
ADAPT_TCD: An Ontology-Based Context Aware

Approach for Contextual Suggestion

Mostafa Bayomi Séamus Lawless

ADAPT Centre, Knowledge and Data Engineering Group,

School of Computer Science and Statistics, Trinity College Dublin, Dublin,

Ireland

bayomim@tcd.ie seamus.lawless@scss.tcd.ie

Abstract. In this paper we give an overview of the participation of the ADAPT

Centre, Trinity College Dublin, Ireland, in both phases of the TREC 2016 Con-

textual Suggestion Track. We present our ontology-based approach that consists

of three models that are based on an ontology that was extracted from the Four-

square category hierarchy. The three models are: User Model, Document Model

and Rule Model. In the User Model we build two models, one for each phase of

the task, based upon the attractions that were rated in the user’s profile. The Doc-

ument Model enriches documents with extra metadata from Foursquare and cat-

egories (concepts) from the ontology are attached to each document. The Rule

model is used to tune the score for candidate suggestions based on how the con-

text of the trip aligns with the rules in the model. The results of our submitted

runs, in both phases, demonstrate the effectiveness of the proposed methods.

1 Introduction

In TREC 2016, we participate in both phases of the Contextual Suggestion track1. The

track goal is to provide a venue for the evaluation of systems that are able to make

suggestions for a particular person (based upon their profile) in a particular context [2].

This year the track consists of two phases. In Phase 1 we were provided with 495 user

profiles. Each profile consists of attractions and the user’s opinion regarding them. A

user could rate an attraction from 0 (strongly uninterested) to 4 (strongly interested).

Items are labelled as -1 if the user didn’t provide a rating. Additionally, a user’s profile

has information about the context of the trip that they are about to take. Information

such as the Group they are travelling with (alone, friends, family, other), the trip Season

(summer, winter, autumn, spring), the trip Type (holiday, business, other), and the trip

Duration (night out, day trip, weekend, longer).

This year the organisers released a fixed set of candidate suggestions for 272 con-

texts, each context representing a city in the United States. The candidate suggestions

set consists of approximately 1.2 million candidate attractions.

1 https://sites.google.com/site/treccontext/trec-2016

mailto:bayomim@tcd.ie

The first phase of the task required participants to provide a ranked list of up to 50

suggested attractions for the user to visit, from the provided set of attractions, tailored

to each user based on his/her profile. In Phase 1, unlike previous years, we were not

asked to setup a live server that could listen to requests from users, rather, we were

provided with profiles and the suggestion process was to be completed offline.

In Phase 2 (the batch phase), for each provided user profile and contextual prefer-

ences, we were asked to rank sets of candidate attractions that had been suggested dur-

ing the first phase.

In the following we describe our proposed approach for both Phase 1 and Phase 2,

and then discuss our submitted runs along with the results achieved.

2 Proposed Approach

Our approach is based on three models: User Model, Document Model and Rule

Model. The three models are based on an ontology that was built from the Foursquare

category hierarchy2.

The ontology is considered the central point of our approach. In the Document

Model we enrich the provided documents and identify the set of classes from the ontol-

ogy that a document belongs to (see Section 2.2). The Rule Model consists of context-

specific rules, and penalises documents that are instances of classes that don’t match

these rules (see Section 2.3). In the User Model we suggest and rank the candidate

documents based on their semantic and tag similarity scores with the user model (Sec-

tions 3 & 4).

2.1 Building The Ontology

An ontology is a formal naming and definition of the types, properties, and interrela-

tionships of the entities that exist for a particular domain. It describes individuals (in-

stances), classes (concepts), attributes, and relations. In our approach we used an ontol-

ogy to model the users and the attractions. We exploited the Foursquare category hier-

archy to build this ontology.

The Foursquare category hierarchy is a hierarchy that represents Foursquare cate-

gories and the relations between them. For example, “American Restaurant” is a cate-

gory in the hierarchy that is a child of the “Food” category. Each attraction in Four-

square belongs to one or more of these categories. Hence, we considered a category as

a class in the ontology and the attractions that belong to that category as instances of

that class.

