
TREC 2015 Temporal Summarization Track

Overview

Javed Aslam Fernando Diaz Matthew Ekstrand-Abueg
Richard McCreadie Virgil Pavlu

Tetsuya Sakai

Homepage: http://www.trec-ts.org/

1 Introduction

There are many summarization scenarios that require updates to be issued to
users over time. For example, during unexpected news events such as natural
disasters or mass protests new information rapidly emerges. The TREC Tempo-
ral Summarization track aims to investigate how to e↵ectively summarize these
types of event in real-time. In particular, the goal is to develop systems which
can detect useful, new, and timely sentence-length updates about a developing
event to return to the user. In contrast to classical summarization challenges
(such as DUC or TAC), the summaries produced by the participant systems
are evaluated against a ground truth list of information nuggets representing
the space of information that a user might want to know about each event. An
optimal summary will cover all of the information nuggets in the minimum num-
ber of sentences. Also in contrast to classic summarization and newer timeline
generation tasks, the Temporal Summarization track focuses on performing this
analysis online as documents are indexed.

For the third 2015 edition of the Temporal Summarization track, we had
four main aims. First, to better address the issues with run incompleteness
by producing larger run pools and by using pool expansion based on sentence
similarity. Second, to lower the barrier to entry for new groups by providing
multiple sub-tasks using corpora of varying sizes, allowing groups to pick the
task(s) that their infrastructure can cope with. Third, to refine the metrics to
better incorporate latency by considering timeliness against the corpus as well
as against updates to the Wikipedia page. Finally, to continue to increase the
number of events covered by the evaluation.

This is the final year of the Temporal Summarization track. For 2016, the
track will merge with the Microblog track to become the new Real-Time Summa-
rization (RTS) Track. This new RTS track will still tackle the same challenges
as the Temporal Summarization track, but will incorporate microblog streams
and will include a new Living-Lab style evaluation in addition to the classical

1



<event>

<id>1</id>

<title>2012 Buenos Aires rail disaster</title>

<description>...</description>

<start>1329910380</start>

<end>1330774380</end>

<query>buenos aires train crash</query>

<type>accident</type>

</event>

Figure 1: Example topic description for the topic ‘2012 Buenos Aires Rail Dis-
aster’.

dataset-based evaluation.
The remainder of this overview is structured as follows. Section 2 describes

the temporal summarization task in detail. In Section 3, we discuss the corpus
of documents from which the summaries are produced, while in Section 4, we
discuss how temporal summarization systems are evaluated within the track.
Section 5 details the process via which sentence updates were assessed. Finally,
in Section 6, we summarize the performance of the participant systems to the
2014 track.

2 Task Description

The aim of this task is to emit a series of sentence updates over time about a
named event, given a high volume stream of input documents. In particular,
the temporal summarization task focuses on large events with a high impact,
such as protests, accidents or natural disasters. Each event is represented by a
topic description, providing a textual query representing that event, along with
start and end timestamps defining a period of time within which to track that
event. An example topic description is illustrated in Figure 1.

More precisely, for an event, participant systems process a stream of Web
documents from the tracking period as defined in the topic in temporal order.
The aim is to select sentences from those documents to emit as updates describ-
ing that event. The set of sentences emitted form a summary of that event over
time. An optimal summary is one that covers all of the essential information
about the event with no redundancy, where each new piece of information was
added to the summary as soon as it became available. In contrast to previous
years, there are three sub-tasks running in 2015:

Task 1: Full Filtering and Summarization

• Participants will be provided very high-volume streams of news articles
and blog posts crawled from the Web for a set of events. Only a very
small portion of the stream will be relevant to the event.

2



• Each participant will need to process those streams in time order, filter
out irrelevant content and then select sentences from those documents to
return to the user as updates describing each event over time.

Task 2: Partial Filtering and Summarization

• Participants will be provided high-volume streams of news articles and
blog posts crawled from the Web for a set of events.

• Each participant will need to process those streams in time order, filter
out irrelevant content and then select sentences from those documents to
return to the user as updates describing each event over time.

Task 3: Summarization Only

• Participants will be provided low-volume streams of on-topic documents

for a set of events.

