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ABSTRACT
This paper describes our approaches to temporally-anchored
ad hoc retrieval task and tweet timeline generation (TTG)
task in the TREC 2014 Microblog track. In the ad hoc
search, we apply a learning to rank framework which utilizes
not only the various content relevance of a tweet, but also the
quality of a tweet. External evidences are well incorporated
in our approach with Web-based query expansion and
document expansion techniques. In the TTG task, we apply
star clustering and hierarchical clustering algorithm on the
retrieved tweets from ad hoc retrieval task. Experimental
results show that our learning to rank methods with many
state-of-the-art features achieve good retrieval performance
with respect to MAP and P@30 metrics. Besides, our
systems for TTG task also obtain convincing recall and
precision scores.

1. INTRODUCTION
Information retrieval in microblogging environment has

attracted increasing attention with the growing popularity
of microblog. To explore the search behavior and boost the
retrieval performance in the real-time environment, TREC
first introduced Real-Time Search task in 2011 [5], where a
user’s information need is represented by a query at a specific
point in time. The Microblog track in 2014 will use the
“evaluation as a service”(EaaS) model, where teams interact
with the official corpus via a common API. Tweet Timeline
Generation (TTG) is a new task for this year’s Microblog
track with a putative user model as follows: “I have an
information need expressed by a query Q at time t and I
would like a summary that captures relevant information.”
In this year’s task, the summary is operationalized by a list
of non-redundant, chronologically ordered tweets that occur
before time t.

In the ad hoc search, we apply a learning to rank frame-
work with the help of the official API. Hundreds of features,
including semantic score features, semantic expansion fea-
tures and document quality features, are extracted to ob-
tain good retrieval performance in microblogosphere. For
the semantic score and semantic expansion features, we uti-
lize different retrieval models (i.e. language models, BM25
and TFIDF) along with query expansion and document ex-
pansion techniques, in order to compute the relevance score
of a given topic and tweet from different perspectives. In the
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query side, aside from the traditional pseudo relevance feed-
back based on top ranked tweets, external evidences from
the Google search results are also utilized in our retrieval
models to better understand the user’s search intent. In the
document side, we use the topic information of the shorten
URLs embedded in tweets as the external evidence, and form
a new document for relevance computation. For the docu-
ment quality features, we use several quality features such
as the number of hashtags, the term number in the tweet,
the time difference between the query issue time and the
tweet post time, etc. Topics for TREC’13 Microblog track
are used for model training. Finally, we re-rank the results
from the API and select the top 1000 tweets as our ad hoc
search results.

The submitted results for ad hoc search results (i.e. the
run labeled as PKUICST3) are used as the input source of
our TTG system. Two strategies are adopted to determine
how many results to use as TTG candidates. One strategy is
to select the top N tweets or the tweets whose ranking scores
are greater than a threshold score, which is determined by
preliminary experiments on the training topics. Another
strategy is to select the top ranked tweets manually for
each query. After selecting the candidate tweets, clustering
algorithms (i.e. star clustering and hierarchical clustering)
are adopted to further detect and eliminate redundant
tweets in the candidate set. The star clustering algorithm
is a graph partition based approach, and adopts a tuned
parameter α to determine whether a tweet would generate
a new cluster. We choose the central tweet of each cluster
as the representative tweet and eliminate other reluctant
tweets. For the hierarchical clustering algorithm, a tuned
cluster distance threshold is utilized to determine the final
returned cluster count. For each cluster, the tweet with the
highest score is selected as the representative tweet. All the
representative tweets are then collected to form our final
results for TTG task.

The remainder of the paper is organized as follows: we
first presents our approach for ad hoc search task in Section
2. In Section 3, we describe our system for TTG task in
detail. Section 4 presents our experimental results. At last,
we conclude the paper in Section 5.

2. AD HOC SEARCH TASK
In this section, we first briefly introduce our system

architecture for temporally-anchored ad hoc search task.
Then, the learning to rank framework is described in detail.



At last, all the extracted features for the ad hoc search task
are presented.

2.1 System Overview
As mentioned above, the Microblog track use the ‘eval-

uation as a service’ (EaaS) model, where teams interact
with the official corpus via a common API. In this section,
we mainly discuss the architecture of our system, which is
shown in Figure 1. From the figure, we can see that our
system mainly contains three components:

1. Candidate Generation Component, which sub-
mits topics to TREC-API 1 to generate the candidate
set. Additionally, we use the query expansion tech-
niques to retrieve more topic related tweets.

2. Feature Generation Component, which generates
the state-of-the-arts features for the candidate tweets.
In our system, three groups of features are generated,
i.e. semantic score features, semantic expansion fea-
tures and quality features.

3. Re-Ranking Component, which re-ranks candidate
tweets with a pairwise learning to rank algorithm [3].
The re-ranked top 1000 relevant tweets are selected as
the final results of our system.