2 https://developer.foursquare.com/categorytree

2.2 Document Model

The first step in our approach is to model documents (attractions) and enrich them. The

organisers released a set of approximately 1.2 million candidate suggestions situated

across 272 context cities. Each candidate attraction has an attraction ID, a context city

ID, a title, and a URL.

Some of the provided attractions’ URLs are the attraction’s home page. The home

page of an attraction is expected to contain content that is highly relevant to the attrac-

tion. This means that the content of the web page should only be related to what this

attraction is, or what this attraction serves (in the case where the attraction is a restau-

rant), and this page should not contain any information about users’ ratings or opinions

about that attraction. Hence, we leveraged Foursquare to enrich the attractions and

model them.

For each attraction, we started by querying its title and location against the Four-

square website3. The Foursquare search returns a list of attractions that are sorted based

on their relevance to the query. We select the first (most relevant) attraction from that

list.

In some cases, the selected attraction is not the actual attraction that we are looking

for. This is usually due to one of three reasons:

1- The attraction that we are looking for is not in Foursquare and thus Foursquare

search returns any available attractions for the location that was given in the

query.

2- The original title of the attraction in the TREC dataset, which we used to gen-

erate a query, is not formatted in a manner suited for use as a query on Four-

square. For example, the title is too long or is the description of the attraction.

3- The original title of the attraction in the TREC dataset is not correct for the

attraction. For example, the attraction could be a profile page for someone on

Facebook and the title is for a coffee house.

Hence, we apply a filter process to check if the attraction returned from Foursquare

is, in fact, the attraction that we are looking for. We measure the lexical overlap between

the attraction’s original title (from the TREC dataset) and the returned attraction’s title

(from Foursquare). If the lexical overlap score between the two titles exceeds a prede-

fined threshold, the returned attraction is considered to be a correct match and we use

it in the next step. If the overlap score is under the threshold, we ignore that attraction

and do not include it in the final dataset. The threshold was set based on the length of

the attraction’s original title after removing common words.

After retrieving the attraction’s page from Foursquare we start to parse and extract

valuable information such as:

3 https://foursquare.com/

a) List of categories (e.g. American Restaurant, Park, Museum).

b) Average users’ rating.

c) List of tags4 (e.g. “good for a quick meal”, “clean”, “good for families”).

d) Users’ rating count (number of users who rated this attraction).

e) Users’ review count (number of users who gave a review for this attraction).

The list of categories identifies to which category (or set of categories) an attraction

belongs. As we mentioned before, we consider a category as a class in our ontology.

This class will be used to measure the semantic similarity between an attraction and the

user model (see Section 4.2).

We extract users’ rating and review counts to be used in the inter-ranking process

between attractions. The intuition behind using those counts is: if an attraction a has

been rated by 500 users and attraction b has been rated by 3 users, this means that a is

more credible than b even if b has a rate higher than a. The same applies for the review

count as well.

2.3 Rule Model

The Rule Model consists of rules that identify the relevance of an attraction to the con-

text of the trip using the class (or classes) that the attraction is an instance of. The trip

context comprises: the Group that a user is travelling with (alone, friends, family,

other), the trip Season (summer, winter, autumn, spring), the trip Type (holiday, busi-

ness, other), and the trip Duration (night out, day trip, weekend, longer). Each of these

properties has a set of classes in the ontology that are not suitable for that property. For

example, the “beach” class is of less relevance when a trip has a Season of “winter”.

If at least one of the classes that the attraction is an instance of violates at least one

rule in the model, then this attraction is ignored (in Phase 1) or given a lower rank (in

Phase 2). For example, consider a user for whom the “Museum” class is listed as one

of their favourite classes in the user model. This user’s trip has a Duration of “night

out”. Since a museum is typically not suitable for a night out, in the rule model the

“Museum” category is incompatible with the “night out” trip Duration. Hence, all at-

tractions that are instances of “Museum” are ignored (or given lower rank) and are not

selected by our approach even if the user has a preference for museums in her/his user

model.

