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Abstract

Unexpected events such as accidents, nat-
ural disasters and terrorist attacks repre-
sent an information situation where it is
essential to give users access to impor-
tant and non-redundant information as fast
as possible. In this paper, we introduce
SeqCluSum, a temporal summarization
system which combines sequential clus-
tering to cluster sentences and a contex-
tual importance measurement to weight
the created clusters and thereby to iden-
tify important sentences. We participated
with this system in the TREC Temporal
Summarization track where systems have
to generate extractive summaries for de-
veloping events by publishing sentence-
length updates extracted from web docu-
ments. Results show that our approach is
very well suited for this task by achiev-
ing best results. We furthermore point out
several improvement possibilities to show
how the system can further be enhanced.

1 Introduction

Events like accidents, natural disasters and terror-
ist attacks provide a important information situa-
tion. Shortly after the event occurred, the infor-
mation situation is usually unclear. There might
be some first vague information available, for ex-
ample that an earthquake had occurred, but details
like the magnitude, the epicenter, and if a tsunami
has to be expected are not known at this early point
in time. More and more information will become
available later when details about the event are
published by the media.

Traditional summarization approaches fail due
to this unique characteristic of these information
access problems. But especially during such cri-
sis events the affected people urgently need infor-

mation. The fastest information channel for infor-
mation is the internet, where information are dis-
tributed via news sites, blogs, and microblogging
services. Unfortunately the internet is not only
the fastest, but also a highly redundant, bulky, and
unreliable information source. This makes it im-
possible for an end-user to monitor this stream of
news to extract important information timely.

A system which aims to aid people in retriev-
ing information out of the web site stream has to
deal with several difficulties. Since there are vast
amounts of documents in the web, a system has
to be highly efficient in order to process the doc-
uments. A system has to filter out unrelated doc-
uments, since the majority of the documents ap-
pearing on the web in the investigated timespan
will not be related to the event and can be consid-
ered as noise. But noisiness on the document level
is not the only problem. Even relevant documents
contain a lot of unimportant information like un-
related news articles, advertisements, and naviga-
tion elements. This within-document noise has to
be removed as well. Since information about big
events are usually repeated on different web sites
several times, the system has to deal with a highly
redundant information situation. Another critical
aspect is the trustworthiness of the sources. Sev-
eral news pages publish uncertain information and
this tendency is even higher in weblogs and on mi-
croblogging sites. The last, but also one of the
most crucial challenges during such events, is the
timely detection of new information. Since the
users urgently need information, new information
has to be detected as fast as possible.

In this paper we present SeqCluSum, a sys-
tem which is able to aid users to satisfy their in-
formation needs in the previously described situa-
tions. We mainly address the problems of within-
document noise, redundancy, and timely detec-
tion. Efficiency is only partially considered, since
we assume a situation where our system is applied
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Figure 1: System overview. The timely-ordered documents d1, d2, . . . run through a boilerplate removal
and stemming system in step 1. Only relevant sentences should pass this step. The documents are marked
with timestamps u, u + 1, . . .. In step 2, a sentence s is either added to the existing clusters c1 or c2 or
creates a new cluster depending on the similarity of s to c1 and c2. Step 3 illustrates the publishing of a
sentence. The sentence is added to the summary with time marker u and the cluster is set to published.

after an information retrieval step where irrelevant
documents has already been filtered out. Our sys-
tem is, like in the most summarization scenarios,
not concerned with trustworthiness. Therefore, we
assume that all documents which are passed to our
system can be considered as trustworthy.

An overview about the system is given in Figure
1. First, we use two preprocessing steps (Figure 1,
step 1) which remove boilerplate content and stem
all tokens. This step is further described in Section
3. Second, we use sequential clustering described
in Section 4.1 to cluster similar sentences together
(Figure 1, step 2). Last, we weight the clusters af-
ter processing a document according to their con-
textual importance and publish updates (Figure 1,
step 3). This step is described in Section 4.2 in
detail.