• Each participant will need to process those streams in time order selecting
sentences from the documents contained within each stream to return the
user as updates over time.

In summary, the sub-task defines the corpus that the participant uses to
find sentences to return to the user. Task 1 uses a generic crawl of the Web
from the time period of the event, which will require a large amount of filtering.
Task 2 uses an automatically filtered Web crawl, that removed documents that
are very unlikely to be relevant, but this crawl will still need significant further
filtering. Task 3 uses a low-volume set of manually selected documents. For the
2015 task, participants produced temporal summaries for 20 di↵erent events,
spanning accidents, natural disasters, storms, shootings and protests. Table 1
summarizes these 20 topics.

3 Corpus

The 2015 Temporal Summarization track used documents from the TREC KBA
2014 Stream Corpus. This corpus consists of a set of timestamped documents
from a variety of news and social media sources covering the time period October
2011 through April 2013. Each document contains a set of sentences, each with
a unique identifier.

Each event topic defines a subset of the time period covered by this corpus,
representing the period to track that event. Participant systems had three
options available when working with the corpus, which defines which sub-task
they were involved in:

1. Extract the topic time periods from the TREC KBA 2014 Stream Corpus
and process all documents from these time periods. Using this approach
results in a Task 1 run. This was the only option available to participants
during the 2013 track.

3



EID Event Title # Nuggets # Pooled Updates
26 Vauxhall helicopter crash 22 1,222
27 Cyclone Nilam 24 1,191
28 2013 Savar building collapse 60 1,471
29 2013 Hyderabad blasts 90 1,347
30 Brazzaville arms dump blasts 77 1,275
31 2012 India blackouts 33 991
32 Reactions to Innocence of Muslims 226 1,645
33 Battle of Konna 41 1,233
34 February 2013 Quetta bombing 26 1,137
35 15 April 2013 Iraq attacks 20 1,233
36 19 March 2013 Iraq attacks 48 1,373
37 2011-12 Los Angeles arson attacks 62 1,336
38 2013 Thane building collapse 29 1,390
39 2013 United States embassy bombing in Ankara 10 755
40 22 December 2011 Baghdad bombings 37 1,053
41 Aleppo University bombings 26 1,136
42 Carnival Triumph 2013 Engine Room Fire 46 1,271
43 USS Guardian (MCM-5) January 2013 Grounding 11 769
44 2012 Indian Ocean earthquakes 65 1,223
45 2012 Haida Gwaii earthquake 57 1,129
46 2012 Catalan independence demonstration 60 1,036

Table 1: TRECTS 2015 topics, with number of gold nuggets extracted by as-
sessors, and number of participant updates pooled for matching.

2. Use a pre-filtered version of the TREC KBA 2014 Stream Corpus, de-
noted TREC-TS-2015F, which only contains documents from the 2015
event topic time periods. TREC-TS-2015F was also subject to pre-filtering
such that it focuses on documents that are more likely to contain relevant
sentences. Using this approach results in a Task 2 run. This option was
also available to participants during the 2014 track.

3. Use a manually pre-filtered version of the TREC KBA 2014 Stream Cor-
pus, denoted TREC-TS-2015RelOnly, which only contains only documents
that were annotated as containing some relevant content from the 2015
event topic time periods. TREC-TS-2015RelOnly is a subset of TREC-
TS-2015F. Using this approach results in a Task 3 run. This option was
new for 2015.

Each document within the TREC KBA 2014 Stream Corpus contains zero
or more sentences (the sentence boundaries are pre-defined) and a timestamp
representing when that document was crawled. Participants return a list of
sentences extracted from the KBA corpus documents for each event. Each sen-
tence is identified by the combination of a document identifier (which document
the sentence came from) and a sentence identifier (the position of the sentence
within the document). Additionally, when a sentence is emitted, the partic-
ipant system also records the time with respect to the underlying document
stream of that emission. If the participant system is making immediate binary

4



emit/ignore decisions on a per sentence basis, then this timestamp will corre-
spond to crawl-time of the document. However, some participant systems opted
to delay the emission of sentences to collect more information before issuing up-
dates - in these cases the timestamps recorded reflect the additional latency of
these systems.