4 Foursquare tags are keywords extracted from users’ reviews

3 Phase 1

3.1 User Modelling

In Phase 1, we model the users based on the positively rated attractions in the user’s

profile. A different strategy was taken in Phase 2 (see section 4.1). The positively rated

attractions are those that have got a rating of either 3 or 4 by the user. The user model

was built as follows:

1- For each user and for each attraction we create an index of all the classes (e.g.

American Restaurant), based on Foursquare data, that the user has rated posi-

tively along with the tag set tc that were found on that attraction’s page on

Foursquare.

2- We compute the count per class and merge all the tags into one list. The tags

are then added to the positive user model.

3- By having all positive classes, we compute the percentage of each class in the

positive model. For example, “American Restaurant” class represents 31% of

the classes in the positive model.

Figure 1 shows a sample of a user’s positive model.

For a given place p where a user is travelling to, we start to select the documents

that match the classes in the positive model. Then we eliminate the documents that

belong to a class that violates at least one rule in the rule model. As the target for this

phase is to return a list of up to 50 ranked suggestions, we mapped the class percentage

in the user model to 50 and represented it as a number, say x. Then we start to select

the top x attractions of this class from the retrieved documents after ranking them.

Ranking between documents of the same class is achieved based on four features:

1- The average users’ rating.

2- The users’ rating count.

3- The users’ review count.

4- The tag similarity measure between a document’s tags set td and the classes’

tags set tc (see Section 4.3).

For example, for a given class c, say “American Restaurant”, in the user model, we

select all documents that are instances of this class (Dc) and eliminate documents that

are also instances of classes that violate rules in the rule model (Dc'). Then we rank the

remaining documents based on the aforementioned features. Suppose that class makes

up 32% of the classes in the positive user model - 32% of 50 is 16. Hence, we select

the top 16 documents of the final set.

After we select all documents for all classes in the user model, according to their

percentage, we start to rank the documents based on the first three of the features men-

tioned before and return the final ranked list. The notion behind not including the tags

similarity measure in ranking the documents in the final list is that these documents are

not instances of the same class (category), which means that they have different sets of

tags. For example, documents that are instances of class “Gym” have completely dif-

ferent tags than documents that are instances of class “Japanese Restaurant”.

{ "id" : 1,

.

"positive_model" : [

 {

 "class" : "American Restaurant",

 "count" : 6,

 "percentage" : 31,

 "tagCloud" : [

 "ghost bar",

 "shrimp",

 "good for dates",

 .

 .

]

 },

 {

 "class" : "Art Museum",

 "count" : 3,

 "percentage" : 15,

 tagCloud" : [

 "museums",

 "free admission",

 .

]

 }

Figure 1. A sample of Phase 1 positive user model

3.2 Not Enough Attractions

For some profiles and for some places, it is possible that the number of attractions be-

longing to a specific class, in a specific city do not meet the required number. For ex-

ample, for a specific profile and a specific city, suppose that the required number of

attractions that are instances of the “American Restaurant” class is 16. However, in that

city, there are only 10 attractions with type “American Restaurant”. In this instance, we

supplement the list to make up for the shortfall using two different approaches (for two

different runs):

a) For the first run, we compensate for the shortfall by getting more attractions

from the other classes in the user model. For example, the “American Restau-

rant” class has only 10 attractions in the city and the required number is 16.

The other classes in the user model e.g. “Museum, Chinese Restaurant, etc.”

have more attractions than what are required by the user model. We combine

the remaining, overflow attractions from the other classes into a list. We then

rank them based on the aforementioned criteria. Finally we then source the

missing 6 attractions from the top of the ranked overflow list.
b) For the second run, we compensate for the shortfall for a specific class by

looking, in the ontology, for the class that has the highest ontological similarity

to that class (see Section 4.2). For example, the “New American Restaurant”

class is considered the highest ontologically similar class to the “American

Restaurant” class. We then retrieve the attractions that belong to that class,

rank them and select the number that we require.