With this system, we participated in the Tem-
poral Summarization track of the Twenty-Fourth
Text REtrieval Conference (TREC). We describe
the shared task in detail in Section 5 and our re-
sults in Section 5.4.

Due du time limitations, we did not push all
components of our system to the limit. There-
fore, we describe some improvement possibilities

in Section 7 from which we expect a further im-
provement of performance.

2 Related Work

Early work on document summarization started
with Luhn (1958), Baxendale (1958), and Ed-
mundson (1969), who used word frequencies, po-
sition features, and key phrases to detect important
sentences.

McKeown and Radev (1995) introduced the
problem of multi-document summarization. Tem-
poral summarization in the TREC-TS challenge is
strongly related to extractive multi-document sum-
marization (Nenkova and McKeown, 2011), since
the systems are only allowed to extract sentences
from the source documents verbatim. Radev et al.
(2004) presented an open-source multi-document
summarization system, MEAD, which is able to
summarize large news topics by clustering sen-
tences and finding centroids. Mihalcea and Ta-
rau (2004) used a graph-based method to extract
text for summarization. Carbonell and Goldstein
(1998) introduced the greedy approach MMR to
extract topic related and non-redundant sentences
jointly.



For the particular task of temporal summariza-
tion, we review some of the participating sys-
tems from last years TREC-TS challenges. The
best performing run in the challenge in 2014 was
the “2APSal” run by team “cunlp” (Kedzie et al.,
2014), who used affinity propagation clustering.
Zhao et al. (2014) used a query expansion and in-
formation retrieval step with the Lemur toolkit1

and a k-means clustering (Zhang et al., 1996) and
sentence selection step. McCreadie et al. (2014)
used a pipeline to filter out unrelevant documents,
to classify sentence according to their relevance,
and to filter out redundant sentence to build a real-
time summarization system.

Our approach described in this paper com-
bines the timely detection of a pipelining approach
like McCreadie et al. (2014) with the redundancy
avoidance strategy of a clustering approach like
Zhao et al. (2014) by using a sequential clustering.

3 Preprocessing

In this section, we describe two important pre-
processing steps which are used to prepare the
input documents for the temporal summarization
system. Both preprocessing steps, boilerplate re-
moval and word stemming, are well-known and
crucial for the performance of the subsequent sum-
marization. Since they are self-contained systems
and independent from the subsequent summariza-
tion system we did not investigate them in detail
and expect further potential for improvement of
the whole system if these steps are improved.

Documents retrieved from the web are usually
very noisy since they do not only contain one arti-
cle, but also advertisements, navigation elements,
text snippets from other websites, author informa-
tion, templates, pictures, links to related articles,
etc. This noise was described in the introduction
as within-document noise and is commonly called
boilerplate text. Content which is unrelated to the
target topic should never be included in the out-
put of a summarization system. Therefore, the
first preprocessing removes the within-document
noise. To tackle this problem, we utilize the soft-
ware Boilerpipe (Kohlschütter et al., 2010) which
uses shallow text features to remove unrelated text
fragments. This preprocessing step is crucial for
a good performance of the summarization system
described below since it publishes frequent infor-
mation without any knowledge of the actual query.

1http://www.lemurproject.org

Since navigation elements and advertisements are
very frequent on web sites the system would in-
clude a lot of this unimportant content into the
summary.

In a second step, we stem all words in the source
documents with the well-known Porter-stemmer
(Porter, 1980). This step is assumed to help the
system to detect semantically similar but syntacti-
cally different words. Stemming will become im-
portant in Section 4.1 and Section 4.2 when we
cluster similar sentences to measure their impor-
tance and to detect redundancy. More abstract se-
mantic methods like word embeddings (Mikolov
et al., 2013) are expected to model the seman-
tic similarity of words better than stemming since
they can, for example, not only detect a similarity
between the words crash and crashed, but also be-
tween crash and accident. Therefore, we assume
that a better representation could further improve
the performance of similarity and redundancy de-
tection in the following summarization system.