Participants were allowed to include runs that use information external to
the KBA corpus. The use of external data had the following requirements:

• External data must have existed before the event start time, or

• External data must be time-aligned with the KBA corpus and no infor-
mation after the simulation decision time can be used.

Similarly, supporting statistical models or auxiliary programs were subject to
the same requirements. For example, participants were not to use a statistical
model trained on data that existed after the event end time.

4 Evaluation

We evaluate runs according to their relevance, coverage, novelty, and latency of
the updates.

• The relevance or precision of the summary with respect to the event topic,
i.e. the degree to which the updates within the summary are on-topic
and novel. This is measured by the (normalized) Expected Gain metric
(nEG(S)).

• The coverage of the summary with respect to all of the essential informa-
tion that could have been retrieved for the event. This is measured by the
Comprehensiveness metric (C(S)).

• The degree to which the information contained within the updates is out-
dated. This is measured by the Expected Latency metric (E[Latency]).

We also report the performance of all of the participant runs under a com-
bined measure (that incorporates Expected Gain, Comprehensiveness and Ex-
pected Latency), i.e. the Harmonic Mean of normalized Expected Latency Gain
(EG⌧ (S)) and Latency Comprehensiveness (C⌧ (S)), denoted H. This is the of-
ficial target metric for the 2015 task. Detailed descriptions of metrics and how
they are calculated can be found in Appendix A.

5 Judging

The evaluation process occurred in two phases:

(a) Gold Nugget Extraction, and

(b) Update-Nugget Matching

5



Table 2: Performance on task 1. Performance for systems summarizing the
entire document stream, without using any of the filtered set. Runs sorted by
H, the harmonic mean of latency gain and latency comprehensiveness.

TeamID RunID nEG(S) C(S) E[Latency] H
cunlp 2LtoSnofltr20 0.1224 0.4691 0.8086 0.1531
CWI IGnPrecision 0.1894 0.4678 0.6273 0.1396
Mean 0.1533 0.4575 0.6507 0.1279
CWI IGn 0.1620 0.5137 0.6538 0.1248
CWI docs 0.1242 0.4680 0.6658 0.1222
CWI titles 0.1915 0.3107 0.5171 0.1150

The first phase defined the space of relevant information for the queries. In
particular, this involves the creation of a set of ‘information nuggets’ about
each event that represent all of of the essential information that a good sum-
mary should contain. This phase also associates each information nugget with
a timestamp representing approximately when that information became public
knowledge. The second phase generates a matching between updates provided
by the participants to the information nuggets. It is this matching that forms
the basis for evaluating a system’s accuracy and coverage. A detailed description
of these phases of judging can be found in Appendix B.

6 Results

We present an overview of the performance of the participant systems (runs) in
Tables 2 (Task 1), 3 (Task 2), and 4 (Task 3). The last column of the tables
reports the H of each participant run and the TREC average. Due to per-task
normalization, metric values across tasks are not comparable.

Only two teams participated in Task 1 due to the overhead involved in pro-
cessing the full KBA corpus. Although the ranking of cunlp is consistent with
its position in Task 2, we note its expected gain is below average so the perfor-
mance of the run comes from its strong comprehensiveness and lower latency.
The seven teams participating in Task 2 exhibited a range of performance, with
even the three above-average teams representing high gain (WaterlooClarke)
and high comprehensiveness (cunlp, IRIT). In fact, the comprehensiveness of
the high gain runs was below average, emphasizing the impressive magnitude
of gains from these runs. The tradeo↵ between gain and comprehensiveness
can be visualized in Figure 2. Regardless of whether they focused on gain or
comprehensiveness, top performing runs also consistently had better than aver-
age latency. Runs in the Task 3 exhibited a similar tradeo↵ between gain and
comprehensiveness although, in this case, the performance in di↵erent regimes
was more pronounced.