TREC'13 Query TREC'14 Query

Candidate Generation Component

TREC'13 

Candidate

TREC'14 

Candidate

Feature Generation Component

Training Set Test Set

Retrieval Result

Learning to Rank Component

Figure 1: System Framework

The preprocessings we adopted on the queries and corpora
are described as follows:

1https://github.com/lintool/twitter-tools/wiki/TREC-
2013-API-Specifications

• Non-English Filtering: We discarded the non-
English tweets by using a language detector with
infinity-gram, named ldig2.

• Simple Retweet Elimination: We eliminated
tweets that begin with ‘RT’ with the consideration
that these tweets have no extra information beyond
the original ones.

• Stemming and Stopword Filtering: Each tweet
was stemmed using the Porter algorithm. Moreover,
stopwords were removed using InQuery words sto-
plists.

2.2 Learning to Rank Framework
Learning to rank is a data-driven approach which inte-

grates a bag of features in the model effectively. Our system
adopts the similar framework that Duan et al [1] proposed
except that we extract much more features for the ad hoc
search task. The learning to rank framework is shown in
Figure 2. In order to train an effective model, adequate
training data and useful feature set are required. Our train-
ing set is generated from the official result set of TREC’13
Microblog track. Besides, features in our proposed approach
take both the similarity of query-document and the quality
of the document into consideration. RankSVM algorithm [3]
is utilized to train a ranking model from the training data.

2.3 Feature Generation
Several features have been proved effective in the prior

work [2, 6]. However, these features are not fully utilized
to further improve the performance of learning to rank
approach in the microblogosphere. In this section, we
describe the features used in RankSVM in detail. We classify
all the feature into three groups as semantic score features ,
semantic expansion features and document quality features.

2.3.1 Semantic Score Features
Semantic score features refer to the features that describe

the relevance between the query and tweets by analyzing the
content of tweets. These semantic score features are listed
as follows:

• TFIDF Model Score (QueryTFIDFTweet): This
feature calculates the cosine similarity distance be-
tween a query and a tweet in the Vector Space Model
with the TFIDF weighting method. Vector Space
Model is an algebraic model for representing text doc-
uments as vectors of identifiers. We express the query
and tweet as vectors:

−→
Qi = (w1q, w2q, w3q, · · ·wnq)

−→
Ti = (w1i, w2i, w3i, · · ·wni)

The TFIDF weighting scheme is adopted as the term
weight and the Cosine Similarity Metric is used to
evaluate the relevance between tweets and query. The
Cosine Similarity Metric is defined as Eq.1.

Sim =

−→
Ti ·
−→
Q

‖
−→
Ti‖ · ‖

−→
Q‖

(1)

2https://github.com/shuyo/ldig
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Figure 2: Learning to Rank Framework

• Okapi BM25 Score (QueryBM25Tweet): The stan-
dard Okapi BM25 weighting function is also adopted
to measure the content relevance between query Q and
tweet T . Okapi BM25 model is a bag-of-words retrieval
function that ranks a set of documents based on the
query terms appearing in each document, regardless of
the inter-relationship between the query terms within
a document (e.g., their relative proximity). The simi-
larity of a document D to query Q is defined as Eq.2.

Sim =
∑
qi∈Q

IDF (qi)·
f(qi, D) · (k1 + 1)

f(qi, D) + k1 · (1− b+ b · |D|
avgdl

)

(2)
where f(qi, D) is qi’s term frequency in the document
D, |D| is the length of the document D in words,
and avgdl is the average document length in the text
collection from which documents are drawn. k1 and b
are free parameters.

• Language Model Score (QueryLMDIRTweet,
QueryLMJMTweet, QueryLMABSTweet): We utilize
the KL-divergence language model based retrieval
method to measure the relevance between query

language model θ̂Q and tweet language model θ̂T .
The smoothing methods we use for language model
are: (1) DIR (Bayesian Smoothing with Dirichlet
Priors) smoothing, (2) JM (Jelinek-Mercer method)
smoothing and (3) ABS (Absolute Discounting
Smoothing).

LMSocre(T,Q) =
∑
w∈Q

P (w|θ̂Q) · logP (w|θ̂T ) (3)

Henceforth, we can generated 5 basic semantic score
features in total.

2.3.2 Semantic Expansion Features
As microblog retrieval suffers severely from the

vocabulary-mismatch problem (i.e. term overlap be-

tween query and tweet is relatively small), different
semantic expansion techniques can be leveraged to improve
the retrieval performance. In this section, we introduce
several semantic expansion features on basis of query
expansion and document expansion.

