
WaterlooClarke: TREC 2015 LiveQA Track

Alexandra Vtyurina
University of Waterloo

avtyurina@uwaterloo.ca

Ankita Dey
University of Waterloo

a5dey@uwaterloo.ca

Bahareh Sarrafzadeh
University of Waterloo

bsarrafz@uwaterloo.ca
Charles L. A. Clarke
University of Waterloo

claclark@plg.uwaterloo.ca

ABSTRACT
The goal of the LiveQA track is to automatically provide an-
swers to questions posted by real people. Previous question
answering tracks included factoid questions, list questions
and complex questions[3]. Presented in 2015 for the first
time the LiveQA track gave the participants an opportu-
nity to answer questions posed by real people, as opposed
to manually configured ones in the previous tasks.

The questions for the task were harvested from Yahoo! An-
swers1 – a community question answering website. Each
question was broadcasted to all registered systems. The
participants had to supposed to provide an answer to ev-
ery given question within a timeframe of 60 seconds. The
answers were judged by human NIST assessors after the eval-
uation was over.

1. INTRODUCTION
The task of automatic question answering has appeared a
multiple times in TREC. The tracks have moved from an-
swering factoid questions to list questions, and questions
with complex information need. Although the questions
were modelled to imitate human askers, they were not com-
ing from real people and the answers often had to be ex-
tracted from a restricted corpora of newswire and blogposts.

LiveQA track brought the task to the new level by providing
real world questions, unlimited corpora usage and restricting
the answer time. The questions for this task were coming
from Yahoo! Answers – a community question answering
website. Questions there vary greatly between all topics
and question types. Yahoo! Answers users are often seeking
other people’s opinion, an advice about a problem they’re
having. Some of them just want to share their insights or
emotions about newly acquired knowledge or experience. In
certain cases people do not have a well defined information
need, but they are looking to start a conversation (see Table

1https://answers.yahoo.com

Title: Is my nose too big?
Body: Is my nose bad or horrible. I know it’s bigger but
just how bad is it
Title: Whats the meaning of life?
Body: i wanna know YOUR meaning of life!
Title: Emma Stone, Mila Kunis or Penelope Cruz? Who’s
most beautiful in your opinion?
Body: I can’t decide they are all gorgeousss <3 :)

Table 1: Various types of questions asked on Yahoo!
Answers

1).

The questions were collected from the list of newly posted
(and not yet answered by human users) questions on Ya-
hoo! Answers. Each question was sent to every participat-
ing system and an answer was expected to arrive within a
60-seconds window. The answer was supposed to contain,
among other fields, a text snippet of length less than 1000
characters and the list of resources, from which it was ob-
tained. If the answer was received after 1 minute, it did not
count towards the total score of the system. Participants
could also choose not to answer any question.

The evaluation of the answers given by participating systems
was done by human NIST assessors on a 5-level Likert scale.

2. EXPERIMENTAL SETUP
The experiment was running for the duration of 24 hours
starting at 12am PST August 31, until 12am PST on Septem-
ber 1. During this period of time the participating systems
were supposed to be online. Yahoo! server collected newly
posted question from Yahoo! Answers and broadcasted it
to all the registered systems at a rate of approximately 1
question per 60 seconds.

Every question consisted of 4 fields: qid - question identifier,
title - a question, formulated by a person, body - optional
detailed description of the question, and finally, category -
the category that the person chose for their question (if the
user skips the step of picking a category, it is defined auto-
matically by Yahoo! Answers).

A response to each question was expected upon 60 seconds
after sending. It was supposed to contain the following fields:
pid - participant id (uwaterlooclarke was used for this sub-



Figure 1: An example of a long question, containing
a lot of detailed information

mission), qid - question identifier, answer - a text of length
of max 1000 characters, sources - a list of sources where
the answer was fetched from, local time - locally measured
time in ms it took to produce the answer, explanation - an
optional string containing additional information about the
answer. Responses that were received after the 60 seconds
were not judged.

3. GENERAL APPROACH
Our approach was based on finding an answer on the in-
ternet using a search engine. After receiving a question we
picked key terms from its text and constructed a query. We
then used the query to retrieve a set of top-ranked web doc-
uments from Bing. Afterwards, we used the obtained set of
documents to extract passages that were likely to answer the
question. Finally, we ranked all the passages and returned
the highest-ranked one as an answer to the given question.

3.1 Background model
In order to use KL-divergence for query term extraction we
needed to have a background language model. Given that
the language used in online user-generated content differs
significantly from formal English [1], we needed to have an
example of the language that is usually used on Yahoo! An-
swers.