4 Temporal Summarization with

SeqCluSum

After explaining the preprocessing of the docu-
ments, we now describe the combination of two
building blocks, a sequential clustering algorithm
with a contextual importance measurement.

The first building block of the system, a sequen-
tial clustering algorithm, is responsible to detect
redundant information by clustering similar sen-
tences together. Since the second block will select
at most one sentence per cluster, this will prevent
the system to publish similar sentences (and there-
fore similar information) multiple times. The se-
quential clustering is described in Section 4.1.

To decide which sentences should be included
in the summary, we apply in a second block a con-
textual importance measuring, which is further de-
scribed in Section 4.2. This building block pub-
lishes sentences depending on the weight of the
sentences, which itself depends on the content of
the sentences as well as on already published sen-
tences (therefore contextual), and the weight of the
previously generated clusters.

The both blocks are applied for each document
one after another and therefore work closely to-
gether to jointly solve the problem of timely de-
tection of important information and reduction of
redundancy. For convenience, we give pointers to
the pseudo-code of the system in Algorithm 1.



4.1 Sequential Clustering

The first building block of the temporal summa-
rizer is a sequential clustering algorithm. We
apply the Basic Sequential Algorithm Scheme
(BSAS) (Theodoridis and Koutroumbas, 2009),
which is used to iterate over all (unpruned) sen-
tences in the currently processed document (Al-
gorithm 1, line 5). The algorithm searches for
the nearest existing cluster by using a similarity
measure (line 7) for all sentences which were not
pruned in the boilerplate removal step. We de-
scribe the distance measure below in more detail.
If the similarity to all existing clusters is lower
than a fixed threshold ⇥ and the maximum number
of clusters I is not already reached, a new cluster is
created and the sentence is added to the new clus-
ter (line 9). Otherwise, the sentences is added to
the nearest existing cluster (line 11).

The similarity measure calculates the similarity
between a sentence si and a cluster Cj by calcu-
lating the similarity between the sentence si and
the first sentence of the cluster Cj1 . By doing so,
the sentences to cluster similarity measurement is
reduced to a sentences to sentence similarity mea-
surement. This has several advantages in compar-
ison to considering all sentences in the cluster.

First, it emphasizes the notion of a cluster as a
set of sentences which contains one distinct infor-
mation. In a scenario where the similarity func-
tion works perfectly (i.e. equals 1 if the sentence
matches the represented information by the cluster
and equals 0 otherwise), there is no need to com-
pare it to the other sentences. The result would be
the very same for each sentence. We choose the
first sentences of each cluster to be the represen-
tative of the cluster since each first sentence has
a special role. This special role derives from the
fact that the first sentence of each cluster was the
reason why the cluster had been created. The sen-
tences did not fit to another cluster and therefore
created its own, new cluster.

Second, the center of the cluster is fixed when
we compare only with the first sentence of the
cluster. This prevents the cluster from a topic drift,
which was a serious issue when we compared to
more than one sentences. By adding more and
more sentences and also using the newly added
sentences for further distance calculations could
instead change the initial notion of the cluster sig-
nificantly since the center of the cluster would
move.

Third, the approach is computational efficient in
comparison to an approach, where we would com-
pute the similarity by incorporating all sentence in
a particular cluster.