Although we normalized metric values per task, when we normalized the
values across tasks, we observed a similar ordering of systems. This suggests
that, although sampling the corpus removes the ability to match certain nuggets,

6



Table 3: Performance on task 2. Performance for systems summarizing TREC-
TS-2015F. Runs sorted by H, the harmonic mean of latency gain and latency
comprehensiveness.
TeamID RunID nEG(S) C(S) E[Latency] H
WaterlooClarke UWCTSRun1 0.2350 0.3520 0.6612 0.1762
WaterlooClarke UWCTSRun3 0.2252 0.3421 0.6643 0.1718
WaterlooClarke UWCTSRun2 0.2872 0.2584 0.6551 0.1710
cunlp 3LtoSfltr5 0.1371 0.4870 0.6392 0.1282
cunlp 1LtoSfltr20 0.1203 0.5372 0.6287 0.1100
IRIT FS1A 0.0849 0.4959 0.6051 0.0719
cunlp 4APSAL 0.1011 0.4584 0.5108 0.0674
Mean 0.0666 0.4342 0.4697 0.0499
IRIT FS2A 0.0518 0.5899 0.6285 0.0476
BJUT DMSL1NMF2 0.0445 0.6123 0.4539 0.0354
BJUT DMSL1AP1 0.0413 0.6155 0.4701 0.0338
l3sattrec15 l3sattrec15run1 0.0408 0.3612 0.3743 0.0268
l3sattrec15 l3sattrec15run3 0.0400 0.3669 0.3712 0.0262
IRIT FS1B 0.0422 0.2939 0.3913 0.0259
IRIT FS2B 0.0306 0.3391 0.4491 0.0239
USI InL2DecrQE1ID1 0.0182 0.5713 0.5806 0.0196
USI InL2DecrQE2ID2 0.0169 0.5758 0.5836 0.0184
udel fang WikiOnlyFS2 0.0206 0.5819 0.4600 0.0176
udel fang ProfOnlyFS3 0.0258 0.5294 0.4122 0.0174
USI InL2StabQE2ID3 0.0171 0.6133 0.5238 0.0170
udel fang WikiProfMixFS1 0.0189 0.5965 0.4660 0.0166
l3sattrec15 l3sattrec15run2 0.0283 0.2276 0.2560 0.0164
USI InL2IncrQE2ID4 0.0179 0.5837 0.2888 0.0108

7



Table 4: Performance on task 3. Performance for systems summarizing TREC-
TS-2015RelOnly. Runs sorted by H, the harmonic mean of latency gain and
latency comprehensiveness.
TeamID RunID nEG(S) C(S) E[Latency] H
WaterlooClarke UWCTSRun4 0.1840 0.1710 0.3983 0.0853
BJUT DMSL2N2 0.0645 0.6557 0.5606 0.0649
uogTr uogTrhEQR2 0.0667 0.5459 0.5335 0.0639
uogTr uogTrhEEQR4 0.0714 0.5342 0.5249 0.0632
BJUT DMSL2A1 0.0600 0.6777 0.5787 0.0622
uogTr uogTrdEQR1 0.0402 0.6590 0.6741 0.0508
uogTr uogTrdEEQR3 0.0418 0.6096 0.6401 0.0505
Mean 0.0595 0.5627 0.5524 0.0472
UvA.ILPS COS 0.0428 0.5708 0.5951 0.0471
UvA.ILPS COSSIM 0.0281 0.7325 0.6952 0.0372
udel fang WikiOnly2 0.0446 0.5522 0.5008 0.0353
UvA.ILPS LexRank 0.0224 0.7490 0.6836 0.0299
ISCASIR runvec2 0.0190 0.7881 0.7210 0.0250
UvA.ILPS LDAv2 0.0202 0.7423 0.6338 0.0241
ISCASIR runvec1 0.0174 0.7852 0.6458 0.0215

nE[Gain]
0 0.05 0.1 0.15 0.2 0.25 0.3

C
o
m

p
re

h
e
n
si

ve
n
e
ss

0.1

0.2

0.3

0.4

0.5

0.6

0.7
scores.task2.normtime.norm_matchedonly.extended.simple.tsv

ALL
BJUT
IRIT
USI
WaterlooClarke
cunlp
l3sattrec15
udel

f
ang

uogTr

Figure 2: Participant run plot of (normalized) Expected Gain vs. Comprehen-
siveness.

