
WaterlooClarke: TREC 2015 Total Recall Track

Haotian Zhang, Wu Lin, Yipeng Wang, Charles L.A. Clarke and Mark D. Smucker
University of Waterloo

haotian.zhang@uwaterloo.ca, wu.lin@uwaterloo.ca, yipeng.wang@uwaterloo.ca,
claclark@uwaterloo.ca, mark.smucker@uwaterloo.ca

ABSTRACT
The total recall track in TREC 2015 seeks an enhanced
model to accelerate the autonomous technology-assisted re-
view process. This paper introduces several noval ideas
such as clustering based seed selection method, extended
n-grams features and continuous query expansion learned
from the relevant documents derived from each iteration.
These methods can retrieve more relevant documents from
each iteration thereby achieving high recall while requiring
less review e↵ort.

1. INTRODUCTION
The technology-assisted review (“TAR”) applies the itera-
tive retrieval and review of documents to find a substantial
majority or all of the relevant documents in a collection.
Its applications include electronic discovery (“eDiscovery”)
in legal matters [2], systematic review in evidence-based
medicine [5], and the creation of test collections for infor-
mation retrieval (“IR”) evaluation [10]. Since the reviewers
are typically experts in the subject matter, such as lawyers
and medicine specialists, assessing massive documents is ex-
tremely expensive. For this reason, it is desirable to maxi-
mize the recall and minimize the number of reviewed doc-
umemts at the same time.

According to the literature review performed by the authors,
there are a number of search e↵orts aimed at achieving high
recall, especially in the field of eDiscovery and IR evalua-
tion. However, most of them require the help from search
experts [7] or topic- or database-specific training [14, 15].
In addition, many search methods are not reliable, and re-
quire extensive e↵orts for some topics although the e↵ects
on average may be acceptable.

Our goal is to design a more e�cient retrieval system to
achieve high recall while requiring less judge e↵ort from re-
viewers. Also, if possible, the system should work generally
well for any topic and any collection. To the best of our
knowledge, the two automatic TAR tools widely utilized by
legal service providers are Simple Active Learning (“SAL”)
and Simple Passive Learning (“SPL”) [2]. The SPL protocol
constructs the training set based on the operator or random
selection, while the SAL protocol uses a machine learning
algorithm [11] to identify the training set and always selects
documents lying closest to the decision surface, where the
learning algorithm is least certain for review [12]. Cormack
and Mojdeh proposed a new protocol called Continuous Ac-
tive Learning (“CAL”) which is similar to the tradition SAL

and applies a keyword search, such as BM25, to identify an
initial set of documents [4]. But it sends the top-scoring
(most certain) documents identified by the learning algo-
rithm to the reviewers. Cormack and Grossman claimed
that CAL is generally more e↵ective than the other two
methods and SAL is as e↵ective as CAL only in a best-case
scenario [2].

Cormack and Grossman moved one step forward and came
up with an autonomous TAR (Auto TAR) configuration that
exhibits “greater autonomy, superior e↵ectiveness, increased
generalizability, and fewer, more easily detectable failures”
compared to existing TAR methods [3]. This protocol is im-
plemented as the baseline of TREC 2015 Total Recall Track
and its details are discussed in the next section.

2. BASELINE MODEL
Previous researchers tried three di↵erent ways to construct
the initial training set [3]. The method called “Auto-BM25”
was seeded with the top-ranked documents given by BM25,
while another one labeled “Auto-Syn” was seeded using a
synthetic document created from the query. The last method
is called “Auto-Rand” and simply selects a random relevant
document at the outset. According to the test results on
TREC 2009 Legal Track topics and TREC 2002 Filtering
Track topics, we can conclude that the Auto-Syn generates
better results than the other two, and reckon that’s the rea-
son why the Auto-syn is implemented as the baseline in this
year’s total recall track.

