
 

Word embeddings and Global Preference for Contextual 
Suggestion  

Jian Mo Luc Lamontagne Richard Khoury 
Department of Computer Science and Software Engineering, Laval University 

 
Abstract — In this paper we describe our effort on 

2016 Contextual Suggestion Track. We present a new 
ranking model that captures both global trend of 
interests as well as contextual individual preference. 
We trained a regressor on common users data thus it 
can prioritize popular places and categories. In order 
to model individual user preference, we introduce 
word embeddings to represent both user profiles and 
candidate places as vectors in a same Euclidean space. 

Keywords—Word embeddings, Ranking, 
Document Similarity, Recommendation System, Point-
wise re-ranking 

I. INTRODUCTION 

In the Contextual Suggestion Track of the 
TREC conference, participants were asked to 
develop a system that is able to make suggestions 
for a particular person with a particular context. 
The recommendations are contextual as they are 
based on user’s location, profile, and preferences 
[1]. 

Two separate tasks are also available in this 
year conference: live experiment and batch 
experiment. For the live experiment this year, each 
group is provided only the user profiles and asked 
to submit proper recommendations. For batch 
experiments, several candidate suggestions are 
provided for participants to re-rank the results and 
a final precision at 5 is calculated. Unlike last year, 
teams are no longer asked for setting up a real time 
server. Thus the focus is on how to generate good 
ranking for large numbers of candidates. In this 
paper we present our research group’s new 
approach to the ranking problem demanded in the 
contextual suggestion task this year. 

We participated in both tasks of this track. For 
the live experiment, we use the same framework as 
last year which was composed of an ElasticSearch 
engine for the initial selection and a customized 
ranking module to re-rank the results [2].  

For the batch experiment this year, we adopted 
a new ranking model combining a word2vec based 
ranker and a global preference regressor.  

We use Precision at 5 to present the results 
obtained for the evaluation of our system 
configurations. Our P@5 results of Phase 2 reached 
50.7% comparing to TREC median 39.3% which 
demonstrates the effectiveness of our approach. 

 

II. OUR APPROACH 

A. System Framework 

To perform our experiments, we relied on the 
following components: 

i  Information gathering: 
a) Crawlers 

ii  Recommendation System 
a) User profile modeling 
b) ElasticSearch and Customized Queries 
c) Ranking Model 

1. Word embeddings Model  
2. Global Preference Regressor 

The entire framework is illustrated in Figure 1 
and each component is described in detail in the 
following sections. 

B. System Overview 

Figure 1 showed the overview of our system. 
We store both our corpus and TREC corpus in 
ElasticSearch. In the live run we query 
ElasticSearch for initial candidate suggestions. For 
details of this part, please refer to our last year 
paper [2]. Then a pre-trained regressor will score 
each candidate suggestion according to their 
popularity among all people. Word vectors are 
generated from both user profile and candidates 
then candidates will be scored by their distance to 
the profile vector. Linear interpolation is used to 
combine the two scores.  



 

 
Fig 1. Overall framework for contextual recommendation 

 

III. INFORMATION GATHERING 

We use our old data crawled last year since the 
application domain and context this year remains 
the same. Most of our data are coming from Yelp 
and TripAdvisor [2].  

The crawler extracts structural information 
such as rating, open hours, price, review count, 
category for each candidate attraction from the 
webpages. Business information such as has Wi-Fi, 
has parking lot, smoking allowed are also extracted 
and stored into the database. 

User reviews were often too numerous to 
download entirely. Hence we just get the most 
popular reviews of each attraction, i.e. the first page 
of reviews. Positive and negative reviews are 
downloaded separately and stored in two different 
database tables.  

We also used the crawled corpus provided by 
TREC this year. However these crawled files are 
raw html and have a lot of noise such as html tags 
and JavaScripts. So we extract only text and some 
metadata as representation for each site. 

IV. RECOMMENDATION SYSTEM 

A. User Profile Modeling 

 We create the user’s positive profile by 
merging the positive information from all the 
examples our user likes, and likewise build the 
negative profile by merging the negative 
information from the examples our user dislikes. 
The intuition is that the preferences of one user are 

reflected by the attractions he/she likes and dislikes. 
Consequently, we can compare the user profiles 
with every candidate suggestion in the database and 
rank them by similarity. For instance, if one 
candidate suggestion has many elements in 
common with the positive user profile, this 
candidate obtains a higher ranking score. In 
contrast, if the attraction is very similar to the 
negative user same profile, its ranking score is 
penalized and will be very low. 