To extract features related to query expansion, we first
name the origin query offered by TREC’14 OriginQuery.
For a certain OriginQuery, we use two strategies to extend it:
(1) twitter corpus based query expansion and (2) web-based
query expansion. In twitter corpus based query expansion,
we first use TREC-API to get the top ranked tweet set.
Then, noun and verb terms from the top ranked tweet
are recognized as extension terms to generate a new query
(i.e. IssueQuery). Then, we generate the MergeQuery by
interpolating the OriginQuery and IssueQuery.

MergeQuery = α ·OriginQuery + (1− α) · IssueQuery (4)

where α is an interpolation parameter and we set it as 0.4 in
our system. In web-based query expansion, we submit the
query to Google Search Engine API 3 with time limitation
(before the query issue time). Noun and verb terms from
the returned top 5 tweets are extracted as extension terms
to generate a new query (i.e. WebQuery). To conclude,
we have four different queries: OriginQuery, IssueQuery,
MergeQuery and WebQuery.

To get a corpus from TREC API, we submit OriginQuery,
IssueQuery and MergeQuery to TREC-API to obtain three
retrieval result sets. We merge the three candidate result
sets and filter the same tweet to generate a corpus for the
re-ranking algorithm. We name it OriginCorpus. Regard-
ing to the importance of the URLs in tweet, we collected all
the external URLs contained in OriginCorpus and extracted
their title information for our document expansion process
[4]. Note that web pages might be deleted as time elapses,
we have only crawled a portion of the external URL set.
We name the title information corpus TitleCorpus. When

3http://developers.google.com/web-search



adding the title information to the original corpus, we name
the newly generated corpus DocExCorpus. After prepro-
cessing, we will have three different corpora: OriginCorpus,
TitleCorpus and DocExCorpus.

Now, we can generate lots of features via combining
different queries, corpora and retrieval models. In our
method, 120 features (4 × 3 × 5 × 2) have been generated.
Here, 4 stands for query count, 3 stands for corpus count,
5 stands for retrieval model count and 2 stands for whether
to use pseudo relevance feedback or not.

Note that we label the corpus generated by TREC as API
api corpus. Besides, we also crawled a local copy of tweets
from 1 February,2013 to 31 March,2013 via Tweet API, and
name it local corpus. That means we could generate another
120 features on local corpus and we use all of them in our
PKUICST3 run.

2.3.3 Document Quality Features
Unlike semantic score features and semantic expansion

features which are query-biased, document quality features
are tended to estimate the quality of a tweet. Some specific
features of social network services (SNS) can be used to
measure the quality and potential popularity in the entire
social network. Based on the assumption that users prefer
those tweets that are related with their query or popular in
the social network, we can conclude the following features:

• Time Difference (TimeDiff ): this feature represents
the time difference between the post time of the tweet
and the query issue time. A short time difference usu-
ally indicates the highly temporal relevance between
the tweet and the query.

• Mention Count (MentionCnt): ’@’ symbol followed
with a user’s screen name stands for mentions and
replies. A tweet with more ’@’ means this tweet may
attract more persons’ attention.

• Hashtag Count (HashtagCnt): ’#’ symbol (i.e.
hashtag) is used for organizing tweets into a particular
topic. A symbol ’#’ marks the tweet as belonging to
a particular topic.

• Shortened URL Count (URLCnt): the number of
shortened URLs may imply the tweet importance since
URLs are likely to provide additional information for
the origin tweets.

• Word Count of Tweet (WordCnt): this feature
represents the number of terms in a tweet (after
stopword removal) and it may suggest the quality
of tweets since longer tweet is likely to be more
informative.

• Length of Tweet Text (TweetLen): this feature
represents the length of tweet text (after stopword
removal) and it may suggest the quality of tweets since
longer tweet is likely to be more informative.

3. TTG TASK

3.1 System Overview
Our approach for TTG task mainly contains two steps: (1)

retrieve adequate relevant documents for each query, and (2)
utilize clustering algorithm to eliminate redundant tweets.

The architecture of our system is shown in Figure 3. Search
results are clustered so that tweets about the same/similar
topic are grouped together, and for each cluster only the
informative tweets are kept.

The submitted results for ad hoc search results (i.e. the
run labeled as PKUICST3) are used as the input source for
our TTG system, and we apply two strategies to choose
the relevant tweets for each query. One strategy is to
select the top N tweets whose ranking scores are greater
than a threshold score, which is determined by preliminary
experiments on the training topics. Another strategy is
to select the top ranked tweets manually for each query.
After selecting the relevant tweets, two clustering algorithms
are adopted in our system, one utilizing the star clustering
algorithm and the other taking classic hierarchical clustering
algorithm. Finally, we choose the most representative tweet
from each cluster for each topic as the final result of our
TTG system.