The actual similarity measure metric (line 7) is
a linear combination of various well-known simi-
larity measures. We use five different n-gram Jac-
card measures, for n 2 {1, 2, 3, 4, 5}. The n-gram
Jaccard measure is defined in Equation 1, where
⇧n(s) is the set of all n-grams in sentence s.

jaccardn(s1, s2) =
|⇧n(s1) \⇧n(s2)|
|⇧n(s1) [⇧n(s2)| (1)

Furthermore, we use a longest common sub-
sequence comparator. Additionally to the string
comparison methods, we apply different variations
of cosine similarities based on inverse term fre-
quency (ITF) vectors. To calculate the ITF val-
ues, we use a small sample of 2,182 documents as
background corpus B. The ITF value of a token t

equals the logarithm of the quotient of the number
of all tokens in the background corpus B, |B| and
the number of appearances of the token t in the
background corpus B, |t 2 B| (Equation 2). This
value measures how common a token is in a back-
ground corpus and measures therefore how much
information a token provides in general.

ITF (t) = log

✓ |B|
|t 2 B|

◆
(2)

All documents in the background corpus were
retrieved from documents which were created be-
fore the event started to ensure that we do not use
information which were not available at the time
when the event happened.

We combine these different similarity measures
into one similarity measure to cover different as-
pects of similarity. The overall similarity measure
for two sentences s1 and s2 is a linear combination
as shown in Equation 3, where S is a set contain-
ing all previously described similarity measures
simi.

sim (s1, s2) =
1

|S| ·
X

simi2S
simi (3)

Some values for different similarity measures
are listed in Table 1. We show values of the 2-gram
and 3-gram Jaccard measure, two different cosine
similarity values, and the value of the longest com-
mon subsequence comparator. All measures are



Measure s(s1, s2) s(s1, s3) s(s1, s4)
2-gram J 0.097 0.400 0.118
3-gram J 0.032 0.269 0.059
cosine 1 1.000 0.078 0.024
cosine 2 1.000 0.814 0.290
LCSC 0.613 0.821 0.490
mean 0.696 0.397 0.148

Table 1: Different similarity measures

implemented in the software DKPro Similarity2,
described in Bär et al. (2013). In the example, sen-
tence s2 is a permutation of sentence s1, sentence
s3 was clustered to the same cluster as sentence s1,
and sentence s4 was assigned to a different cluster
than sentence s1. We see that the cosine similarity
is not affected by the ordering of the words in com-
parison to the n-gram Jaccard measure. Therefore,
the cosine similarity properly detects when two
sentences are using the same words, which signals
that their content is similar. Nevertheless, incor-
porating the Jaccard measures gives additional in-
sights to the similarity of two sentences, since the
ordering of the words can be considered as an even
stronger signal for similarity.

4.2 Measuring Contextual Importance

After all unpruned sentences in a document are
clustered with the previously described sequential
clustering algorithm, the system evaluates the cur-
rent cluster landscape to detect important infor-
mation in the document stream. To achieve this,
all clusters are weighted using a weight measures
based on a TF*ITF values. The score of a cluster
Ci equals the sum of the weights of all sentences
Cij in the cluster (Equation 4).

weight(Ci) =
X

Cij2Ci

weight(Cij ) (4)

Summarizing over all sentences in a cluster ad-
dresses the assumed property of the document
stream that more important information is re-
peated more frequently in the source documents
since bigger clusters get higher weight scores.

The weight of a sentence si is defined as the
sum of the weights of the tokens sij contained in
sentence si (Equation 5).

2https://dkpro.github.io/
dkpro-similarity

weight(si) =
X

sij2si
weight(sij ) (5)

In the following we define a context-free and
two contextual metrics to measure the weight of
a single token. The context-free metric measures
how important a token is. But since we actu-
ally want to know if we should publish a sen-
tences or not, we have to consider already pub-
lished sentences as well as the importance of the
sentences because we don’t want to publish an im-
portant sentence when a similar sentence has al-
ready been published. We assume that certain to-
kens are responsible for covering a particular in-
formation nugget. Therefore, the contextual token
weights incorporate the already published tokens
in the computation.

