PKUICST at TREC 2016 Real-Time Summarization Track:
Push Notifications and Email Digest

Lili Yao ChaolLyv

Feifan Fan Jianwu Yang*

Dongyan Zhao

{yaolili, lvchao, fanff, yangjw, zhaody } @pku.edu.cn

Institute of Computer Science and Technology
Peking University, Beijing 100871, China

Abstract

This paper describes our approaches for the TREC 2016
Real-Time Summarization track, including push notifi-
cations scenario and email digest scenario. In the push
notifications scenario, we mainly focus on designing a
real-time system, which listens to the Twitter sample
stream and makes the push actions for the given topics.
Low coupling modules are utilized to obtain the timely,
relevant and novel features. In the email digest scenario,
we apply the language model combined with the exter-
nal knowledge base, i.e. Google, for query expansion.
Besides, different text similarity algorithms are tried,
such as negative KL-divergence and Simhash. Experi-
mental results show that our two-stage filtering meth-
ods achieve good performance with respect to EG1 and
nCG1 metrics for push notifications scenario. In addi-
tion, our systems for email digest scenario also obtain
convincing nDCG1 scores.

Introduction

With the rapid development of the microblog, such as Twit-
ter and Weibo, the information that microblog covered is
rather numerous than expected. To explore user’s interests
and boost recommendation performance in real-time envi-
ronment, TREC first introduced Tweet Timeline Generation
(TTG) track in 2014(Lin et al. 2014) and developed it in
2015. The Real-Time Summarization Track in TREC 2016
is a real-time summarization task broken down into two sce-
narios, which is aiming to explore techniques for monitoring
streams of social media posts with respect to users’ interest
profiles. Different from the last year’s Microblog track, it
requires a real on-line decision, which means participating
systems need to decide whether or not push notification for
a tweet before seeing the subsequent tweets. And two sce-
narios are described as follow:

e Scenario A (push netification): Content that is identified
as relevant and novel by a system based on the user’s in-
terest profile should be sent to the user in a timely fashion.

e Scenario B (email digest): Participating systems should
identify tweets and aggregate them into an email digest.
The email should be periodically sent to a user. Under
that circumstances, users can read a longer story about
the contents.

*Corresponding author.

In the push notifications scenario, our system requires to
“listen” to the Twitter API' and make real-time push actions
for each interest profile. We design an on-line system which
contains three modules: Filter Module, Judge Module and
Submit Module. When a new tweet 1D comes, we use Filter
Module to remove it if it has no overlap words with all the
interest profiles. In the Judge Module, we first estimate the
relevance score between the tweet and each interest profile
using negative KL-divergence. A tuned relevance threshold
« is utilized to judge whether D and the interest profile are
relevant. Meanwhile, we keep a push queue for each interest
profile. Then, for every relevant interest profile (), we esti-
mate the novel score by comparing D with previous tweets
in its push queue. Similarly, we use negative KL-divergence
and a tuned novel threshold 3 to decide whether D is a novel
one for the interest profile (. Submit Module is used to sub-
mit passed tweets to the Evaluation Broker with the power
to handle error code from the remote server. It can also store
the push queue for each interest profile and help recover our
system if any crash happens.

In the scenario of email digest, similar with scenario A,
we firstly clean the raw tweets generated from the evalu-
ation period. To better understand the user intent, we uti-
lize Google web resource as external evidences to expand
original query. Then, the language model framework is ap-
plied to estimate the relevance between given interest pro-
file with candidate tweets. For each interest profile, we rank
the candidate tweets of every day by the relevance scores
which adopt two different smooth methods. Once we ob-
tain the ranked tweet list, we calculate the novelty scores
between the candidate tweet with each tweet that has been
pushed previously, the novelty threshold + is used to deter-
mine whether the candidate tweet is included in the email
digest. And there are two kinds of strategies to measure the
novelty, i.e. negative KL-divergence and Simhash.

Preliminaries

In this section, we mainly discuss the preliminaries for in-
terest profiles and tweets in both scenarios.