As we just discussed, the baseline constructs a synthetic doc-
ument based on the topic as a first relevant document, and
adds it to the training set. Then, 100 documents are ran-
domly selected from the corpus and added to the training
set as irrelevant documents. A logistic regression classifier
trained by these 101 documents ranks all the documents
based on how closely they are relevant to the query, and
the highest-scoring documents are chosen for expert review.
After that, these reviewed documents with their labels are
added to the training set and another 100 random docu-
ments are brought in as irrelevant documents. The pro-
cedure repeats until all relevant documents are retrieved
or some predefined criteria is satisfied. Notably, since the
training set is augmented with more judged documents, the
classifier becomes more accurate and it’s reasonable to send
more top-scoring documents for review in a later iteration.
Cormack claimed that generally, all Auto TAR runs achieve
moderate levels of recall with less review e↵ort than CAL,

but for very high levels of recall are indistinguishable from
CAL [3]. The SAL and SPL gain curves are generally infe-
rior.

3. IMPROVED RETRIEVAL MODEL
3.1 Clustering-based Seed Selection
We use an interactive procedure to select potential relevant
documents. The first approach is inspired by the multi-
armed bandit problem. This approach is called the sampling
approach. The approach is listed as below:

1. Select D documents as candidate documents for seed
selection;

2. Group these documents into K (1 < K < D) clusters,
where K can be given or learned from data;

3. Select one document from each cluster and label the
document based on relevance feedback from experts;

4. Initialize cluster-specific counter t
cluster

to 1 and cluster-
specific reward r

cluster

, based on judgments in step 3;

5. Iteration: select cluster v based on the following con-
ditions:

(a) at least one unlabeled document in cluster v;

(b) the maximum value of rv
tv

+

r
µ log(

P|C|
c=1 tc)

tv
among

cluster set C. Note that cluster c belongs to C
only when there is at least one unlabeled docu-
ment in cluster c;

6. Pick a unlabeled document from cluster v and label the
document based on relevance feedback from experts,
which is the same as in step 3;

7. Update cluster-specific reward r

v

, based on judgment
in step 6 and increase the counter t

v

by 1;

8. Go to step 5 until all D documents are labeled;

In the second approach, a graph is used to represent relation-
ship among documents. This approach is called the graph
approach. The main idea of the approach is:

1. Select D documents as candidate documents for seed
selection;

2. Build a weighted graph for these documents based on
results from clustering;

3. Iteration: select one unlabeled document d from the
graph and label it based on relevance feedback from
experts;

4. If document d is:

(a) relevant, increase weights of edges connected to
the document;

(b) irrelevant, decrease weights of edges connected to
the document;

5. Go to step 3 until all D documents are labeled.

In this paper, top D retrieved documents ranked by BM25
are used in step 1. Latent semantic indexing (LSI) is ap-
plied to learn the conceptual correlations of documents and
is based on the entropy weighting term-document matrix [6].
Clustering is operated upon the features generated from en-
tropy weighting LSI and is a great way to group documents
based on their conceptual similarity. The graph in step 2 of
the graph approach is constructed by:

1. Documents are considered as nodes in the graph;

2. We run K-means T times to cluster these documents;

3. The weight w

i,j

of a un-directed edge between node i

and node j is w
i,j

=
P

T

t=1

I
t

(i, j),

where I
t

(·) is an indicator function and I
t

(i, j) = 1 denotes
document i and document j are in a cluster based on the
t-th clustering result of K-means.

The following greedy heuristic is used in step 3 of the graph
approach.

1. Initialize a priority queue for documents

2. If the queue is:

(a) empty, select a document with the highest BM25
score among all unlabeled documents;

(b) not empty, select a document with highest weight
from the queue;

3. Label document i based on relevance feedback from
experts;

4. If document i is:

(a) relevant, let �(i) = 1;

(b) irrelevant, let �(i) = �1;

5. For each unlabeled document j which connects to doc-
ument i,

(a) if document j is not in the queue and document i
is relevant, insert document j into the queue with
weight w

i,j

+ �(i);

(b) if document j is in the queue, increase the weight
of document j in the queue by �(i).