The context-free weight of a token weightcf

is computed based on the temporal TF*ITF-based
measures of the token (Equation 6).

weightcf (t,D⌧ ) = TFcf (t,D⌧ ) · ITF (t) (6)

The computation of the ITF value is described
in Section 4.1. We use the ITF value not to mea-
sure if a document is relevant to a topic (like the
commonly used IDF value does), but to calculate
if a token is important in a stream of documents.
Since we have no access to all documents in the
stream, but only the documents which were pub-
lished until a given timestamp ⌧ , we can only com-
pute the temporal TF values for the set D⌧ . We
measure therefore, how salient a token i is in a
document stream D⌧ until the timestamp ⌧ . To do
so, we count the number of appearances of token
t in the documents D⌧ and divide this quantity by
the total number of tokens in the documents |D⌧ |.
This gives us an impression on how salient a token
is in the document collection D⌧ . Equation 7 for-
malizes the computation of the context-free token
weights.

TFcf (t,D⌧ ) =
|t 2 D⌧ |
|D⌧ | (7)

Since the document collection D⌧ changes af-
ter each time step ⌧ , the temporal TF values are
constantly updated when new documents are pro-
cessed.

The contextual weight of a token models the
weight of a token with respect to already published
tokens. We reduce the context-free TF values for



Algorithm 1 SeqCluSum
documents = ordered list of documents, I = maximum number of clusters

1: clusters {}, updates {}
2: for each document 2 documents do

3: document pruneBoilerplate (document)

4: document stemWords (document)

5: for each sentence 2 document do . add new sentences to clusters
6: if sentence is not pruned then

7: nearestCluster = argmaxc2clusterssimilarity(sentence, c)
8: if i = 0 or (similarity(sentence, nearestCluster) > ⇥ and i < I) then

9: clusters clusters [ {sentence}; i i+ 1 . create new cluster
10: else

11: nearestCluster  nearestCluster [ sentence . add to nearest cluster
12: end if

13: end if

14: end for

15: for each cluster 2 clusters do . evaluate clusters and generate updates
16: if cluster is not published and weight(cluster) > µ then

17: bestSentence = argmaxc2clusterweight(s) . find best sentence in cluster

18: updates updates [ (document.timestamp, bestSentence)

19: set cluster to published
20: end if

21: end for

22: end for

23: return Updates

tokens which have already been published. By im-
plementing such a reduction of already published
tokens, we achieve a contextual importance grad-
ing of the tokens which leads to an avoidance of
redundancy.

We use two different strategies for the reduction
of the TFcf values. In the first contextual strategy,
cs1, the values of all already published tokens are
set to 0, which leads to a very strict and extensive
avoidance of redundancy. In the second contextual
strategy, cs2, we reduced the values by dividing
the context-free value TFcf (t,D⌧ ) by the num-
ber of appearances of token t in the already pub-
lished updates. This leads to a more laxly filtering
which is expected to increase recall at the cost of
precision. The computation of the second contex-
tual importance measure is described in Equation
8, where |t 2 U | denotes the number of appear-
ances of the token t in the current set of updates
U .

TFcs2 (t,D⌧ ) =
TFcf (t,D⌧ )

|t 2 U | (8)

A cluster is considered as sufficiently impor-
tant if a fixed threshold µ is exceeded (line 16).

This threshold can be varied in a productive en-
vironment easily, to produce more or less verbose
summaries. For the experiments, we choose two
values by hand without any sophisticated evalua-
tion or optimization method. If a cluster exceeds
the threshold, the best sentence according to the
sentence score described above is published. The
cluster is marked as published in this case. This
means, that the cluster will not be selected in the
future to publish another sentence. Nevertheless,
it is still possible to add new sentences to an pub-
lished cluster. This is important because we will
likely see more sentences, which are similar to al-
ready published sentences.

5 TREC Temporal Summarization Track

We participated with the previously described sys-
tem, SeqCluSum, in the TREC 2015 Temporal
Summarization track. In the following section we
give detailed information about the challenge, de-
scribe the evaluation methodology and discuss our
performance in the task.