We crawled Yahoo! Answers to collect a dataset of ques-
tions and answers from all categories in order to see what
type of language is used by people there23. For each ques-
tion thread we collected question title, question body, and
answers (if any), posted by other people. We removed web

2All code used for this task is available at:
https://github.com/sashavtyurina/LiveQATrack
3https://github.com/yuvalpinter/LiveQAServerDemo

links from obtained text and used the rest of the text to
build a language model.

3.2 Answer extraction
For every question received we combined its title and body
together and removed the links from the resulting text snip-
pet. We compared the words distributions in the question
text and the previously constructed language model and
picked the words with the greater divergence value, which
means that these words distinct the given question from the
common language. For every word in the text a correspond-
ing KL-divergence[2] value was computed, using the Yahoo!
Answers language model constructed earlier. Afterwards,
the words were sorted based on their corresponding KLD
score. We also used NLTK4 to extract named entities from
the question text. These named entities as well as the 4
words with the highest KLD score were put together in the
order of their occurrence in the initial question to form a
resulting query.

The query was submitted to the Bing Search API and the
top-10 returned documents were retrieved. We ignored pages
from Yahoo! Answers, as well as all non-html pages (for ex-
ample, pdf). For every web-page we allowed a 5 seconds
time limit to load, otherwise it was ignored. The response
from Bing came in json format and contained description
- a short text snippet extracted from a document, and the
document’s url. We used this set of web documents as a
corpus to extract an answer to the given question from.

After the web pages are retrieved, they undergo a prepro-
cessing step, during which only useful text was extracted
from each of them. First, we removed the contents of a pre-
defined list of tags (that are highly unlikely to contain the
useful text that we are after): style, script, table, label, ti-
tle, etc. From the remaining portion of the page the tags,
with contents of less than 10 words are removed. By doing
this we excluded ads, ”follow us” links, and other irrelevant
information.

After the preprocessing every web page becomes a clean raw
text. At this step we insert a pair of special symbols used to
denote the beginning and the end of each sentence. This is
done in order to produce more readable results in the future.
For every document we found a set of m-covers (passages
containing keywords), using the terms from the query we
previously submitted to Bing. If the length of a passage was
greater than the given limit (1000 characters), it was dis-
carded. The remaining passages were ranked according to
the number of query terms they contained and their proxim-
ity to each other within the passage[2]. After the passages
were scored, the highest-ranked one was considered to be
the answer. At this point the borders of the passage were
stretched to the closest beginning and end of a sentence. The
URL, corresponding to was final passage is passed along as
the resource of the answer.

4. CODE BASE
The primary module (Java module) for communication with
Yahoo! server was supplied by the track organizers5. We

4http://nltk.org/
5https://github.com/yuvalpinter/LiveQAServerDemo



used a separate module written in Python to process in-
coming questions and extracting answers. The two modules
communicated with each other using Twisted6 networking
library by sending to each other messages in json format.

5. FUTURE WORK
We would like to improve the procedure of finding answer
to a given question by analysing existing human-generated
question-answer pairs. We are hopeful that finding the ways
in which an answer is related to the question will help extract
more precise answers in the future.

It is not uncommon for community question answering ser-
vices to have an exceedingly long question descriptions. Peo-
ple often want to see an advice that is unique for their situ-
ation (see figure 1). Redundant details often obstruct ques-
tion focus, making it hard even for a human to understand.
We want to reduce such long questions to a length of 2-3 sen-
tences by extracting only the sentences, reflecting the user’s
information need.

6. CONCLUSIONS
The LiveQA track revives the task of automatic question
answering in TREC. It provides an opportunity for the par-
ticipants to try their QA systems on real-world questions,
collected from Yahoo! Answers – community question an-
swering website. The approach we chose is based on picking
key terms from a given question, submitting them to a search
engine and extracting an answer from the top 10 retrieved
documents.

7. REFERENCES
[1] E. Agichtein, C. Castillo, D. Donato, A. Gionis, and

G. Mishne. Finding high-quality content in social
media. In Proceedings of the 2008 International
Conference on Web Search and Data Mining, pages
183–194. ACM, 2008.

[2] S. Büttcher, C. L. Clarke, and G. V. Cormack.
Information retrieval: Implementing and evaluating
search engines. Mit Press, 2010.

[3] H. T. Dang, D. Kelly, and J. J. Lin. Overview of the
trec 2007 question answering track. In TREC,
volume 7, page 63. Citeseer, 2007.

6https://twistedmatrix.com/