4 Phase 2

In Phase 2, we used the same Document Model (Section 2.2) and Rule Model (Sec-

tion 2.3) but we followed a different strategy to build the user model. The following

sub-sections demonstrate how the Phase 2 user model was built.

4.1 User Modelling

For a given user (U), we build two user models: a positive model (Upos) and a negative

model (Uneg). The positive model is built based on the positively rated attractions in the

user’s profile (attractions that were given a rating of either 3 or 4 by the user) and the

negative model is built based on the negatively rated attractions in the user’s profile

(attractions that were given a rating of either 0 or 1 by the user).

In this phase, we do not compute the count per class, instead, we just collect the

documents’ classes and their tags in each model. Figure 2 illustrates what the user

model looks like in Phase 2.

Both user models (positive and negative) may have classes in common, i.e. the user

could have positively rated an attraction that is an instance of “American Restaurant”

and have negatively rated another attraction that is also an instance of “American Res-

taurant”. This is why we harvest the tag list from Foursquare. This list of tags is con-

sidered an indication of why the user has given a positive or negative rating for that

attraction. Furthermore, the negative model could have some classes that are not in the

positive model, which in turn means that these classes are not preferable for that user.

Hence, we add these classes to the rule model to give a lower rank to documents that

are instances of these classes along with the classes that are already in the rule model.

After modelling the user profile and modelling the candidate suggestions, we divide

these candidate suggestions into three groups:

Group 1: Working URLs and do not violate rules.

Group 2: Working URLs and violate rules.

Group 3: Not working URLs.

While checking the URLs of the candidate suggestions, it was noted that some

were not working, hence, we put these documents, for each profile, in one group (Group

3) and move this group to the end of the final ranked list. Group 1 contains the docu-

ments that have working URLs and their classes do not violate any rule in the rule

model while Group 2 contains the documents that have working URLs but their classes

violate at least one of the rules in the rule model.

{ "id" : 1,

.

.

"positive_model" : [

 {

 "doc_id" : "TRECCS-00007296-382",

 "classes" : ["Burrito Place", "Mexican Restaurant"],

 "tagCloud" : ["burritos",

 "good for a quick meal",

 "salsa roja",

 .

 .

]

 },

 "negative_model" : [

 {

 "doc_id" : "TRECCS-00007296-382",

 "classes" : "Café",

 "tagCloud" : ["oatmeal",

 "banana nut"

 "corned beef",

 .

 .

]

 }

]

.

Figure 2. A sample of Phase 2 user models

4.2 Ontology-Based Semantic Similarity

Our approach is based upon the ontological similarity between a document and all the

documents in the user’s positive profile Upos. i.e. for a given document d, the semantic

similarity between that document and the user’s positive model is the summation of

weighted semantic similarity scores between the document’s class set and the class set

of every document in the positive model.

Semantic similarity has been widely used in many research fields such as Infor-

mation Retrieval [3] and Text Segmentation [1]. Ontology-based similarity can be

classified into three main approaches: Edge-counting, Feature-based and Information

Content (IC) based approaches. In our approach, we rely on an Edge-counting approach

proposed by Wu and Palmer [5] as its performance is deemed better than other methods

[4].

The principle behind Wu and Palmer’s similarity computation is based on the edge-

counting method, whereby the similarity of two concepts is defined by how closely they

are related in the hierarchy, i.e., their structural relations. Given two concepts c1 and

c2, the conceptual similarity between them is:

 ConSim (c1, c2) = 2*N / (N1+N2)

Where N is the distance between the closest common ancestor (CS) of c1 and c2 and

the hierarchy root, and N1 and N2 are the distances between the hierarchy root on one

hand and c1 and c2 on the other hand respectively.

The similarity between two documents can be defined as a summation of weighted

similarities between pairs of classes in each of the documents. Given two documents

d1 and d2, where d1 is a document in the candidate suggestions set and d2 is a document

in the user’s positive model, the similarity between the two documents is:

𝑑𝑜𝑐𝑆𝑖𝑚(𝑑1, 𝑑2) =

∑ ∑ 𝐶𝑜𝑛𝑆𝑖𝑚(𝑐𝑖 , 𝑐𝑗)
𝑛

𝑗=1

𝑚

𝑖=1

𝑚 × 𝑛

 2

Where m and n are the two sets of classes that d1 and d2 have respectively.