5.1 Introduction

We described in Section 1 the task of temporal
summarization and outlined its importance and
special properties in comparison to classical multi-
document summarization. In this section, we de-
scribe the Temporal Summarization track (Guo et
al., 2013) of the Text REtrival Conference 2015
(TREC), or TREC-TS 2015 for short. The goal of
this track is to develop systems which can detect
useful, new, and timely sentence-length updates
about a developing event.

The first major difference to classical summa-
rization challenges like DUC3 and TAC4 is the no-
tion of time during summarization. In TREC-TS it
is not only crucial to detect and extract important
information, but to detect the important informa-
tion as early as possible during the developing of
an event.

A second important difference compared to
DUC is the evaluation methodology. In DUC,
gold standard summaries were written by hu-
man experts and the automatically generated sum-
maries are compared to these summaries with the
ROUGE (Lin, 2004) score. In contrast, sum-
maries produced by the TREC-TS participant sys-
tems have to cover as many as possible fixed infor-
mation nuggets. If a sentence contains an informa-
tion is evaluated by hand for each sentence. Fur-
thermore, it is, compared to DUC and TAC, solely
focused on information retrieval and not on writ-
ing quality.

5.2 Setup

The setup of the TREC-TS track is as follows.
There are 3 subtasks in the track. Each subtask
consists of 21 events. The first two subtasks, Fil-
tering and Summarization, deal with high-volume
streams of news article documents and blog posts
which do not have to be related to the given event.
In this scenario, the participants have to filter out
irrelevant documents to be able to summarize the
rest of the stream. In the third subtask, Sum-
marization only, the participants face low-volume
streams of pre-filtered documents. The corre-
sponding corpus to this subtask is called TREC-
TS-2015F-RelOnly5. In this scenario, the in-
formation retrieval problem is considered to be
solved on the document level. This means that all

3http://duc.nist.gov
4http://www.nist.gov/tac
5http://dcs.gla.ac.uk/˜richardm/

TREC-TS-2015RelOnly.aws.list

documents in the stream contain relevant informa-
tion. We participated with our system in the latter
subtask.

All documents in a stream have an associated
timestamp which equals the crawling time of the
document. The documents have to be processed
in temporal order. The result of the system is a
list of updates. These updates are considered to be
sentence-length update messages, which could be
published via a microblogging service like Twit-
ter6 to keep an end-user up-to-date about the de-
velopment of an event. When a system decides
that a sentence from the stream should be pub-
lished, this particular sentence is marked with the
timestamp of the currently processed document.
The systems are not allowed to use information
from the future to make this decision. This means,
incorporating information that was only available
after the current timestamp is not allowed. One ex-
ample for a not allowed usage would be the com-
putation of TF*ITF values over the whole corpus
since this would provide information about which
words will become frequent in the future.

5.3 Evaluation

The evaluation of the submissions was based on
Wikipedia article revision histories of the cor-
responding events. In a first step, information
nuggets were extracted from the revision histo-
ries by the track organizers. The nuggets were
marked with a timestamp and classified with an
importance score of 1, 2, or 3, where 1 is the least
and 3 the most important category. This times-
tamp equals the time where the information was
included in the Wikipedia article the first time.
Therefore, it represents the time when the infor-
mation could be considered to be publicly avail-
able. An example of such a nugget is VM26.002-
1358344449-3-’On 16 January 2013,at around
0800 GMT’, where VM26.002 is the nugget id,
1358344449 is the timestamp7 when the informa-
tion has been published in Wikipedia, 3 is the
importance of the nugget, and ’On 16 January
2013,at around 0800 GMT’ is the actually infor-
mation encoded by this nugget.