3.2 Seed Selection Strategies Comparison
Apart form the strategy proposed in the previous section,
we also tried several other strategies to select initial seed
set. (1) Clustering Jumping: We select the document dn

i

(i-
th document in n-th cluster) with the highest BM25 score
for judging. Assuming it is coded as relevant, then a doc-
ument d

n

j

with second-highest score is picked up from the
same cluster c

n

; otherwise, we select the highest-scored doc-
ument d

m

k

from other cluster c

m

. This procedure continues
until a certain number of relevant documents are obtained.
(2) Weighted Clustering: The method is similar to the Clus-
tering Jumping and the di↵erence between them is that an
initial weight value of 1.0 is assigned to each cluster c

n

. If
a document d

n

i

is labeled as irrelevant, the corresponding

cluster c
n

weight is multiplied by a heuristic factor which is
less than 1. Then the document d

m

j

in the cluster c

m

with
the highest factorized weight is chosen for next iteration.

Table 1 shows the comparison results for the 7 topics(tr0-tr7)
on the oldreut and 20ng corpora provided by Total Recall
organizers1. It should be noticed in Table 1 that the BM25
ranking only returns 7 documents for tr2 and 63 documents
for tr3. So we just skip the clustering algorithm and send
all the 7 documents about tr2 for review. For tr3, we only
select half of the returned 63 documents for review. The
Graph based method achieves the superior results compared
to other methods in the most topics.

Table 1: Seed Selection Strategies Comparison Us-

ing 50 E↵ort

Methods tr0 tr1 tr2 tr3 tr4 tr5 tr6
Jumping 46 1 2 10 47 49 40
Weighted 46 0 2 10 47 49 42
Sampling 45 1 2 14 48 49 46

Graph 47 2 2 15 45 50 45

3.3 Early Stop
In step 5 of the graph approach and step 8 of the sampling
approach, we stop the iteration when all documents are la-
beled. Our experiments show that usually seed selection
works well to identify relevant documents at the beginning.
Since usually not all candidate documents in seed selection
are relevant, our experiments also show using an early stop
strategy can improve overall performance. We use the preci-
sion to measure performance in this strategy. The strategy
we used is:

1. Set a width, w, of a window to watch performance of
seed selection;

2. Set a lower bound of acceptable precision, r, (0 < r <

1), to measure performance in a window of w itera-
tions;

3. Set a width, u, of a window to tolerate unacceptable
performance in a window of w iterations;

4. Let the seed selection program run the first w itera-
tions, set counter c to zero, and let t = w + 1;

5. At t-th (t > w) iteration of seed selection, let d be
the number of relevant documents found at iteration
interval [t� w + 1, t]. If d

w

:

(a) < r, increase c by 1;

(b) � r, set c to zero;

6. If counter c:

(a) > u, stop the seed selection program;

(b)  u, increase t by 1 and go to step 5.

1http://quaid.uwaterloo.ca:33333/#/doc

3.4 Feature Engineering
The baseline model utilizes two di↵erent features to repre-
sent each document. These features are vectorized and set as
input vectors to train a logistic regression classifier. One of
these features is TF-IDF word-based feature and the other
one is binary byte 4-grams feature (combinations of 4 se-
quential characters). According to the experiment results, a
method applying TF-IDF word-based feature performs bet-
ter than that with binary byte 4-grams feature in most cases.
However, we find that binary byte 4-grams feature achieves
higher accuracy especially when the query is a complete sen-
tence or composed of multiple words. As for keyword query,
TF-IDF is e↵ective enough to train a highly accurate linear
classifier.

An intuitive idea is to combine the results derived from these
two features so that the classifier can gain di↵erent informa-
tion. We apply the RRF (Reciprocal Rank Fusion) fusion
on the ranking lists R generated from a set D of documents
[1].

RRF

score

(d 2 D) =
X

r2R

1
k + r(d)

(1)

RRF fusion ensures that the highly ranked documents from
both features are more important, while the lower-ranked
documents does not vanish, where k = 60 was fixed accord-
ing to previous experience. The result of this fusion is not as
satisfying as we expected. It generates almost the same re-
sult as that from TF-IDF, yet consumes more computation
costs.