As mentioned above, the semantic similarity between one of the candidate sugges-

tion documents and the user’s positive model can be defined as a summation of

weighted semantic similarity scores between the document’s class set and the class set

of every document in the positive model:

𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑆𝑖𝑚(𝑑, 𝑈𝑝𝑜𝑠) = ∑ 𝑑𝑜𝑐𝑆𝑖𝑚(𝑑, 𝑑𝑖)

𝐷

𝑖=1

 3

Where D is the set of documents in the positive model.

4.3 Tags similarity

The list of tags associated with an attraction is the list of keywords extracted from the

users’ reviews about that attraction on Foursquare. These keywords (tags) are consid-

ered a representation of the “taste” of the attraction and depicts why a user has rated

this attraction positively or negatively. For example, consider a user who has positively

rated an attraction that has a list of tags that contains: “sushi bar, good for dates”. This

means that a candidate suggestion that has similar tags is deemed to be more preferable

by the user. In our approach we use tag similarity as a factor in the ranking process. We

measure the lexical (word) overlap between an attraction’s tags list and the documents’

tags list in the user’s positive model and add the score to the final ranking score.

Consider d1 is a document in the candidate suggestion set and d2 is a document in

the user’s positive model, the similarity between the two documents is:

𝑡𝑆𝑖𝑚(𝑑1, 𝑑2) =
𝑁𝑜. 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑 𝑤𝑜𝑟𝑑𝑠

𝑥 × 𝑦

 4

Where x and y are the two sets of tags that d1 and d2 have respectively.

The total tag similarity score of a candidate suggestion is:

𝑑𝑡𝑎𝑔𝑠𝑆𝑖𝑚 = ∑ 𝑡𝑆𝑖𝑚(𝑑, 𝑑𝑖)

𝐷

𝑖=1

 5

Where D is the set of documents in the positive model.

4.4 Ranking Methodology

For each candidate suggestion in the user profile, we measure two similarity scores:

1- Semantic Similarity (semanticSim)

2- Tag Similarity (tagSim).

The final ranking score is calculated as follows:

 dtotalSim = dsemanticSim + dtagSim + drating 6

Where drating is the document’s rating on Foursquare.

As mentioned above, we divided the candidate suggestions into three main groups:

1- Working URLs and do not violate rules.

2- Working URLs and violate rules.

3- Not working URLs.

We applied our ranking methodology separately for each group and then merged

the groups, after ranking, into the afore-mentioned order to create the final list.

5 Results

We participated in the two phases of the Contextual Suggestion track. In Phase 1, we

submitted two runs (see Section 3.2) and in Phase 2 we submitted 3 runs.

This year, the Track organisers evaluated all submitted runs using three evaluation

metrics, namely, Reciprocal Rank, P@5 and ndcg@5.

5.1 Phase 1 Results

In this phase we submitted two runs:

1- ADAPT_TCD_r1 (Section 3.2.a)

2- ADAPT_TCD_r2 (Section 3.2.a)

Table 1 reports the performance of our two submitted runs together with the TREC

Median

Runs Reciprocal Rank P@5 ndcg@5

ADAPT_TCD_r1 0.5777 0.4066 0.2643

ADAPT_TCD_r2 0.5512 0.4098 0.2595

TREC Median 0.5041 0.3508 0.2133

Table 1. Results of our runs in Phase 1

As the results show, our runs are competitive and perform above the TREC median

in both cases. In particular, the first run is the best of the two. Overall, the results for

both of our runs exhibit promising performance.

5.2 Phase 2 Results

In this phase we submitted three runs:

1- ADAPT_TCD_br1: in this run, we measure the similarity between the candi-

date suggestions and the user positive model based on the semantic and tag

similarity measures (see Section 4.4).