8



on average, the e↵ect was not substantial. We plan on developing additional
robustness checks in further analysis.

7 Conclusion

In general, the runs submitted to the 2015 track either had a fairly high pre-
cision or novelty with topic coverage, but it appears that it was di�cult for
systems to do both. From the scale of the results, it appears that attaining
high precision is more di�cult than achieving recall for this task, and hence it is
here that further research is needed. Because of the similarity in experiment de-
sign, we recommend participants continue studies in the TREC 2016 Real-Time
Summarization Track.

A Metrics

To evaluate the performance of the summaries produced by participant systems,
we define the concept of explicit sub-events or ‘nuggets’, each with a precise
timestamp and text describing the sub-event. An e↵ective summary should
cover as many of these nuggets as possible, while minimizing redundancy.

A sentence update is a timestamped short text string. We generally denote
an update as the pair (string, time): u = (u.string, u.t). For example u =
(“The hurricane was upgraded to category 4”, 1330169580) represents an
update describing the hurricane category, now 4, pushed out by system S at
UNIX time 1330169580 (i.e. 1330169580 seconds after 0:00 UTC on January
1, 1970). In this year’s evaluation, the update string is chosen from the set of
segmented sentences in the corpus as defined in the guidelines.

Two updates are semantically comparable using a text similarity measure or
a manual annotation process applied to their string components; if two updates
u and u

0 refer to the same information (semantically matching), then we write
this as u ⇡ u

0, irrespective of their timestamps. Because two systems might
deliver the same update string at di↵erent times, it is generally not the case
that u.string = u

0
.string implies u.t = u

0
.t.

Given an event, our manual annotation process generates a set of gold stan-
dard updates called nuggets, extracted from wikipedia event pages and times-
tamped according to the revision history of the page. Editorial guidelines recom-
mend that nuggets be a very short sentence, including only a single sub-event,
fact, location, date, etc, associated with topic relevance. We refer to the canon-
ical set of updates as N . This manual annotation process is retrospective and
subject to error in the precision of the timestamp. As a result we might en-
counter situations where the timestamp of the nugget is later than the earliest
matching update.

In response to an event’s news coverage, a system/run broadcasts a set of
timestamped updates generated in the manner described in the Guidelines. We
refer to a system’s set of updates as S. The set of updates received before time

9



⌧ is,

S⌧ = {u 2 S : u.t < ⌧} (1)

Our goal in this evaluation is to measure the precision, recall, timeliness,
and novelty of updates provided by a system.

A.1 Preliminaries

Our evaluation metrics are based on the following auxiliary functions.

• Nugget Relevance. Each nugget n 2 N has an associated relevance/importance
grade,

R : N ! [0, 1] (2)

R(n) measures the importance of the content (information) in the nugget.
Nugget importance was provided on a 0-3 scale by assessors (no impor-
tance to high importance). For graded relevance, we normalize on an
exponential scale, since high importance nuggets are described as “of key
importance to the query”, whereas low importance nuggets are “of any
importance to the query”. When binary relevance is needed, everything
of any relevance is relevant (0 is the only non-relevant grade). The ac-
tual relevance functions used are presented below; n.i denotes the nugget
importance as assigned by the assessor.

R
graded

(n) =
e

n.i

e

maxn02N n0.i Graded relevance (3)

R
binary

(n) =

(
1 i↵ n.i > 0

0 otherwise
Binary relevance (4)

Note that for graded relevance, returning exactly the nugget set as the
system output updates and nothing more (“perfect system”), would usu-
ally not result in an expected gain of 1. However, using binary relevance,
the perfect system would score an expected gain of 1.

The relevance can be discounted in time or in size, hence the following
discounting functions.

• Latency Discount. Given a reference timestamp of a matching nugget,
t

⇤, a latency penalty function L(t⇤, t) is a monotonically decreasing func-
tion of t� t

⇤. A system may return an update matching Wikipedia infor-
mation before the Wikipedia information exists; thus we use a function
that is smooth and decays on both the positive and negative sides.