In a second step, sentences were pooled from
each submission. For each submission, at most
60 sentences were pooled due to the huge an-
notation effort. These sentences were manually

6https://twitter.com
7The timestampes equal to the number of seconds since

January 1, 1970



matched against the extracted information nuggets
since there is no system available which is able
to find these matchings precisely. A sentence
could thereby match multiple nuggets as well as
no nugget. A sentence, which matches relevant
information nuggets, which were not matched by
sentences published earlier by a submission, was
considered to be a valuable sentence. If a sen-
tence matches only already matched information
nuggets or no nuggets at all, it was considered to
be worthless. Since such sentences do not improve
the information content of the summary, the sys-
tem got penalty points for being to verbose.

For the evaluation, the precision of the gener-
ated summaries was evaluated with the (normal-
ized) Expected Gain metric nEG(S). This met-
ric measured to which degree the sentences in the
summary were on-topic and novel. The recall was
measured by the Comprehensiveness metric C(S).
This metric measured how many of the informa-
tion nuggets that could have been retrieved were
covered by the summary. A third measure, the
Expected Latency E[Latency], measured to which
degree the information in the summary was out-
dated. A combined F-measure, H, based on the
precision and recall which also incorporates the la-
tency was used as official target measure.

5.4 Results

We submitted four runs for evaluation at the
TREC-TS shared task. Runs 1 and 2 used the
strict contextual strategy cs1. The runs 3 and 4
used the more laxly contextual strategy cs2. Runs
1, 2 and 4 had a maximum number of clusters of
1,000 whereas run 3 had a maximum of 100. The
minimum cluster score, which had to be obtained
by the cluster to be published was set to 1 for the
runs 1, 3, and 4. For run 2, this value was set to 3.
Furthermore, we modified the boilerplate removal
for runs 3 and 4 slightly to prune less sentences
during the preprocessing. The similarity function
used was the very same for all four runs. These
changes led to differently verbose runs, where run
1 was the least verbose run followed by run 2. Run
3 and run 4 were the runs which published most
updates due to the more laxly contextual strategy.

Unfortunately, we introduced errors in the result
files which resulted in invalid sentence identifiers.
Therefore, our sentences could not be included in
the pool of sentences which were matched against
the information nuggets extracted from Wikipedia

as described in Section 5.3. Since other systems
selected at least some of the sentences, which we
had selected, we were at least able to get some
points for the overlapping sentences. Since we did
not get points for sentences which were only se-
lected by our system, this score represents only
a lower bound for the true performance of the
system. We report the percentage of unevaluated
sentences in column unevaluated. The sentences
which were not evaluated were considered as ir-
relevant or redundant without looking at them. As
example, for run 1 only 41.59% of the top 60 up-
dates were published by other systems as well and
therefore only this amount was evaluated. The re-
maining 58.41% were considered to be irrelevant
or redundant and we were penalized for them.

Nevertheless, run 1 and run 2 achieved consid-
erable better results than the best other participat-
ing system. Run 3 and run 4 performed better than
the second best system.

Table 2 shows the described lower bounds for
our runs, a comparison with the best 3 systems
and the average grading over all runs sorted by the
main target metric H. Additionally, we provide
the percentage of unevaluated sentences to make
the results better assessable. The evaluation results
of the other systems are taken from the overview
paper of the TREC-TS challenge.

6 Conclusions

We presented SeqCluSum, a system for tempo-
ral summarization based on sequential clustering
and contextual importance measurement. The se-
quential clustering arranges similar sentences to-
gether to detect redundancy. The contextual im-
portance measure weights the clusters according
to their importance. During this step, we incor-
porate the knowledge about previously published
sentences to avoid redundancy.

With this system, we participated in the Sum-
marization only subtask of the Temporal Sum-
marization track at the Twenty-Fourth Text RE-
trieval Conference. Unfortunately, we introduced
errors in our submission and can only report lower
bounds of the performance of our runs. Never-
theless, these lower bounds show already a better
performance than the best fellow competitor run.
Therefore, we conclude that our approach is well
suited to handle the special difficulties in this chal-
lenge.