2- ADAPT_TCD_br2: in this run we divided the positive user model into two

positive models: positive_4 contains the documents that received a rating of 4

from the user. While positive_3 contains the documents with a rating of 3. The

similarity between every candidate suggestion and each positive profile attrac-

tion is measured. If the score of a candidate suggestion with positive_4 is

higher than with positive_3, it is placed in a group that is at the top of the final

ranked list.

3- ADAPT_TCD_br3: in this run we followed the same approach as the first run

but we did not measure the tag similarity between documents (see Section 4.3).

The intuition behind this run is to assess the impact of tags on measuring the

relatedness of a candidate suggestion to a user model.

Table 2 reports the performance of our submitted runs in Phase 2 along with the

TREC median.

Runs Reciprocal Rank P@5 ndcg@5

ADAPT_TCD_br1 0.5472 0.4241 0.2720

ADAPT_TCD_br2 0.5472 0.4241 0.2720

ADAPT_TCD_br3 0.5996 0.3931 0.2612

TREC Median 0.6015 0.3931 0.2562

Table 2. Results of our runs in Phase 2

The results show that the performance of our first two runs outperform the TREC me-

dian in two of the evaluation metrics (P@5 and ndcg@5).

Also the results depict that the second run has the same performance as the first one.

Which in turn means that dividing the user positive model into two models does not

provide any benefit in the ranking process.

The third run has the lowest performance of the three runs (except in the Reciprocal

Rank metric), which means that the use of tag similarity (run1 & run2) has a positive

impact on ranking performance.

Overall, the results for the first two runs exhibit promising above-median perfor-

mances, and hence merit further study in the future.

6 Conclusion and Future Work

This paper describes our participation in both phases of the TREC 2016 Contextual

Suggestion track. We proposed an approach that consists of three models that are based

on an ontology that was extracted from the Foursquare category hierarchy. The User

Model is used to model users based upon their profiles, the Document Model is used to

model documents and enrich them, and the Rule Model is used to tune the score for

candidate suggestions based upon the context of the trip and how it aligns with the rules

in the model. In the first phase we submitted two runs. The results exhibit a good per-

formance where both runs outcome the TREC median. In the second phase we submit-

ted three runs, and results also show that our approach for the second phase is promis-

ing.

Moving forward, viable future work may involve:

a) Adding some exceptions to the rule model: There could be an allowance made

for instances of a class which violate a rule, but have exceptionally high rank-

ings within that city (or exceptionally high rating and review counts). For in-

stance, a visitor to Sydney is likely to want to go see Bondi Beach, even if it is

winter time.

b) Enhancing the user model in phase 1 by following the same strategy that we

have followed in phase 2 (Section 4.1).

Acknowledgements.

The ADAPT Centre for Digital Content Technology is funded under the SFI Research

Centres Programme (Grant 13/RC/2106) and is co-funded under the European Re-

gional Development Fund.

7 References
[1] Bayomi, M., Levacher, K., Ghorab, M.R., and Lawless, S. OntoSeg: A Novel

Approach to Text Segmentation Using Ontological Similarity. 2015 IEEE

International Conference on Data Mining Workshop (ICDMW), (2015),

[2] Dean-Hall, A., Clarke, C.L., Kamps, J., Thomas, P., Simone, N., and

Voorhees, E. Overview of the TREC 2013 contextual suggestion track. 2013.

[3] Hliaoutakis, Angelos (Technical University of Crete (TUC), G., Varelas,

Giannis (Technical University of Crete (TUC), G., Voutsakis, E., Petrakis,

G.M., E., and Milios, E. Information Retrieval by Semantic Similarity.

International Journal on Semantic Web and Information Systems (IJSWIS) 2,

3 (2006).

[4] Lin, D. An information-theoretic definition of similarity. ICML, (1998), 296–

304.

[5] Wu, Z. and Palmer, M. Verbs Semantics and Lexical Selection. Proceedings

of the 32Nd Annual Meeting on Association for Computational Linguistics,

Association for Computational Linguistics (1994), 133–138.