The actual function used is presented below with arguments the nugget
Wikipedia time (wiki-edit timestamp) n.t, and the update time u.t as
indicated by the system.

10



L(n.t, u.t) = 1� 2

⇡

arctan(
u.t� n.t

↵

) latency-discount (5)

↵ = 3600 ⇤ 6 latency-step (6 hours) (6)

Time Delay from Nugget Time u.t - n.t (in Hours)

L
at
en
cy

D
is
co
u
nt

L

Latency Discount Function

-50 -40 -30 -20 -10 0 10 20 30 40 50
0

0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8
2

Current parameters allow the latency discount factor to vary from 0 to 2
(1 means nugget time equal to update time), and flattens at around one
day(± 24 hours). Note that as a result, gain and expected gain can be
greater than 1.

• Verbosity Normalization. The task definition assumes that a user
receives a stream of updates from the system. Consequently, we want
to penalize systems for including unreasonably long updates, since these
easily lead to significantly higher reading e↵ort. The verbosity can be
defined as a string length penalty function, monotonically increasing in the
number of words of the update string. We will refer to this normalization
function as V(u).

For the actual verbosity implementation, we approximate the number of
extra nuggets worth of information in a given update. This is done by
finding all text which did not match a nugget (as defined by the assessors),
and dividing the number of words in the text by the average number of
words in a nugget for that query.

V(u) = 1 +
|all wordsu|� |nuggetmatching wordsu|

AV Gn|wordsn| (7)

= 1 +
|u|� | [n2M�1

(u,S)

M(n,S)|
avgn2N |n| (8)

where |u|, |n| are the length (in number of words) of the update u, and
nugget n.

Note that if an update has all its words being part of some match to a
nugget, the verbosity is V (u)=1; otherwise V (u)�1 is an approximation of
the “extra non-matching words” in terms of equivalent number of nuggets.

11



• Update-Nugget Matching. We also define a key earliest matching

function between a nugget and an update set,

M(n,S) = argmin{u2S:n⇡u}u.t (9)

or ; if there is no matching update for n. M(n,S) should be interpreted
as “given n, the earliest matching update in S.”
We also define the set of nuggets for which u is the earliest matching
update as,

M�1(u,S) = {n 2 N : M(n,S) = u} (10)

Note that an update can be the earliest matching update for more than
one nugget.

A.2 Metrics

Using the previously defined notion of relevance, latency, verbosity, and match-

ing we can define several measures of interest for Temporal Summarization.
Given an update u and a matching nugget n (i.e. u ⇡ n), we can define the

discounted gain as,

g(u, n) = R(n)⇥ discounting factor (11)

Given the previously defined discounts, we have the following family of dis-
counted gains,

gF(u, n) = R(n) discount-free gain (12)

gL(u, n) = R(n)⇥ L(n.t, u.t) latency-discounted gain (13)

Since an update can be the earliest to match several nuggets (u ⇡ n), we
define the gain of an update with respect to a system (or participant run) S
as the sum of [latency-discounted] relevance of the nuggets for which it is the
earliest matching update:

G(u,S) =
X

n2M�1
(u,S)

g(u, n) (14)

where the gain can be either of the discounted gains described earlier. Note
that for an appropriate discounting function, G(u,S) 2 [0, 1], although for
the latency-discounted gain, given the imperfect nature of model timestamps,
GL(u,S) 2 [0, 2].

One way to evaluate a system is to measure the expected gain for a system
update. This is similar to traditional notions of precision in information retrieval
evaluation. Over a large population of system updates, we can estimate this

12



measure reliably. The computation of the expected update gain for system S
by time ⌧ is the average of the gain per update:

nEG(S) = 1

Z|S|
X

u2S
G(u,S) (15)

=
1

Z|S|
X

u2S

X

n2M�1
(u,S)

g(u, n)

=
1

Z|S|
X

{n2N :M(n,S) 6=;}

g(M(n,S), n) (16)

where Z is the maximum obtainable expected gain per topic (similar to DCG
normalization. Additionally, we may penalize “verbosity” by normalizing not
by the number of system updates, but by the overall verbosity of the system

nEGV(S) = 1P
u2S V(u)

1

Z

X

{n2N :M(n,S) 6=;}

g(M(n,S), n) (17)

Our definition of g is such that it:

• does not penalize for large a update matching several nuggets, as opposed
to a few small updates each matching a nugget, due to verbosity weighting,

• penalizes for late updates (against matched nugget reference timestamp),
and

• penalizes “verbosity” of updates text not matching any nuggets.