"https://github.com/lintool/twitter-tools

Query Expension

As the length of tweets are limited to 140 characters, the mi-
croblog retrieval suffers severely from the vocabulary mis-
match problem. Query expansion techniques(Zhai and Laf-
ferty 2001) can be used to improve the retrieval perfor-
mance. Due to the timely need of the push notifications s-
cenario, we just take advantage of query expansion in the
email digest scenario. Details will be discuss in the corre-
sponding section.

Text Preprocessing

The preprocessing we adopt on interest profile and tweet
stream follows (Qiang and Yang) and (Lv, Yang, and Zhao
), which is described as follows:

e Non-English Filtering: Tweets written in a language oth-
er than English would be judged as not relevant based on
guidelines of Real-Time Summarization Track. Thus, we
use the twitter’s language detector to abandon the non-
English tweets.

e Non-ASCII Words: Removing all NON-ASCII charac-
ters from the tweets will also helps remove non-English
tweets.

e Redundant Retweet Elimination: All additional com-
mentary in the tweets containing “RT @ will be ignored.
As the guideline mentioned, all retweets should be nor-
malized to the underlying tweets.

e Porter Stemming and Stopword Filtering: We remove
all stopwords and stem the tweet text using the Natural
Language Toolkit.

Statistics Inforamtion

In the language model, if any word in the query is not in
the document, the relevant score between them will equal
to zero, which is unreasonable. Smooth techniques could
solve this problem by merging global word probability dis-
tribution with current document model. In our proposed ap-
proach, we obtain the global word probability distribution
by computing word count information of tweet stream dur-
ing two time intervals. The first one is 2015 July, which is
offered by the TREC 2. The second one is a week before the
track, we obtain it via listening to the official Twitter stream.

Scenario A: Push Notifications

As previously mentioned, the goal of push notifications is
to recommend relevant and novel tweets based on the users
interest profile in real-time. At a high level, push notifica-
tions should be relevant (on topic), timely (provide updates
as soon after the actual event occurrence as possible), and
novel (users should not be pushed multiple notifications that
say the same thing). In this section, we mainly describe the
architecture of our proposed system, which is shown in Fig.
1.

From the figure, we can observe that our system mainly
contains three processes and two storage tables:

Zhttps://archive.org/details/archiveteam-twitter-stream-2015-
07

p— Twitter

Filter Module API

candidate tweet label
tweet 1 true
tweet 2 false
tweet N | false
Judge Module
submit tweet label
tweet 1 true
tweet 2 true P
tweet M | false

|
Submit Module

Evaluation
Broker

Figure 1: The System Architecture of the Push Notifications
Scenario.

e Filter Module: In order to accelerate the speed of iden-
tifying possible relevant tweets for each profile, We first
build a interest vocabulary based on all words in the given
users’ interest profiles. Then, the Twitter sample stream
is obtained via the Twitter API. For each crawled tweet,
we check whether it contains any words in our interest vo-
cabulary. If contains, we insert it into our candidate tweets
storage table. If not, filter it. In this way, we simply ignore
tweets that do not contain any keywords for each profile.

e Judge Module: This process keeps “listening” to the can-
didate tweets storage table. In every T'1, it selects at most
K1 untreated candidate tweets and compare them with
the given users’ interest profiles. For each (tweet, profile)
pair, we first calculate the relevant score between them
by the text similarity function f. If the relevant score is
bigger than o, we then compute similarity scores between
this tweet and all pushed tweets of this profile via the tex-
t similarity function f, the biggest one will be chosen as
the novel score. If the novel score is smaller than 3, we
will insert it into the submission tweets storage table. In
the last, these selected tweets will be set to treated or re-
moved from the storage table.

e Submit Module: This process keeps “listening” to the
submission tweets storage table. In every 712, it selects
at most K 2 untreated submission tweets and try to submit
them to the evalation broker one by one. If return code is
204 for one tweet, which means the remote server accept-
ed it successfully, we will set the submitted tweet treated
or remove it from the storage table. Otherwise, the tweet

is going to handle in the next round until accepted.

