

`

Laval University and Lakehead University Experiments at
TREC 2015 Contextual Suggestion Track

Jian Mo1 Luc Lamontagne1 Richard Khoury2
1 Department of Computer Science and Software Engineering, Laval University

2 Department of Software Engineering, Lakehead University

Abstract—In this paper we describe our effort on
TREC Contextual Suggestion Track. We present a
recommendation system that built upon Elas-
ticSearch along with a machine learning re-ranking
model. We utilize real world users’ opinion as well as
other information to build user profiles. With profile
information, we then construct customized Elas-
ticSearch queries to search on various fields. After
that, a learning to rank regressor is implemented to
give better ranking results. Track results of our sub-
mitted runs show the effectiveness of the system.

Keywords—ElasticSearch, Boosting Query, Rec-
ommendation System, Point-wise re-ranking

I. INTRODUCTION
In the Contextual Suggestion Track, partici-

pants were asked to develop a system that is able to
make suggestions for a particular person with a par-
ticular context. The recommendations are contex-
tual as they are based on user’s location, profile,
and preferences. [1]

Two separate tasks were available in this year
competition: live experiment and batch experiment.
For the live experiment, each group is required to
set up a live server and to respond to live requests
in a short time. For batch experiments, several can-
didate suggestions are provided for each group of
participants to re-rank the results and a final preci-
sion at 5 is calculated. Unlike last year, teams are
no longer asked for a description generation. Thus
the overall goal of the competition is to generate
good suggestions from over 10,000 candidate at-
tractions per city.

In this paper we present our research group’s
first attempt at developing a recommendation sys-
tem to solve the challenge presented in the contex-
tual suggestion task.

We participated in both tasks of this track. The
fundamental approach we adopt consists in select-
ing similar documents to those the user likes that
are highly rated by other users, combined with a re-
ranking algorithm trained to predict the user’s pref-
erences. For the live experiment, we combined an
ElasticSearch engine together with a SVM regres-
sor on a virtual server in order to respond quickly
to recommendation requests. For the batch experi-
ment, we optimized our recommendation model to

filter categories to mimic the user’s set of prefer-
ences. We use Precision at 5 to present the results
obtained for the evaluation of our system configu-
rations. And our final P@5 results indicate that a
precision of 46% can be reached with both config-
urations.

II. BACKGROUND
In TREC 2014 [3], the most common approach

were using the language modeling framework.
Most teams used positive, neutral and negative pro-
files in personalization of the suggestion candidates.

We also adopted this approach and developed a
new profile modeling method inspired by Yang and
Fang [2] in which they utilized the comments and
ratings of third party users to sum up our users’
opinion. Their intuition is that users with similar
ratings of a place share something in common of
why they like or dislike the place and our user also
shares ideas with the third party users.

III. OUR APPROACH

A. System Framework
To perform our experiments, we relied on the

following components:
1. Information gathering:

a) Crawlers
2. Online Ranking Model

a) User profile modeling
b) ElasticSearch
c) Customized Queries
d) Re-ranking regressor

3. Offline re-ranking methods
a) Category filter

The entire framework is illustrated in Figure 1
and each component is described in detail in the fol-
lowing sections.

B. System Overview
Figure 1 showed the overview of our system. The
data are downloaded synchronously into two data-
bases MySQL and ElasticSearch. We query Elas-
ticSearch for candidate suggestions while get train-
ing data from MySQL for MySQL has a better API
for data retrieving though ElasticSearch also has all
the data we need.

`

Then a trained regressor will score each candidate
suggestion to get a new rank. We select the top 5
suggestions as final results. In the batch run, the

category filter will select final results according to
their categories to maintain diversity.

Figure 1: Overall framework for contextual recommendation

IV. INFORMATION GATHERING

Over 10,000 candidate suggestions were avail-
able per context city and 273 cities in total there are
as part of the challenge. The first responsibility of
our system was to gather information about each of
these candidate suggestions. We analysed several
open-web service providers, namely Yelp, Google
Places, and TripAdvisor. The last two sites provide
an API that can be used to access the data source.
Yelp’s API is more limited, and we had to imple-
ment a custom crawler to retrieve the data from that
site.

The crawler extracts useful information such as
rating, open hours, price, review count, category
for each candidate attraction from the webpages.

Business information such as has Wi-Fi, has park-
ing lot, smoking allowed are also extracted and
stored into the database.

User reviews were often too numerous to down-
load entirely. Hence we just get the most popular
reviews of each attraction, i.e. the first page reviews.
Positive and negative reviews are downloaded sep-
arately and stored in two different database tables.