Furthermore, we have that G(u,S⌧ ) 2 [0, 1] if all update timestamps are at or
after matching model timestamps. Over a set of events, the mean expected gain
is defined as,

MEG =
1

|E|
X

✏2E
EG(S✏) (18)

where E is the set of evaluation events and S✏ is the system submission for event
✏.

Because a user interest may be concentrated immediately after an event and
because a system’s performance (in terms of gain) may be dependent on the
time after an event, we will also consider a time-sensitive expected gain for
the first ⌧ seconds,

EG⌧ (S) = EG(S⌧ ) (19)

with MEG⌧ defined similarly.
In addition to good expected gain, we are interested in a system providing

a comprehensive set of updates. That is, we would like the system to cover
as many nuggets as possible. This is similar to traditional notions of recall in

13



information retrieval evaluation. Given a set of system updates, S, we define
the comprehensiveness (and latency-comprehensiveness) of the system
as:

C(S) = 1P
n2N R(n)

X

{n2N :M(n,S) 6=;}

g(M(n,S), n) (20)

=
1P

n2N R(n)

X

u2S

X

n2M�1
(u,S)

g(u, n)

=
1P

n2N R(n)

X

u2S
G(u,S) (21)

We also define a time-sensitive notion of comprehensiveness,

C⌧ (S) = C(S⌧ ) (22)

with an aggregated measure defined as,

Z te

ts

C⌧ (S)d⌧ (23)

which measures how quickly a system captures nuggets.
In order to summarize expected gain and comprehensiveness, we use an F

measure as our primary metric based on these values,

F(S) = EGV(S)⇥C(S)
EGV(S) +C(S) (24)

B Judging

B.1 Gold Nugget Extraction

In this first phase, assessors were asked to read all edits of the Wikipedia article
for each query, manually extracting text perceived as relevant and novel for
that edit. Additionally, assessors assigned an importance grade to every text
fragment, or nugget. An example portion of the extraction interface can be seen
in Figure 3.

In order to simplify later matching, assessors were told to extract nuggets
such that they were atomic pieces of information relevant to the query. Un-
like in previous years, no dependency extractions were performed, as we found
it su�cient in previous years to simply allow splitting of nuggets during the
matching phase and to remove the notion of dependencies.

B.2 Update-Nugget Matching

Once submissions were received, we performed a variant of depth-pooling in
order to sample updates for evaluation. We sampled the top approximately 60

14



Figure 3: Extraction interface used by assessors to extract nuggets from
Wikipedia edits.

Figure 4: Matching interface used by assessors to match updates and nuggets.

updates per query and run as sorted by the provided confidence scores (highest
first). Additionally, we performed near-duplicate detection among update text
to increase the covered set. This resulted in sampled update counts as per
Table 1. One note here is that not all runs contained 60 updates per query; for
the run-query pairs with less than 60 updates, all updates were sampled.

The sampled updates were presented in an interface similar to the one for
extraction. Assessors examined and matched updates to nuggets by selecting
portions of updates which matched a given nugget, as nuggets are atomic but
updates are not. An assessor was allowed to break a nugget into two or more
new nuggets to improve atomicity if desired. Note that a nugget may match
multiple updates, and an update may match multiple nuggets. An example view
of the matching interface can be seen in Figure 4.

B.2.1 Automatic matches for unpooled updates

The participant updates that did not make it to the pool for manual matching
form the set of “unpooled updates”. We performed an automatic exact match
between these unpooled updates and the known relevant pooled updates (man-

15



ually matched); the updates that matched a known relevant pooled update are
also considered relevant and included as matching nuggets for evaluation pur-
poses. All updates, both pooled and unpooled, that do not match any nugget
(manual) or other relevant update (automatic), are considered nonrelevant for
evaluation metrics.

16