Similarity Algorithm

We utilize the negative KL-divergence language model for
f and g to measure the relevance between query language
model 0g and tweet language model 0p with the help of

collection lanuage model é\c. The smoothing methods we
use for language model are:
(a) Jelinek-Mercer Smoothing

JM(Q.D,C) =" P(wlfg):
wewr (1)
log (1= A) % P(w|f) + A P(wlfc))

(b) Dirichlet Smoothing

"
DIR(Q,D,C) = JM(Q,D,C),\ = 2
@) (Q) Dl 2)

Parameter Selection

The T'1 and T'2 are both set to 10 seconds. K1 is set to 1000
while K2 is set to 10 due to their different scale. Those
parameters are set empirically and mainly depend on your

computer performance. « and /3 are tuned via grid search on
TREC 2015 dataset, which is showed in Table 1.

Table 1: Parameters of the Push Notifications Scenario.

Run ID f «
PKUICSTRunAl JM(A=0.2) 079 0.72
PKUICSTRunA2 JM(A=0.5) 085 0.74

PKUICSTRunA3 DIR(u = 100) 0.75 0.68

Scenario B: Email Digest

In the email digest scenario, we will identify a batch of up
to 100 ranked tweets per day per interest profile. At a high
level, these results should be relevant and novel. Timeliness
is not important as long as the tweets were all posted on the
previous day.

As shown in Fig.2, our system for this scenario mainly
contains four modules:

e Data Cleaning Module: We preprocess all tweets dur-
ing evaluation period. And we simply filter tweets that
do not contain any keywords for each interest profile, and
the rest tweets are chosen as candidate tweet collection,
which will accelerate identifying possible relevant tweets
for each profile.

e Query Expansion Module: As microblog retrieval suf-
fers severely from the vocabulary mismatch problem (i.e.
term overlap between query and tweet is relatively smal-
1). To tackle this issue, we leverage web-based query ex-
pansion method to improve retrieval performance. As is
known to all, Google search is the dominant search engine
in the majority countries over the world, which indexes
billions(Arlington 2008) of web pages, so that users can
search for the information they desire through the use of

[rmemns () (] 2,
| l—l—‘

Preprocessing

Query Expansion
Module

Filtering

Data Cleaning Module

l

'

Relevance Ranking Module

'

Novelty Verification Module

'

Pushed tweets pool

Figure 2: The System Architecture of the Email Digest Sce-
nario.

keywords and operators. Therefore, we take the interest
profile as the keywords to search in Google with Google
Search Engine API before the evaluation period. As the
user interest profile offered by TREC 2016 are JSON-
formatted structure and each profile includes four fields,
topid, title, description and narrative. Here we only use
the topic keywords as our OriginQuery since we utilize
external web resource to depict the background informa-
tion, noted as ExpansionQuery. We utilize the expanded
query to represent the interest profile and then estimate
the relevance between the query and tweets.

¢ Relevance Ranking Module: Similar with the push noti-
fications scenario, we utilize the text similarity function f
to measure the relevance between query and tweet. Then,
all the tweets are ranked based on their relevance score.

e Novelty Verfication Module: Once we obtain the ranked
tweet list after relevance ranking, we will traverse over
them and judge novelty for each tweet, until we collect
enough tweets (the count of pushed tweets is up to 100).
We use the text similarity function g to measure the novel-
ty between tweet and the pushed tweets of interest profile.
When the novelty score is smaller than ~, we think the
tweet is a novel one for current interest profile and should
be pushed. In this module, there are two kinds of strate-
gies to measure novelty between tweets: (1) Negative KL-
divergence. The higher relevance score between tweet-
s, the less novelty they are. (2) Simhash. It is a popular
method to handle web page redundancy(Charikar 2002).
Simhash is one where similiar items are hashed to simil-
iar hash values and we can calculate the bitwise hamming
distance between hash values. The closer hamming dis-
tance between two tweets is, the more similar they are.
The simhash code is calculated as follow,

Simeode = sign(Y wc;) 3)

i=1l€n

where w; is the weight of term ¢ and ¢; is the hash code
of term ¢, sign is symbol function that make positive to 1
and negative to O for every bit in code.

Parameter Selection

« is tuned via grid search on TREC 2015 dataset, which is
showed in Table 2.

Table 2: Parameters of the Email Digest Scenario.