Since our model has two distinct databases, we
utilized the pipeline module of Scrapy to auto-sync
the downloaded data between MySQL and Elas-
ticSearch as the crawler push data to the two sim-
ultaneously.

`

V. ONLINE RANKING MODEL

A. Modeling of User Profile
 While Yang and Fang [2] only used reviews as

their profile data, we exploit all the data available
in the database including reviews, categories, busi-
ness information, tags and other info as our query
field. We create the user’s positive profile by merg-
ing the positive information from all the examples
our user likes, and likewise build the negative pro-
file by merging the negative information from the
examples our user dislikes. The intuition is that the
preferences of one user are reflected by the attrac-
tions he/she likes and dislikes. Consequently, we
can compare the user profiles with every candidate
suggestion in the database and rank them by simi-
larity. For instance, if one candidate suggestion has
many elements in common with the positive user
profile, this candidate obtains a higher ranking
score. In contrast, if it is very similar to the negative
user profile, its ranking score is penalized and very
low.

According to the task defined for this track, one
user might provide 6 different rating:

4: Strongly interested
 3: Interested
 2: Neutral
 1: Disinterested
 0: Strongly disinterested
 -1: Website didn’t load or no rating given
We selected rating 4 and 3 as positive and 1 and

0 as negative. Ratings 2 and -1 were taken as neu-
tral and simply ignored.

Formally, the user profile can be expressed as:

𝑃𝑟𝑜𝑓𝑖𝑙𝑒௉௢௦ =ራ𝑅𝐸𝑃(𝑃𝑒𝑠௜௞)

𝑃𝑟𝑜𝑓𝑖𝑙𝑒ே௘௚ =ራ𝑅𝐸𝑃(𝑁𝑒𝑠௜௞)

Where 𝑃𝑒𝑠௜ is positive example suggestion i,
and Pesik is element k (categories, tags, positive re-
views, business info) of this positive suggestion.
𝑅𝐸𝑃(𝑃𝑒𝑠௜௞) defines a special representation or
form of the element. For example, the review texts
of third party users (which can be quite numerous
and quite lengthy) are represented by the 50 most
frequently used keywords in the merged set of re-
views. After being properly processed, all example
suggestions from one user are merged together to
form the user profile. At the end of the modeling
process, we get four different positive profile ele-
ments: positive categories, positive business info,
positive tags, and positive reviews. The same steps
are performed to build the negative profile. For in-
stance, one possible positive category is a long
string like “parks, restaurant, outdoor sports, parks,

playground…” which sums up all the categories
user has rated positive.

B. Query Formulation
Once the user profile is built, we formulate a

customized query to search our ElasticSearch data-
base. For example, suppose the user likes Mexican
food, dislikes Japanese food, appreciates Wi-Fi and
parking lot and hates smoking. Part of our query
could be formulated as the json structure in Figure
2. As can be seen, we use a bool boosting query to
wrap up the elements of the user profile into one
query, which can then be sent to ElasticSearch to
retrieve relevant new attractions and similarity
scores. These similarity scores will be used by our
ranking function.

"bool": {
"should": [
{
"boosting": {
 "positive": {
 "match": {
 "category": "Mexican

food"
 }
 },
 "negative": {
 "match": {
 "category": “Japanese

food”
 }
 },
 "negative_boost": 0.3
 }
 },
{
"boosting": {
 "positive": {
 "match": {
 "business_info": "has

wifi, good for kids”
 }
 },
 "negative": {
 "match": {
 "business_info": “smok-

ing”
 }
 },
 "negative_boost": 0.1
}
}

Figure 2: Json query example.
C. ranking Methods
The similarity score provided by elastic search

in the previous step is sufficient to give satisfactory

`

ranking results. However, to improve the perfor-
mance of our system, we combine this similarity
score with other features such as category, popu-
larity, and rating and utilize a learning algorithm to
compute a final ranking score for each candidate.
We compute a personal regressor for every user ac-
cording to his/her own preference instead of build-
ing a global regressor that predicts common inter-
ests shared by all people.

During our experiments, we tried several learn-
ing methods including Linear Regression, SVM
and LambdaMart [4] with different combination of
features. We used a 5-fold cross validation training
algorithm on last year’s dataset to evaluate each
configuration. We found that Linear Regression
and Lambda Mart perform poorly in this case, be-
cause the size of the training data per user is small
(less than 50 samples). On the other hand, we ob-
served that SVM applied on all the features we
gathered during profile modeling achieves the best
ranking performance.