The second idea is using the entropy g

i

which describes the
relative frequency of term i within the entire collection of
documents. We can also use the entropy weighting LSI as
features of documents. It can be defined as:

g

i

= 1 +
X

j

p

ij

log p
ij

log n
,where p

ij

=
tf

ij

gf

i

(2)

where n is the number of documents in the corpus, gf
i

de-
notes the occurrences of term i in the whole corpus and
tf

ij

indicates the term frequency of term i in the document
j. LSI performs a Singular Value Decomposition (SVD) on
the matrix and reduces the high dimensional sparse term-
document matrix into a given size compact matrix. These
two features are generated during seed selection phase and
we can directly use them for classification. Although both
of the features extract the most key information from each
document and perform well on clustering, we find that they
are not able to make the classification more precise when
comparing with TF-IDF. We assume that the dimension re-
duction would lead to a information loss to a certain extent.
Whereas this kind of loss would not be beneficial to distin-
guishing one document from another.

Finally, we are inspired from a query example which is “not
bad hotel”. If we only consider 1-gram feature for this query,
it is hard to learn the positive sentiment from the phrase“not
bad”. On the contrary, the model will probably learn that
“bad” is a negative sentiment word which would make the
query totally opposite. How about trying n-grams (combi-

nations of n sequential words) to deal with this problem? So
we try classify TF-IDF values of simply 2-grams, 3-grams,
combination of 1-gram and 2-grams, and combination of 1-
gram, 2-grams and 3-grams separately. And we find that
after combining 1-gram features with 2-grams or 3-grams,
the results are much better than that of simply 1-gram fea-
ture model. Moreover, the combinations of 1-gram and 2-
grams and the combinations of 1-gram, 2-grams and 3-grams
almost break even for di↵erent topics. Taking computation
cost into consideration, we finally only adopt the integration
of 1-gram and 2-grams words as final features.

On top of using n-grams as features for document classifi-
cation, query terms are also reorganized in order to com-
pose query pairs. For example, “Deutsch Mark” is regarded
as two independent terms in the baseline model. The TF-
IDF values of “Deutsche” and “Mark” are calculated sepa-
rately in order to compose synthetic document for initializ-
ing train set. In our model, two terms pair are composed
directly from query terms regardless of the words’ relative
positions. For “Deutsch Mark”, we now have four candidate
word pairs for composing synthetic documents which are
“Deutsch”, “Mark”, “Deutsch Mark” and “Mark Deutsch”. If
the word pair doesn’t appear in the vocabulary list (we only
record the word whose document frequency is more than
once), this pair would be removed from query pairs. In this
case, “Mark Deutsch” is deleted from query pairs due to its
sparsity. So the new synthetic document string would be:

#Rel : 1{
Deutsch : Weight

1

Mark : Weight

2

Deutsch Mark : Weight

3

}

whereWeight

i

corresponds to the document frequency of i�
th word appearing in the whole corpus. After normalization,
the sum of all the Weight

i

would be 1 in order to make the
feature vector consistent with other documents.

3.5 Query Expansion
We also use the query expansion technique to identify po-
tential relevant documents. Given training data, that is,
relevant documents and irrelevant documents labeled by hu-
man, informative terms are used to expand query and top
ranked documents for a expanded query are considered as
potential relevant documents to be judged. We adapt the
simple mixture (SM) method [13] to expand the query. For
query expansion, we want to extract informative terms from
relevant documents. However, not all terms in relevant doc-
uments are informative. In SM, a background model is used
to model non-informative terms.

SM assumes that terms in relevant documents are generated
as below:

1. Given two models ✓
0

and ✓

1

;

2. Given a mixing coe�cient, �!⇡ = (1� ⇡,⇡);

3. For the j-th term in the i-th relevant document:

(a) Firstly, independently generate a latent model in-
dicator, z

ji

⇠ Bernoulli(z|�!⇡);

(b) Then, independently generate a term, w
ji

⇠ d(w|✓
zji);

where ⇡ is given (eg, 0.9) , d(·) is a family of term distribu-
tions, ✓

0

is a model for informative terms to be estimated,
and ✓

1

is a known background model.