According to the task defined for this track, one 
user might provide 6 different rating:  

 4: Strongly interested 
  3: Interested 
  2: Neutral 
  1: Disinterested 
  0: Strongly disinterested 
  -1: Website didn’t load or no rating given 
We selected rating 4 and 3 as positive and 1 and 

0 as negative. Ratings 2 and -1 were taken as 
neutral and simply ignored.  

Formally, the user profile can be expressed as: 
 

௉௢௦݈݂݁݅݋ݎܲ ൌ ራ  ௜௞ሻݏሺܲ݁ܲܧܴ

  

ே௘௚݈݂݁݅݋ݎܲ ൌ ራ  ௜௞ሻݏሺܰ݁ܲܧܴ

 
Where ܲ݁ݏ௜  is positive example suggestion i, 

and Pesik is element k (categories, tags, positive 
reviews, business info) of this positive suggestion. 



 

௜௞ሻݏሺܲ݁ܲܧܴ  defines a special representation or 
form of the element.  

B. Initial selection by Elasticsearch 

Once the user profile is built, we formulate a 
customized query to search our ElasticSearch 
database. For example, let’s suppose the user likes 
Mexican food, dislikes Japanese food, appreciates 
Wi-Fi and parking lot and hates smoking. We use a 
bool boosting query to wrap up the elements of the 
user profile into one query, which can then be sent 
to ElasticSearch to retrieve relevant new attractions. 

These returned 100 attractions are used as our 
initial selection pool for later ranking. For further 
details on this part, please refer to our last year 
paper [2].  

 

C. Ranking Model 

Initially selected candidates are then re-ranked 
by the ranking model. There are two major module 
in our ranking model — Word embeddings Model 
and Global Preference Regressor. The first one is 
used to capture individual interest.  

 
1) Word embeddings Model 
Word embeddings are known for performing 

well at analogical reasoning. Example given by 
Mikolov [3] — king-man=queen-woman — 
showed that word embeddings could reason 
analogy or indirect relationship between words. 

This property of word embeddings makes us 
wonder if it could be applied to recommendation or 
ranking problem. In Contextual Suggestion, a user 
who likes organic food and yoga would probably 
enjoy vegetarian restaurant and modern art while 
may dislikes fast food. Word embeddings model 
seems promising in finding subtle relationships in 
these occasions. 

So we introduce word embeddings as special 
representations for candidates aiming to find 
semantic or contextual similarity between users and 
attractions. 

Firstly, for every attraction we extract a list of 
nouns as representation of the place. For example, 
a Macdonald can be represented by words list — 
Fast-food, American, Restaurant. And a user can be 
represented by positive keywords and negative 
keywords as stated in user profile modeling section.  

Then, we use Genism [4] trained on the 
GoogleNews corpus [5] to generate word vectors 
for each keywords in list.  

A rather intuitive method is adopted to merge 
word vectors by summing all up into one. So in the 
end every attraction is represented by one vector 
while user profiles are matrices composed of rows 
of attraction vectors multiplied by their rating. 

Finally we calculate similarity between 
attraction vectors and user matrix. The first method 

is to sum up user matrix vertically to merge it to a 
single vector and then calculate the dot product of 
attraction vector and user vector.  

The second method is only calculate the one 
vector in user matrix which is nearest (smallest 
inner product) with attraction vector. The algorithm 
is simply multiplying user matrix and attraction 
vector then taking the smallest number in the vector. 

Both of these two methods achieved similar 
results in our test runs. We used the first method in 
our submitted runs. 

 
2) Regressor Trained on Global Preference 
After examining the user data and candidate 

attractions, we found that sometimes categories 
appearing in candidates does not show in user 
profiles. For instance, one user only rated 
restaurants but his preference towards sports and 
activates remains unknown. The situation is 
common in recommendation problems. 

