
BJUT at TREC 2016 OpenSearch Track:
Search Ranking Based on Clickthrough Data

Cheng Li1, Zhen Yang1∗, David Lillis2,3
1. College of Computer Science, Faculty of Information, Beijing University of Technology, China

2. Beijing-Dublin International College, Beijing University of Technology, China
3. School of Computer Science, University College Dublin, Ireland

yangzhen@bjut.edu.cn

Abstract

In this paper we describe our efforts for the TREC
OpenSearch task. Our goal for this year is to evaluate the
effectiveness of: (1) a ranking method using information
crawled from an authoritative search engine; (2) search rank-
ing based on clickthrough data taken from user feedback; and
(3) a unified modeling method that combines knowledge from
the web search engine and the users’ clickthrough data. Fi-
nally, we conduct extensive experiments to evaluate the pro-
posed framework on the TREC 2016 OpenSearch data set,
with promising results.

Introduction
In this year’s OpenSearch Track, our main aims are: (1)
Building an efficient ranking function that uses the infor-
mation from a web search engine and the documents. (2)
Explore a novel method that can use the clickthrough data
from the feedback to improve the performance of the rank-
ing function. (3) Create a unified model that combines both
of these. As search engines play an ever more crucial role
in information consumption in our daily lives, ranking rele-
vance is always a challenge. The advancing state of the art
for search engines presents new relevance challenges, which
drives us towards using user feedback (e.g. clicks) to opti-
mize the retrieval performance of search engines.

In addressing the OpenSearch task, we first crawled the
document information for each query from Google Scholar,
mainly document titles. We used this information to reflect
the content for each document. Next, word2vector was used
to build matrices to represent the documents after a series
of data processing operations, and training was performed
on the dataset to generate a classifier for each query. Then,
we used the classifiers to make judgments about the scores
of documents and uploaded the ranks to the API. In addi-
tion, we used the dataset to train the classifier including the
clickthough data received as feedback through the from API.
Clickthrough data has been shown to be highly useful for
generating search engine rankings (Schuth, Balog, and Kelly
2015; Joachims 2002; Radlinski, Kurup, and Joachims 2008;
Agichtein, Brill, and Dumais 2006). Finally, we used both of
the above classifiers to create a unified modeling based on
structural risk minimization, and ranked the candidate doc-
uments.

The remainder of the paper is organized as follows: In
Section 2, we present our approach for ranking using web
information and clickthough data. In Section 3, we report
our experimental results. In Section 4, we conclude the pa-
per.

Ranking System Framework
Figure 1 shows our system framework. It consists of four
principal parts: (1) Information gathering, (2) Document an-
notation, (3) Ranking model and Unified model, (4) Results
generation.

Information Gathering
The first step of the ranking process is to gather useful infor-
mation. Candidate data was received from the Living Labs
API, including training set and test set, each query and its
corresponding doclist (a list of candidate documents) and
user feedback for each query. With regard to information
from the web, we crawled a doclist for each query from
Google Scholar. For each query, we crawled the top docu-
ments up to a maximum of 100 documents. Document ti-
tles are the primary information received during this pro-
cess. For some queries, 100 documents were not available,
but the more than 70 were retrieved in each case. More-
over, we gathered a text corpus from Wikipedia to train the
word2vector model. This corpus was approximately 11 GiB
in size.

Document Annotation
The different search engines used in the OpenSearch task
make different information available about each document.
For instance, CiteSeerX provides only a single field with the
full document text. In contrast, SSOAR returns many fields
including abstract, author, description, identifier, language
etc. The Microsoft Academic Search results include abstract
and URL. Document title is common to each, so this was
used for the generation of the document matrices.

Before generating the document matrices, we prepro-
cessed the data. Then, we trained the word2vector model
with the corpus and used this model to construct document
matrices both of the sites and Google Scholar.