In this paper, the bag-of-word assumption is used and multi-
nomial distributions are used as term distributions, which
implies d(·) is the family of multinomial distribution. Given
a corpus and irrelevant documents obtained from human
judegment, we use maximum likelihood estimation (MLE)
to estimate a corpus model, ✓

corpus

, and an irrelevant model,
✓

irrelevant

, respectively. The background model used in this
paper is:

d(w|✓
1

) = 0.5⇥ d(w|✓
corpus

) + 0.5⇥ d(w|✓
irrelevant

) (3)

The inference process for SM [13] is given as below:

At k-th iteration for SM,

⌘

(k)(w) =
(1� ⇡)d(k)(w|✓

0

)

(1� ⇡)d(k)(w|✓
0

) + ⇡d(w|✓
1

)
(4)

d

(k+1)(w|✓
0

) =

P
i

tf

i

(w)⌘(k)(w)P
w

02voc

P
i

tf

i

(w0)⌘(k)(w0)
(5)

where “voc” denotes the vocabulary for terms and tf

i

(w)
represents the raw term frequency of w in the i-th relevant
document.

Once ✓

0

is estimated, we use top K ranked terms in the
model to expand a query. In this paper, given a expanded
query, we use the Kullback-Leibler (KL) ranking algorithm
and top ranked documents are considered as potential rel-
evant documents to be judged. The KL ranking algorithm
uses the KL divergence, which measures the di↵erence be-
tween a query q and a document d. The divergence estimates
relevance of the document with respect to the query. The
KL divergence is defined as:

KL(✓
q

||✓
d

) =
X

w

Pr
q

(w)⇥ [log(Pr
q

(w))� log(Pr
d

(w))] (6)

Note that the divergence is asymmetric. E�ciency is the
main reason why an asymmetric divergence is used. Usu-
ally, a query is shorter than a document. With the help of
inverted index, the divergence can be e�ciently computed.
On the other hand, computing a symmetric divergence is
slow.

3.6 Classifier Selection
The core idea of active learning process is to make classi-
fier continuously improved and more predictive as iterations
increase. On the one hand, train set could contain more
judged documents as relevance feedback increases. So it is
easier to learn a continuously improved classifier with more
certain labeled documents. On the other hand, due to the
sparsity of relevant documents in the corpus, it would be
more and more di�cult to retrieve relevant documents es-
pecially during the later train phases. Is it possible to find a
superior classifier to replace Logistic Regression with Pega-
sos updates which has been applied in the baseline model?

In order to find a superior classifier, we tried the methods
shown in Table 2.

Table 2: Classifiers Applied During Experiments

Classifier Toolbox Feature
Logistic Regression Sofia-ML Unigram TF-IDF
Logistic Regression Sofia-ML N-gram TF-IDF
Logistic Regression Sofia-ML 4-char TF-IDF

Linear SVM LIBSVM Unigram TF-IDF
Linear SVM & LR fusion Sofia-ML 4-gram TF-IDF

RBF SVM LIBSVM Entropy
RBF SVM LIBSVM Unigram TF-IDF

Decision Tree Scikit-Learn Unigram TF-IDF
Naive Bayes Scikit-Learn Unigram TF-IDF
AdaBoost Scikit-Learn Unigram TF-IDF

Gradient Boosting XGboost Unigram TF-IDF

By recording the number of relevant documents found in
each iteration, we find that the logistic regression (LR) clas-
sifier performs very well in the initial stages. The percentage
of relevant documents among all the highest-scoring rele-
vant documents returned by the classifier is around 90%.
Although the train set is unbalanced in the beginning since
not enough relevant documents can be found initially, the
linear classifier still can e�ciently dig out the relevant doc-
uments. So it would be very di�cult to beat LR during the
initial stages.