TeamID RunID H unevaluated nEG(S) C(S) E[Latency]
AIPHES Run1 0.1083 58.41% 0.1576 0.2854 0.4776
AIPHES Run2 0.1016 59.97% 0.1260 0.2982 0.4607
WaterlooClark UWCTSRun4 0.0853 - 0.1840 0.1710 0.3983
AIPHES Run4 0.0781 63.34% 0.0897 0.4005 0.5679
AIPHES Run3 0.0722 62.64% 0.0905 0.4164 0.5061
BJUT DMSL2N2 0.0649 - 0.0645 0.6557 0.5606
uogTr uogTrhEQR2 0.0639 - 0.0667 0.5459 0.5335
Mean - 0.0472 - 0.0595 0.5627 0.5524

Table 2: Lower bound evaluation values for AIPHES runs 1-4, the 3 best non-AIPHES runs and average
scores of all participating runs sorted descending by H, the main metric of the challenge. The colums
nEG(S), C(S), and E[Latency] show the results according to official evaluation metrics described in
Section 5.3. The column unevaluated shows how many percent of the sentences were unevaluated.

7 Future Work

We propose in the following several possibilities
to further enhance the system in order to improve
the performance of our system and subsystems
which were not considered due to time limitations.

The sequential clustering depends strongly on
the accuracy of the used similarity measure. Since
we used predefined standard similarity measures
without any fine-tuning or adaption to the task, we
assume that a more sophisticated selection of sim-
ilarity measures could lead to an improvement of
the performance.

As described in Section 3, a semantic represen-
tation of the text could also help to detect similar-
ities between sentences more accurately.

Another improvement of the similarity mea-
sure would be to utilize the weight of the to-
kens, which are used during the contextual mea-
suring of importance also in the clustering. If
we weight important tokens higher in the simi-
larity metrics, we could achieve that the clusters
would be more focused on a particular informa-
tion nugget. For example, the token 15 should
be more influential to the clustering when there
were 15 people injured in an event and the token
the should not have a high influence on the sim-
ilarity of sentences. Generally speaking, a sen-
tence A = (a, x, a, a, a) should be more similar
to the sentence B = (b, b, b, x, b) than to sentence
C = (a, a, a, a, a) when x is an important token
in the current topic and a and b are two unimpor-
tant tokens, although the tokens a and b are more
frequent in the sentences than token x.

The system described in this paper relies on
the assumption that important information is men-
tioned frequently. This is in particular problematic

for temporal summarization, because it takes some
time (or documents) to detect that a word is irreg-
ularly frequent in the corpus. For example, during
the first mentioning of the word bomb the word
is not considered to be important for the corpus,
because it occurred only once. Only when more
documents are processed that contain the token the
system is able to detect that this token is important.
If we would leverage the fact that the mentioning
of bomb is always important when summarizing in
the domain of terrorist attacks, we would be able
to detect the importance faster. For bomb this im-
provement can be rather easily achieved, because
when a bomb explodes this is nearly always im-
portant. But the target of the bomb will also be
very important. However, it is nearly impossible
to know beforehand whether the word cab, Quetta,
or main station will be important.

Furthermore, it should be possible to add a sen-
tence to multiple clusters because a sentence can
contain multiple information nuggets. The gen-
eral idea of the clustering is that each particular
information nugget is represented by exactly one
cluster. In the current system, a sentence can only
be part of one cluster.

Another improvement concerning the clustering
could be a re-cluster step, which could split a clus-
ter into multiple clusters when the system detects
that one cluster contains too diverse sentences.
This is currently prevented by the parameter ⇥.
By enabling the system to execute a re-clustering
step, this parameter could become needless. The
same holds for the upper bound of clusters. Fur-
thermore, the system could merge multiple clus-
ters to one cluster, if it detects that the content of
the clusters are more similar as the seed sentences



suggested. This situation can easily occur when
synonyms are used.
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