Two labels are applied to each document. One is based
on its position in the Google Scholar results, and the other is

Figure 1: System Framework.

based on the clickthrough data. For the first label, we use five
scores to represent different levels of the documents. The
higher-ranked documents should have higher scores than
those ranked later by Google Scholar. Each document is
given a score as follows (rank ranges are inclusive):
• 5: ranked between position 1 and position 5
• 4: ranked between position 6 and position 10
• 3: ranked between position 11 and position 20

• 2: ranked between position 21 and position 50

• 1: ranked at position 51 or higher

The other label is based on clickthrough data. It can be
understood as the probability of the document is clicked, and
is defined by following formula:

P (d) = 0.5+
dt − df

dt + df + 0.5
× 0.5

1 + e−k(dt+df−s−0.25)
(1)

where P (d) is the probability for document d, dt is the num-
ber of times the document was clicked, df is the number of
times the document was not clicked. The latter part of this
formula is a logistic function to dampen the effect of clicks
for small sample sizes (so that a document that has appeared
once but has not been clicked will not get a probability of
zero). K affects how quickly the function begins to rise and
s is the shift factor. Values of K = 0.33 and s = 10 were
used. A document that has never been clicked begins with
a probability of 0.5, and this probability will rise or fall de-
pending on the user clickthrough data.

Ranking Model and Unified Model
The ranking model consisted of the web information ranking
model and the clickthrough data ranking model.

Existing search engines exhibit excellent performance in
retrieving information, therefore the starting point for the
model is to train the classifier using Google Scholar. We
adopted Least Squares method into the framework, which
can learn a linear model to fit the training data (Hu et al.
2013). The square loss is:

L(H, I) = ||GH − I||2 (2)

where G is the content matrix of Google document data, H
is the linear classifier, and I is the label matrix we defined.
Square loss is a widely used method for text analytics.

However, simple square loss alone is insufficient for train-
ing a stable and robust classifier. For the documents, it is
observed that not all the words in titles are relevant to the
query but instead we can use some key words to represent
the documents. A mature method is sparse learning, which
has been used in various fields to obtain an effective model.
To ensure sparsity of the model, we used the L1-norm pe-
nalization based on square loss. To overcome overfitting,
the most popular method is regularization. One of the most
widely used methods is ridge regression, which introduces
an L2-norm penalization. At the moment, the problem can
be solved by the elastic net, which does automatic variable
selection and continuous shrinkage, and selects groups of
correlated variables.

This model is suitable for the web information ranking
model, and can be used as clickthrough data ranking model
by replacing Google document matrix G with the site docu-
ment matrix C, and replacing the score labels with the sec-
ond label outlined above.

A unified model was then created. As with the ranking
model, we used square loss to train the model, which can be
written as:

minL(H1, H2) = ||GH1−GH2||2+||CH1−CH2||2 (3)

where H1 and H2 are the classifiers obtained from the rank-
ing model. L2-norm penalization was then used to control
the robustness of the learned model (Beck and Teboulle
2009).

Results Generation
For the training dataset, we used the classifier obtained from
ridge regression to rank. As for the test dataset, first we cal-
culated the cosine similarity between the test queries and

training queries, which can be defined as following formula:

sim(qi, qj) =
qi · qj

||qi|| · ||qj ||
(4)

where qi and qj are two vectors representing a test query and
a training query and ||q|| is the length of the vector q. And
then, after normalizing the cosine similarity vector, we could
get the classifiers of test queries, as follows:

Hi =

n∑
j=1

αijHj (5)

where αij is the parameter of the cosine similarity with nor-
malization,Hi is the test query classifier andHj is the train-
ing query classifier.

If the two queries are semantically similar to each other,
they should have a close representative in the word2vector
model within the large scale corpus. Considering this as-
pect, we used the equation (5) to express the classifiers, and
ranked the test dataset with these.

Experimental Results
This section, we introduce the evaluation methods and our
results.

Evaluation Measures
During the OpenSearch runs, CiteSeerX and SSOAR both
use interleaved comparisons on their live websites. The
specific type of interleaving used is Team Draft Interleav-
ing (TDI), whereby the rankings produced by participating
teams are interleaved with the current production ranking of
the site. Users are shown this interleaved ranking, but are
unaware of the origin of the results. The ranker (participant
or production) that contributes more documents that users
click is preferred.