Derived from the above investigation and thoughts, we pro-
pose to use non-linear classifier to replace LR when the accu-
racy of linear classifier starts to decrease dramatically. Our
first choice is the Gaussian kernel support vector machine
(RBF kernel SVM), which is able to fit the maximum-margin
hyperplane in a transformed high-dimensional feature space.
We think that if the hyperplane can be located more pre-
cisely, the relevant documents can be found by the classi-
fier more e↵ectively. As for the soft margin parameter C

and �, the best combination of these two parameters would
be selected by grid search with exponentially growing se-
quences of C and �, for example, C 2 {2�5

, 2�3

, ..., 213, 215};
� 2 {2�15

, 2�13

, ..., 23, 25}. Multi-fold cross validation is op-
erated in each iteration to pick out the best combination of
parameters. After applying this strategy, we find that RBF
kernel SVM tends to severely overfit with large imbalanced
data. Beyond that, RBF kernel SVM takes more compu-
tation and spends around 5 times training time comparing
with linear classifier.

Apart from high dimensional classifier, we also tried some
other classifiers, such as Stochastic Gradient Descent (SGD)
linear SVM, random forest, XGBoosting and Naive Bayes
classifiers. None of them can beat logistic regression. This
makes sense for a random forest, which as a highly non-
linear, expressive, high-variance classifier needs a relatively
high ration of examples to dimensionality. Linear models
are less exacting in this respect, they can even work with
d(dimensionality) � n(documents). We find only SGD
linear SVM can draw with LR, so we tried the RRF fusion
of two rank lists generated separately from SGD-SVM and
LR. The result of this kind of fusion is still almost the same
as that of baseline. In addition, cross validation over one fold
of train set is also tried within these two linear classifiers,

we would select the classifier with higher cross validation
accuracy. However, the results is not able to improve a lot
while the train time increases.

We think that a linear model is well enough for sparse high-
dimensional data such as bag-of-word. If one document con-
tains some key words or related information about a specific
query, it can be regarded as relevant document. So the spe-
cific features(words or phases) related to the query terms
can determine the relevance of corresponding document.

Therefore, we decide to keep using LR instead of using some
fancy machine learning methods. We notice that 100 irrel-
evant documents in train set are selected randomly during
each iteration, while this kind of randomly picking may in-
troduce train error. Because all the randomly selected doc-
uments are not reviewed, they are labeled as “not relevant”
documents presumptively. The combination of multiple LR
classifiers with di↵erent randomly selected train set could
be a good choice. The results show that the RRF fusion of
ranking lists generated from five di↵erent LR classifiers can
slightly improve the accuracy of classification. This kind
of fusion might aid the classifiers in the coverage diverse
aspects of the topics. Moreover it gains a lot obviously es-
pecially in the beginning stage when presumptive irrelevant
documents make up a high proportion. The disadvantage of
this fusion is also the high computation cost.

4. EXPERIMENTAL SET-UP
Our improved TAR process has the following phases:

1. Generate TF-IDF values for 1-gram and 2-grams fea-
tures. And build index for each document in the cor-
pus. Apply BM25 ranking to return the top 100 docu-
ments with the highest score related to a specific query.

2. Entropy is generated from TF-IDF. The entropy vec-
tor of each document is reduced to 200 dimensions by
executing Latent Semantic Indexing(LSI).

3. Cluster the top 100 documents based on their LSI vec-
tors and compose the clustering weighted graph de-
scribed in section 3.1. Select documents from the most
stable pairs and judge document one by one using at
most 50 review e↵orts.

4. One synthetic document is constructed from query terms.

5. The initial relevant documents train set consists of
one synthetic document and the selected judged doc-
uments from step 3. Set initial batch size B as 1.

6. Randomly select 100 documents from the corpus and
temporarily label them “not relevant”. Add these pre-
sumptive not relevant documents to train set.

7. Train 5 Logistic Regression classifier with di↵erent pre-
sumptive train set. Select d 4B

5

e documents with the
highest score from fusion list for review and label them
as “relevant” or “not relevant”.

8. If the prevalence of relevant document in the d 4B

5

e doc-
uments is high, continue judging the next bB

5

c docu-
ments with the highest score.