Run ID f g v

PKUICSTRunBI JM(A = 0.2)

PKUICSTRunB3 DIR(x = 100)

DIR(p = 100) 0.73
PKUICSTRunB2 DIR(x = 100) DIR(u = 100) 0.72
SimHash 0.42

Experiment

The evaluation of TREC 2016 Real-time Summarization
track takes place from August 2, 2016 UTC to August 11,
2016 UTC. And there are 203 interest profiles which par-
ticipants will be responsible for tracking. During the eval-
uation period, participants must maintain a running system
that continuously monitors the tweet sample stream.

For the push notifications scenario, the primary evalua-
tion metrics include Expected Gain (EG) and Normalized
Cumulative Gain (nCG). In the EG1 and nCGl1 variants of
the metrics, on a “silent day”, the system receives a score
of one (i.e., perfect score) if it does not push any tweets, or
zero otherwise. In the EGO and nCGO variants of the met-
rics, for a silent day, all systems receive a gain of zero no
matter what they do. Table 3 shows the performance of our
submitted three runs. We could observe that in every run,
EG1 and nCG1 are much larger than EGO and nCGO, which
means our proposed system could recognise the “silent day”’
and make no push actions to avoid bothering users. We use
different text similarity algorithms in different runs but their
performance are similar, which could tell the robustness of
the negative KL-divergence with different smoothing strate-
gies.

Table 3: Performance of the Push Notifications Scenario.
Run ID EG1 EGO nCGl nCGO

PKUICSTRunAl 0.2342 0.0342 0.2447 0.0447
PKUICSTRunA2 0.2347 0.0400 0.2433 0.0487
PKUICSTRunA3 0.2329 0.0311 0.2343 0.0325

Table 4 reports our results for the email digest scenario.
The primary evaluation metric is nDCGI. As it turns out,
PKUICSTRunB3 significantly outperforms both other run-
s, indicating that the Simhash method for novelty verifica-
tion module is successful in identifying novel tweets. Both
PKUICSTRunB1 and PKUICSTRunB2 adopt the negative
KL-divergence, with JM smoothing and DIR smoothing re-
spectively. For each run, the uniform novel thresholds are

training on the TREC 15 dataset. From Table 4, we can see
that nDCG1 and nDCGO are the same in PKUICSTRunB1
and PKUICSTRunB2, which means on each “silent day”,
our system still pushed some tweets that are regarded as un-
related ones. Obviously, the thresholds do not fit well. Fur-
ther investigation and experiments are needed to solve this
issue.

Table 4: Performance of the Email Digest Scenario.

Run ID nDCG1 nDCGO
PKUICSTRunB1 0.1423 0.1423
PKUICSTRunB?2 0.1569 0.1569
PKUICSTRunB3 0.2348 0.0151
Conclusion

In this paper, we present our systems for TREC 2016 Real-
Time Summarization Track. In the push notification sce-
nario, we pay main attention on designing a online system
for handling the real-time Twitter sample stream and make
proper push actions for each interest profile. In the email
digest scenario, We apply web-based query expansion us-
ing language model to rank candidate tweets and then we
leverage two kinds of strategies to measure novelty between
tweets. Experimental results show our effectiveness and ef-
ficiency of our system in both tasks.

Acknowledgments

The work reported in this paper is supported by the National
Natural Science Foundation of China Grant 61370116.

References

Arlington, M. 2008. Google’s misleading blog post: the
size of the web and the size of their index are very different.
Available on http://techcrunch. com.

Charikar, M. S. 2002. Similarity estimation techniques from
rounding algorithms. In Proceedings of the thiry-fourth an-
nual ACM symposium on Theory of computing, 380-388.
ACM.

Lin, J.; Efron, M.; Wang, Y.; and Sherman, G. 2014.
Overview of the trec-2014 microblog track. Technical re-
port, DTIC Document.

Lv, FE E Y. F. C,; Yang, L. Y. J,; and Zhao, D. Pkuicst at
trec 2015 microblog track: Query-biased adaptive filtering
in real-time microblog stream.

Qiang, C. L. F. F. R,, and Yang, Y. F. J. Pkuicst at trec 2014
microblog track: Feature extraction for effective microblog
search and adaptive clustering algorithms for ttg.

Zhai, C., and Lafferty, J. D. 2001. Model-based feedback in

the language modeling approach to information retrieval. In
CIKM, 403-410.