Our approach to this missing profile problem is 
to recommend popular places all people favor. A 
Gradient Boosting Tree is trained on 2015 TREC 
data with features of ratings, review count, 
category and relevant index in the list. The relevant 
index means the order of appearance of the 
candidate place. We introduce this feature to model 
declining interest of user namely the law of 
diminishing marginal utility. 

The trained regressor would prioritize the 
popular category and attractions and those who 
appear earlier in the candidate list.  

 
3) Combine the two models 
An overall ranking is given by arbitrarily 

averaging both ranking from the two modules. That 
is to say both modules have the same proportional 
votes for the final ranking. The weighting 
parameters might be learnt by another training 
process which we didn’t apply in these experiments. 
 
 

V. RESULTS AND ANALYSIS 

A. Evaluation Metric 

An attraction is considered relevant for P@5 if 
it has a geographical relevance of 1 or 2 and if the 
user reported that both the description and 
document were found to be interesting (3) or 
strongly interesting (4). A P@5 score for a 
particular topic (a profile-context pair) is 
determined by how many of the top 5 ranked 
attractions are relevant, divided by 5. [1] 

 
 
 
 



 

B. Submitted Runs 

Three runs were submitted to the competition:  
 LavalIVA_live1,  live run  
 LavalIVA_batch1 is batch run 1, which 

applies only the global regressor. 
 LavalIVA_batch2 is batch run 2, using only 

the word vector model. 
 LavalIVA_batch3 is batch run 2, which 

combined the two modules. 
 

Table 1: TREC CS 2016 results 

Run P@5 

Live_1 0.27 

Batch_1 0.4345 

Batch_2 0.4276 

Batch_3 0.5069 

TREC median 0.393103 

 
Table 1 shows our final results. The low score 

of live run was caused by a sorting problem in our 
code which was fixed later in batch runs. So we will 
mainly discuss about the three batch runs. 

As can be seen from the table, all the three batch 
runs scored higher than TREC median.  

Batch_1 used only the Global Preference 
regressor which only recommend popular places 
for everyone regardless of their personal interest. 
Surprisingly this model scored above average even 
though it does not consider user profile at all. 

Batch_2 used only the word embeddings 
module which only focus on the individual user 
preference. 

Batch_3 is a result of the combination of the 
two models. The fact this run scored highest 
indicates that the two modules cover different 
aspect of the final recommendation and gives a 
better result we. 

Here we study some cases to show how these 
two modules worked respectively showed in Table 
2. 

 
Table 2.  Model on 2015 validation set  

User/Runs median b1 b2 b3 
740 0 0.6 0 0 
774 0 0 0.4 0 
705 0.4 0.4 0.2 0.8 

 
For user 740, only global regressor could make 

correct recommendations partly because the user 
was not consistent with his profile and favors 
popular places when re-rated.  

User 774 is picky and only has two very 
positive scores on beer bars so the word 
embeddings module correctly selected 5 beer bars 
for these user while global regressor fail to guess it 
right.  

Both modules get parts of the user 705 
preferences so the combined model gave highest 
accuracy. For details on how each run scored please 
check the table in appendix at the end of the paper. 

C. Results on Test set 

We also tested our model on 2015 data. A 
noticeable result showed in Table 2 is that regressor 
which models the declining user interest scores 
much better than the one without. So we suggest 
user do have a tendency to like top results more 
than those placed at very bottom of the list. 

A decay model is used in our submitted runs. 
However we did not observe such behavior in 2016 
data after the validation results released. 

It was later revealed that the 2016 request list 
had been random shuffled in case this vulnerability 
being exploited again as some team just returned 
the original requests and still got good scores at 
2015 TREC conference. 

 
Table 3.  Model on 2015 validation set  

Run P@5 

NoDecay  0.581 

DecayInterest  0.6932 

 
 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we have presented our new 
approach to contextual suggestion. Both the global 
regressor and word embeddings model showed 
effectiveness respectively and so the combined 
model could capture individual preference when 
training data is sufficient while provide popular 
recommendations for user with less data. 

Specially, we showed that contextual 
recommendation problem can be tackled by 
cultivating analogical power of word embeddings. 
Even naïve approach at this stage showed good 
results.  

We only sum up word vectors to represent the 
paragraph vector in which the order of words is lost. 
A more fine grained representations could be 
obtained as Doc embeddings or paragraph vector 
proposed in [6]. 