9. Otherwise, obtain expanded terms from judged docu-
ments and generate a new ranked list based on Indri
TF-IDF retrieval model ranking score. Execute RRF
fusion with the list generated from step 7 and select
top bB

5

c documents to review.

10. Add all the reviewed documents to the train set. In-
crease B by d B

10

e. Return to step 6 and start the next
iteration until all the documents in the corpus have
been reviewed.

Following the baseline [3], our implementation used a feature
space consisting of words (1-gram and 2-grams) occurring
at least twice in the collection, and, following [8], Porter
stemming, elimination of SMART stopwords, and Cornell
ltc term weighting. Indri 5.9 provides BM25 and TF-IDF
retrieval model methods to retrieve documents. So we se-
lect Indri to build index and rank documents during seed
selection and query expansion phases.

LSI operation involves dimensionality reduction and singu-
lar value decomposition (SVD) which requires numerous cal-
culations. RedSVD is an e↵ective tool to accelerate SVD
computation and can shorten the generation time around 3
times. As for clustering, we use K-Means clustering method
from Scikit Learn package [9]. Based on n top ranked doc-
uments with the highest BM25 score, we set log n as k clus-
ters. In this case, k is 7 where n = 100.

For the learning algorithm, we still choose the Sofia-ML im-
plementation of Pegasos SVM, with the following parame-
ters: “–iterations 2000000 –dimensionality 110000”. How-
ever, the dimensionality needs to be dynamically updated
according to the size of features. For large corpus and n-
grams features, we may increase the dimensionality.

The Total Recall organizers provide three di↵erent dataset
modes (trivial, test and bigtest) for testing, which respec-
tively contain 7 topics with 2 datasets containing 30 doc-
uments each, 7 topics with 2 datasets (Oldreut and 20ng)
containing about 20,000 documents each and 2 topics with
one dataset (Enron) containing about 750,000 documents.
The corpora are mostly made by news articles and emails.
In order to verify the e↵ectiveness of our model, we also test
our method on 50 selected topics with high prevalence of
relevant documents from Newreut and Robust04 corpora.

There are two tasks to submit the final results. One is Play-
at-Home in which we can run our own systems locally and
access the automated assessors via the Internet. The other
one is SandBox in which we should set up our systems in the
virtual machine. And we submit the virtual machine so that
the coordinators will execute our system within a restricted
environment. The methods of two submissions are almost
the same. However, there are some slight di↵erences between
these two deployments, for example, the configuration for
virtual machine environment. We upload our Play-at-Home
code to BitBucket2.

5. PRIMARY RESULTS
2https://bitbucket.org/HaotianZHANG/uwtotalrecall

In order to evaluate our models, we run our systems on
di↵erent types of corpus, such as Oldreut, 20ng, Enron,
Newreut and Robust04 respectively. We only list the re-
sults from Oldreut and 20ng in this paper. Because most of
the documents in these two corpora have been judged so the
results from them are more reliable and persuasive. Whereas
for Newruet and Robust04, both of them only have a small
portion of documents judged and the prevalence of relevant
documents is also small compared to Oldreut and 20ng.

Table 3: 75% Recall E↵ort of Di↵erent Methods

Topic SD 2gram SD 3gram SD 2gram QE Baseline
tr0 2119 2150 2107 2145
tr1 118 183 137 164
tr2 157 243 188 273
tr3 215 208 247 248
tr4 762 763 762 761

tr5 761 762 762 760

tr6 764 761 774 765

In general, there are two standard ways to evaluate the re-
sults: as gain curves and as 75% recall-e↵ort values. A gain
curve keeps track of the number of e↵orts to reach a certain
number of relevant documents. Seven topics from oldreut
and 20ng are listed from Figure 1 to Figure 7. As shown
in Table 3, the 75% recall-e↵ort values records the amount
of e↵orts to achieve recall = 0.75. The gain curve enables
us more intuitively to look at the e↵ort spent for any given
level of recall. From the figures and table, we can find that
our improved models can achieve 75% recall with less e↵ort
for topic: tr0 to tr3. As for the topics from tr4 to tr6, there
is no clear winner among the improved models and base-
line. All the methods are close and the accuracy of baseline
are nearly 92% and our models still performs slightly better
than the baseline.