OpenSearch used five metrics for evaluation, as fol-
lows (Schuth, Balog, and Kelly 2015):

• Impressions: the total number of times when rankings (for
any of the test queries) from the given team have been
displayed to users.

• Wins: a win occurs when the ranking of the participant
has more clicks on results assigned to it by Team Draft
Interleaving than clicks on results assigned to the ranking
of the site.

• Losses: A loss is the opposite to a win.

• Ties: a tie occurs when the ranking of the participant ob-
tains the same number of clicks as the ranking of the site.

• Outcome: Outcome is defined as:

wins =
wins

wins+ losses
(6)

An outcome value below 0.5 means that the ranking of
the participant performed worse than the ranking of the
site (i.e., in overall, it has more losses than wins).

Table 1: Training Data Performances.

type Outcome Wins Losses Ties Impressions
train 0.4468 21 26 5 52

Table 2: Test Data Performances.

Round Outcome Wins Losses Ties Impressions
1 0.3333 3 6 1 10
2 0.6 6 4 1 11
3 0.5432 44 37 15 96

Results Analysis
Two sets of results were obtained: one based on the training
data and the other based on the test data.

Table 1 shows our results from CiteSeerX for the train-
ing data. The evaluation method is Team Draft Interleaving
(TDI), it statistically test whether the number of wins for the
better retrieval function is indeed significantly larger by us-
ing a test against outcome ≤ 0.5. The outcome of the train-
ing data is 0.4468, which means the ranking function of the
site performs better than ours, although not to a substantial
degree.

Table 2 shows our from CiteSeerX on the test data. There
were three rounds for the test period. In the first round, the
site had the better performance than our system, in the sec-
ond round, our system performed better, and in the third
round, the outcome was 0.5432, our system performed better
too. Around the all rounds, our ranking function is effective
and not bad.

Conclusion
In this paper, we study the problem of optimizing the
ranking function with clickthrough data. We used the
word2vector model to represent the queries and the docu-
ments effectively instead of traditional vector space or other
model. A unified framework is proposed, incorporating web
information and clickthrough data. In the optimization pro-
cess, the popular regularization methods of elastic net re-
gression and ridge regression are adopted. Experiments over
long periods were conducted to evaluate the proposed frame-

work on a real world academic search engine and the experi-
mental results demonstrate the effectiveness of our proposed
framework.

In the future work, we will consider more features to bet-
ter represent documents and conduct further extensive ex-
periments to improve the robustness and stability of our
method.

Acknowledgments
This research was supported by the National Natural Science
Foundation of China (No. 61671030), the Excellent Talents
Foundation of Beijing, the Importation and Development of
High-Caliber Talents Project of Beijing Municipal Institu-
tions (No.CIT&TCD201404052), and the Guangxi Colleges
and Universities Key Laboratory of Cloud Computing and
Complex Systems (No15205).

References
Agichtein, E.; Brill, E.; and Dumais, S. 2006. Improving
web search ranking by incorporating user behavior informa-
tion. In Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in informa-
tion retrieval, 19–26. ACM.
Beck, A., and Teboulle, M. 2009. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM
journal on imaging sciences 2(1):183–202.
Hu, X.; Tang, J.; Zhang, Y.; and Liu, H. 2013. Social spam-
mer detection in microblogging. In nternational Joint Con-
ference on Artificial Intelligence, volume 13, 2633–2639.
Citeseer.
Joachims, T. 2002. Optimizing search engines using click-
through data. In Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data
mining, 133–142. ACM.
Radlinski, F.; Kurup, M.; and Joachims, T. 2008. How does
clickthrough data reflect retrieval quality? In Proceedings
of the 17th ACM conference on Information and knowledge
management, 43–52. ACM.
Schuth, A.; Balog, K.; and Kelly, L. 2015. Overview of
the living labs for information retrieval evaluation (ll4ir)
clef lab 2015. In International Conference of the Cross-
Language Evaluation Forum for European Languages, 484–
496. Springer.

