant tweets and transform each tweet into a standard
and clean format.

First we discard date, time, tweetid, @, RT and URL to
get pure tweet contents. Then we identify and filter out the
crash tweets. If a tweet meets one or more these conditions
below, we regard it as trash tweet and filter out it.

• All characters are capital (typical trash tweet)

• All characters are single letters instead of words (e.g. a b
c d e f g)



Figure 1: System Framework.

• The length of text is less than 20 (too few words to provide
enough information)

• The length of unique words is no more than 3 (e.g. I love
you I love you I love you I love you I love you I love you
I love you I love you)

Relevance Verification
According to the guideline 2017, we submitted 3 runs fi-
nally. The most difference among the 3 runs is about the
part of Relevance Verification and Redundancy Detection.
For run1, we mainly use MATLAB and its toolbox - TMG
(Zeimpekis and Gallopoulos 2007) to classify the prepro-



cessed tweets into relevant topic. We use the Indexing Mod-
ule in TMG toolbox to process A (the interest profiles to-
gether with the search results from query expansion) and B
(the preprocessed tweets) to get the term document matri-
ces (tdms) C (C1, C2, C3, ...) and D respectively. By matrix
multiplication (CiD), we can get a score s(tj) with respect
to 188 different topics. We set threshold θ= 0.24 based on a
previous work, if the calculated score s(tj)≤ θ,we regard it
as a irrelevant tweet and discard it. According to The prin-
ciple of Naive Bayesian classification, a tweet is classified
into the topic in which it has the best score.

For run2 and run3 (Wang and Yang 2016), we train a
classifier based on labelled Microblog Track (2015) and
Real-Time Summarization Track (2016) past data. Label 1
presents relevant tweet and label 0 presents irrelevant tweet.

Redundancy Detection

As we all know, users can retweet any tweets they interested
in, or because of the occasionality, it is very likely to pro-
duce some similar or the same tweets. To avoid the simple
copy and high similarity between the candidated tweets, it is
necessary to take some measures to do Redundancy Detec-
tion.

For run1, our method assumes that the similarity between
two tweets is merely determined by occurrences of their
common vocabulary (Tan, Luo, and Li 2016). The similar-
ity for redundancy detection is defined in Equation 1. In this
equation, t 1 and t 2 are the words in tweet t1 and t2 re-
spectively, the numerator of the fraction represents the sum
of word length of the intersection of two tweets, and the de-
nominator of the fraction represents the sum of word length
of the union of two tweets. We set threshold α= 0.6, if the
calculated similarity between two candidated tweets t1 and
t2 similarity(t1,t2)≥ α, we regard it as a redundancy tweet
and discard it.

similarity(t1, t2) =
union score(t 1, t 2)

intersection score(t 1, t 2)
(1)

Ranking and Submission

According to the official guideline 2017, each system is al-
lowed to push at most ten tweets per interest profile per day
for task A. This per-day tweet delivery limit is to model user
fatigue in mobile push notification. To address the problem,
we design a counter in our system, for each topic if the num-
ber of the posted tweets reaches the limit, stop pushing noti-
fications to the RTS evaluation broker. There is also a limit
of 100 tweets per interest profile per day for task B. So we
collect all the candidate tweets in a day, calculate their scores
and classify them into the most likely topic, then arrange the
scores of the same topic in a descending order and submit
the results via Batch Upload to NIST.

Experiment Results
In this section, we introduce the evaluation methods (Lin et
al. 2016) and our results.

Evaluation Measures
For each tweet, the user makes one of three judgments: rel-
evant, if the tweet contains relevant and novel information;
redundant, if the tweet contains relevant information, but is
substantively similar to another tweet that the assessor had
already seen; not relevant, if the tweet does not contain rel-
evant information. From these counts, we computed strict
precision, defined as:

relevant

relevant+ redundant+ not relevant
(2)

as well lenient precision, defined as:

relevant+ redundant

relevant+ redundant+ not relevant
(3)

Expected Gain (EG) for an interest profile on a particular
day is defined as follows:

EG =
1

N

∑
G(t) (4)

where N is the number of tweets returned and G(t) is the
gain of each tweet: Not relevant tweets receive a gain of 0;
Relevant tweets receive a gain of 0.5; Highly-relevant tweets
receive a gain of 1.0.

Normalized Cumulative Gain (nCG) for an interest pro-
file on a particular day is defined as follows:

nCG =
1

Z

∑
G(t) (5)

where Z is the maximum possible gain (given the ten tweet
per day limit). The gain of each individual tweet is computed
as above.

Gain Minus Pain (GMP ) is defined as follows:

GMP = α ·
∑

G− (1− α) · P (6)

The G (gain) is computed in the same manner as above.
Pain P is the number of non-relevant tweets that the sys-
tem pushed, and controls the balance between the two. Sce-
nario B runs were evaluated in terms of nDCG as follows:
for each interest profile, the list of tweets returned per day
is treated as a ranked list and from this nDCG@10 is com-
puted. Note that in this scenario, the evaluation metric does
include gain discounting because the email digests can be
interpreted as ranked lists of tweets. Gain is computed in the
same way as in scenario A with respect to the semantic clus-
ters. Systems only receive credit for the first relevant tweet
they report from a cluster.

Results Analysis
We got two results from the organizer lately. Results of task
A and B are shown in Table 1 and Table 2. Columns repre-
sent 3 runs and the median scores, and rows represent some
related evaluation measures mentioned in the previous chap-
ter.

Results show that there is a great gap between our system
performances and the median scores, especially the EG1
and nCG1 of BL1. Fortunately the latency of BL1 is sat-
isfactory relatively.



Table 1: Task A Performances.
runtag EGp EG1 nCGp nCG1

BJUT-BL1-04 0.1692 0.0774 0.1711 0.0793
BJUT-BL2-05 0.1837 0.1625 0.1809 0.1598
BJUT-BL3-03 0.1602 0.1225 0.1636 0.1258
median scores 0.2194 0.1951 0.2095 0.1826

Table 2: Task B Performances.
runtag nDCGp nDCG1

bjut tmg 0.1796 0.1456
bjutgs 0.0746 0.0746
bjutg 0.1169 0.1169

median scores 0.2194 0.1865

Conclusion
In this paper, we present the implementation details of our
runs for Real-Time Summarization Track. Results show that
our method is effective to some degree, however there is still

a great gap between our system performances and the me-
dian scores. In the future work, we will concentrate on how
to improve the accuracy of the system.

Acknowledgments
This research was supported by the Data Mining & Security
Lab and professor Yang from Beijing University of Technol-
ogy.

References
Lin, J.; Roegiest, A.; Tan, L.; McCreadie, R.; Voorhees, E.;
and Diaz, F. 2016. Overview of the trec 2016 real-time sum-
marization track. In Proceedings of the 25th Text REtrieval
Conference, TREC, volume 16.
Tan, H.; Luo, D.; and Li, W. 2016. Polyu at trec 2016 real-
time summarization. In TREC.
Wang, K., and Yang, Z. 2016. Bjut at trec 2016: Real-time
summarization track. In TREC.
Zeimpekis, D., and Gallopoulos, E. 2007. Text to matrix
generator users guide. Department of Computer Engineer-
ing and Informatics, University of Patras, Greece.