Figure 1: tr0-Relevant Documents vs. Review Ef-

fort

6. CONCLUSIONS
Our experiments show that clustering based seed selection,
extended TF-IDF which includes 2-gram and 3-gram fea-
tures and continuous query expansion, in combination will

Figure 2: tr1-Relevant Documents vs. Review Ef-

fort

Figure 3: tr2-Relevant Documents vs. Review Ef-

fort

Figure 4: tr3-Relevant Documents vs. Review Ef-

fort

Figure 5: tr4-Relevant Documents vs. Review Ef-

fort

Figure 6: tr5-Relevant Documents vs. Review Ef-

fort

Figure 7: tr6-Relevant Documents vs. Review Ef-

fort

achieve high recall with less e↵ort. As for classifier selection,
the linear classifier performs well enough for sparse high-
dimensional data. We also find that the performance of our
models varies for di↵erent kinds of topics and datasets. How
to wisely choose strategies to deal with di↵erent situations
remains a problem.

7. ACKNOWLEDGMENTS
We thank Prof. Gordon Cormack and Adam Roegiest for
their helpful guidance and feedback.

8. REFERENCES
[1] G. V. Cormack, C. L. Clarke, and S. Buettcher.

Reciprocal rank fusion outperforms condorcet and
individual rank learning methods. In Proceedings of

the 32nd international ACM SIGIR conference on

Research and development in information retrieval,
pages 758–759. ACM, 2009.

[2] G. V. Cormack and M. R. Grossman. Evaluation of
machine-learning protocols for technology-assisted
review in electronic discovery. In Proceedings of the

37th international ACM SIGIR conference on

Research & development in information retrieval,
pages 153–162. ACM, 2014.

[3] G. V. Cormack and M. R. Grossman. Autonomy and
reliability of continuous active learning for
technology-assisted review. arXiv preprint

arXiv:1504.06868, 2015.
[4] G. V. Cormack and M. Mojdeh. Machine learning for

information retrieval: Trec 2009 web, relevance
feedback and legal tracks. In TREC, 2009.

[5] J. P. Higgins, S. Green, et al. Cochrane handbook for

systematic reviews of interventions, volume 5. Wiley
Online Library, 2008.

[6] T. Hofmann. Probabilistic latent semantic indexing. In
Proceedings of the 22nd annual international ACM

SIGIR conference on Research and development in

information retrieval, pages 50–57. ACM, 1999.
[7] C. Hogan, J. Reinhart, D. Brassil, M. Gerber, S. M.

Rugani, and T. Jade. H5 at trec 2008 legal interactive:
user modeling, assessment & measurement. Technical
report, DTIC Document, 2008.

[8] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A
new benchmark collection for text categorization
research. The Journal of Machine Learning Research,
5:361–397, 2004.

[9] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[10] M. Sanderson and H. Joho. Forming test collections
with no system pooling. In Proceedings of the 27th

annual international ACM SIGIR conference on

Research and development in information retrieval,
pages 33–40. ACM, 2004.

[11] F. Sebastiani. Machine learning in automated text
categorization. ACM computing surveys (CSUR),
34(1):1–47, 2002.

[12] S. Tong and D. Koller. Support vector machine active
learning with applications to text classification. The
Journal of Machine Learning Research, 2:45–66, 2002.

[13] C. Zhai and J. La↵erty. Model-based feedback in the
language modeling approach to information retrieval.
In Proceedings of the tenth international conference on

Information and knowledge management, pages
403–410. ACM, 2001.

[14] L. Zhang and Y. Zhang. Interactive retrieval based on
faceted feedback. In Proceedings of the 33rd

international ACM SIGIR conference on Research and

development in information retrieval, pages 363–370.
ACM, 2010.

[15] L. Zhang, Y. Zhang, J. de Arma, and K. Yu. Ucsc at
relevance feedback track. Technical report, DTIC
Document, 2009.