While word embeddings works well on textual 
data such as comments and categories, a different 
approach would be to use word2vec technique to 
encode venues just by their interrelationship [7].  

RNN or other models that also vectorize 
documents fit well to our model and remains to be 
tested in future experiments. 

 
 
 
 
 



 

REFERENCE 

[1] A. Dean-Hall, C. Clarke, J. Kamps, P. Thomas and 
E. Voorhees. Overview of the TREC 2015 Contextual 
Suggestion Track. In Proceedings of TREC’15, 2015. 

[2]  Jian Mo, Luc Lamontagne, Richard Khoury Laval 
University and Lakehead University Experiments at TREC 2015 
Contextual Suggestion Track. In Proceedings of TREC’15, 2015. 

[3] T. Mikolov, W.-T. Yih, and G. Zweig, “Linguistic 
Regularities in Continuous Space Word Representations,” pp. 
746–751, 2013. 

[4] https://radimrehurek.com/gensim/ 
[5] https://github.com/mmihaltz/word2vec-

GoogleNews-vectors 

[6] Q. Le and T. Mikolov, “Distributed 
Representations of Sentences and Documents,” Int. Conf. Mach. 
Learn. - ICML 2014, vol. 32, pp. 1188–1196, 2014.. 

[7]  M. G. Ozsoy, “From Word Embeddings to Item 
Recommendation,” arXiv, 2016.



 

VII. APPENDIX 

user_id median batch1 batch2 batch3 

700 0.6 0.4 0.6 0.4 

701 0.4 0.6 0.4 0.4 

703 0.4 0.2 0.4 0.8 

704 0.4 0.6 0.4 0.8 

705 0.4 0.4 0.2 0.8 

706 0 0.2 0 0 

712 0 0 0.2 0 

715 0.6 0.4 0.6 0.6 

718 0.4 0.8 0.2 0.6 

719 0.4 0.6 0.4 0.6 

720 0.4 1 0.4 0.8 

721 0.4 0.6 0.6 0.8 

722 0.4 0 0.6 0.6 

723 0.4 0.4 0.4 0.6 

726 0.6 0.4 0.4 0.8 

727 0.6 0.4 0.6 0.6 

728 0.6 0 0.8 0.4 

729 0.4 0.6 0.6 0.6 

731 0.4 0.8 0.4 0.8 

732 0.4 0.6 0 0.8 

733 0.6 0.6 0.6 0.4 

734 0.8 0.6 0.8 0.8 

740 0 0.6 0 0 

743 0.6 0.4 0.6 0.8 

744 0.6 0.6 0.4 0.8 

745 0.6 0.6 0.6 0.6 

746 0.6 0.2 0.8 0.8 

753 0.2 0 0.2 0.2 

754 0.4 0.6 0.6 0.6 

     

     

     

     

     

     

     

     

user_id median batch1 batch2 batch3 

756 0.8 1 0.6 0.8 

759 0.2 0 0.6 0.6 

760 0.2 0 0 0 

761 0.6 0.6 0.4 0.6 

762 0.4 0.4 0.4 0.6 

763 0.6 0.6 1 0.6 

764 0.6 0.4 0.6 0.6 

765 0.2 0.4 0.2 0 

768 0.6 0.6 0.8 0.6 

773 0.2 0.2 0.2 0.4 

774 0 0 0.4 0 

776 0.4 0.6 0.4 0.6 

777 0.4 0.6 0.6 0.6 

779 0.4 0.4 0 0.4 

781 0.2 0.4 0.4 0.6 

788 0.2 0.2 0.2 0 

791 0.2 0.2 0.6 0.2 

792 0.4 0.8 0.2 0.2 

794 0.2 0.8 0.4 0.8 

795 0.4 0.8 0.6 0.6 

796 0.2 0 0.2 0.2 

797 0.4 0.6 0.2 0.6 

798 0.2 0.4 0.2 0.8 

804 0.2 0 0.4 0.2 

810 0.2 0 0.4 0.6 

811 0.2 0.2 0.4 0 

813 0.2 0.4 0.2 0.2 

814 1 1 1 1 

902 0.4 0.4 0.4 0.2 