VI. RE-RANKING METHODS IN BATCH MODE
Our first batch run used the same model as the

live run using the SVM-based ranking scheme we
described in Section V. For the second batch run,
we added a category filter that we developed in or-
der to bias the set of recommendations returned to
mimic the diversity of preferences of the user. Our
intuition for this filter is that there must be a dimin-
ishing return to suggestions of one same type, re-
flecting the user’s decreasing interest in visiting
several similar attractions. Consequently, we de-
cided to add diversity to our recommendations to
avoid having too many recommendations in one
category and to insure we have recommendations
in the major categories the user has shown interest
in.

This category filter first calculates the distribu-
tion of categories in the user positive profile by
summing up the counts of every positive category
and then divide the total counts to get the propor-
tion of each category. When generating a set of rec-
ommendations for a new city, attractions are se-
lected or rejected so that the set will have a similar
proportion to the user’s profile. For example, if the
user profile has a distribution composed of 40%
restaurants and 60% museums and the system is de-
signed to return 50 recommendations, then it will
return the top 20 restaurants and top 30 museums
ranked similarity scores.

VII. RESULTS AND ANALYSIS

A. Evaluation Metric
An attraction is considered relevant for P@5 if

it has a geographical relevance of 1 or 2 and if the

user reported that both the description and docu-
ment were found to be interesting (3) or strongly
interesting (4). A P@5 score for a particular topic
(a profile-context pair) is determined by how many
of the top 5 ranked attractions are relevant, divided
by 5. [1]

B. Submitted Runs
Three runs were submitted to the competition:
x LavalIVA-run1, our live run,
x LavalIVA_1 is batch run 1, using the same

model as the live run,
x LavalIVA_2 is batch run 2, which applies the

category filter

Table 1: TREC CS 2015 results
Run P@5

LavalIVA-batch
LavalIVA_1

 0.2611
0.4645

LavalIVA_2 0.4616

Table 1 shows our final result [1]. As showed
from the table, the precision of the first batch run
(LavalIVA_1) is much higher than those obtained
for the live run (LavalIVA-batch). The difference
is not the ranking model or data, which were iden-
tical in both versions of the system, but rather that,
unfortunately, our live server failed to respond to
multiple requests made in the first two days of the
evaluation. Furthermore, a few blank responses
were provided during the two week period, which
is due to a lack of robustness in our online service.

The track medium P@5 of all batch runs is
0.4946 while the highest is 0.5858. After analyzing
our system on qrels, we found two major problems
of our system in batch run test. The first problem
lies in our data richness. Since we dropped some of
the candidates’ data source like Wikipedia and
some other websites, we don’t have all the data of
candidates in the batch run as the candidates were
provided by other participates system generated in
the live run. Thus our system had some blank user
profiles and returned false results. The second
problem is our system has difficulty in dealing with
user who has few positive ratings since our regres-
sors are trained individually on single user so that
when user has few positive data our regressors
could not be trained properly. This problem is also
found in the live run phase. Our system often ob-
tains good score when the user provides sufficient
positive feedbacks.

We also observe that the application of a diver-
sity filter slightly lowers the quality of the recom-

`

mendations on P@5 standard. This seems to indi-
cate that the best recommendations may often fall
into the same category for some users.

VIII. CONCLUSION
In this paper, we have presented our contextual

suggestion system. We have described its major
components: building new user profile models, re-
trieving suggestions using ElasticSearch, and re-
ranking the results using a regressor and a category
filter. While our batch runs demonstrated a solid
performance, the system used for the live run re-
quires improvements to improve its robustness. For
future improvements, we plan to replace the private
regressors with a global regressor to deal with the
problem of data sparseness in the user profiles and
also enrich our data source to obtain better result in
batch run.

IX. REFERENCES
[1] A. Dean-Hall, C. Clarke, J. Kamps, P.

Thomas and E. Voorhees. Overview of the TREC
2015 Contextual Suggestion Track. In Proceed-
ings of TREC’15, 2015.

[2] P. Yang and H. Fang. An opinion-aware
approach to contextual suggestion. In Proceedings
of TREC’13, 2013.

[3] A. Dean-Hall, C. Clarke, J. Kamps, P.
Thomas, N. Simone, and E. Voorhees. Overview
of the TREC 2014 contextual suggestion track. In
Proceedings of TREC’14, 2014

[4] C. J. C. Burges. From RankNet to
LambdaRank to LambdaMART: An overview.
Technical report, Microsoft Research, 2010.