Ad hoc Search Result Collection

Relevant Tweets Generation

Clustering Algorithms

Training Set Test Set

Summarized Tweets Generation

TREC'11-12 Query TREC'14 Query

Figure 3: TTG System Framework

3.2 Clustering Algorithms

3.2.1 Star clustering algorithm
Given a query Q, star clustering algorithm first constructs

a pairwise similarity graph on the top N retrieved results
based on the Vector Space Model. For each pair of tweets
di and dj , their similarity score is computed by using cosine
score of their corresponding TF vectors vi and vj , that is

sim(di, dj) = cos(vi,vj) =
vi · vj

|vi| · |vj |
(5)

G = (V,E) is a similarity graph constructed by using a
similarity threshold parameter σ. The top N documents
compose vertex collection of G. If the similarity score
between di and dj is no less than σ, there would be a
weighted edge connecting them. Star clustering algorithm
[7] based on graph G is then utilized to generate the
summarized tweet timeline as described in Algorithm 1. σ
is the threshold parameter to determine whether document
di and dj have an edge in graph G. A large σ enforces
that the connected tweets have high similarities, and thus
the clusters tend to be small. Each cluster is star-shaped,
and we treat the center document as the most representative
tweet for the whole cluster.



Algorithm 1 star clustering algorithm

Input:
G = (V, E): vertex-weighted undirected graph.

Output:
Centers of star-shape clusters set S.

1: S = ∅
2: T = ∅
3: while T != V do
4: v∗ = nil
5: maxDegree = -1
6: for v ∈ V - T do
7: degree(v) = ‖ {v′ | (v′, v) ∈ E} \ T ‖
8: if maxDegree < degree(v) then
9: v∗ = v

10: maxDegree = degree(v)
11: end if
12: end for
13: S = S ∪ {v∗}
14: T = T ∪ {v′′ | (v′′, v∗) ∈ E}
15: end while
16: return S

3.2.2 Hierarchical clustering algorithm
Given a queryQ, we first get relevant tweet collection from

the input source. Here we say a tweet is relevant when its
score computed by the learning to rank component is greater
than a score threshold α, then we apply the agglomerative
hierarchical clustering algorithm with parameter β which
controls the clustering terminal condition to generate the
summarized tweet of each cluster. The algorithm is shown
in Algorithm 2.

Algorithm 2 hierarchical clustering algorithm

Input:
Relevant tweet collection R
Cluster merging threshold β

Output:
Clusters collection C

1: C = {R1, R2, · · · , Rn}
2: repeat
3: (Ci, Cj ,MinDistance) ← GetMinDistancePair(C)
4: MergeCluster(Ci, Cj)
5: until (MinDistance < β)
6: return C

Note that the distance between cluster ci and cj is
computed by the following equation:

Distance(ci, cj) = 1− sim( avg
dm∈ci

(dm), avg
dn∈cj

(dn)) (6)

where sim(di, dj) is the cosine similarity score between
document di and dj , and avg

dm∈ci
(dm) is the average document

in cluster ci which has the whole term and average term
frequency. Finally, we choose documents with the highest
ranking score in each cluster as the summarized tweets.

4. RESULT ANALYSIS
Table 1 show the retrieval performance of our submitted

four runs for ad hoc search task. The primary evaluation
metric for this year’s ad hoc search task is MAP (Mean

Average Precision). Among all the runs, PKUICST1 uses
learning to rank framework and adopts API corpus as can-
didate and API features as feature space; while PKUICST2
adopts local corpus as candidate and local features as feature
space. PKUICST3 uses API corpus as candidate and API
features plus local features as feature space. Unlike the pre-
vious three runs, PKUICST4 is an unsupervised run, which
uses a language modeling framework with pseudo relevance
feedback. More specifically, for the query modeling, we first
combine IssueQuery and WebQuery with a interpolating co-
efficient. Then the combined query is further updated with
the simple mixture model [8]. For the document modeling,
we use the empirical word distribution on DocExCorpus, and
choose Dirichlet smoothing method for model estimation.

From the table, we can observe that runs using learning
to rank framework have a better retrieval performance
than that only adopts language model (i.e. PKUICST4).
Meanwhile, under learning to rank framework, runs using
api corpus features (i.e. PKUICST1 and PKUICST3)
perform better than the run just using local corpus features
(i.e. PKUICST3) in terms of MAP score.

Table 1: Performance of submitted runs for ad hoc
search

Run ID MAP P@30
PKUICST1 0.5834 0.7242
PKUICST2 0.5648 0.7279
PKUICST3 0.5863 0.7224
PKUICST4 0.5422 0.6958

For the TTG task, the primary evaluation metrics are un-
weighted recall, weighted recall (i.e. recallw) and precision.
The run TTGPKUICST1 applies star clustering method
with tuned parameter σ = 0.7 and N = 200, while TTGP-
KUICST3 uses manually selected top N documents for each
query. Both TTGPKUICST2 and TTGPKUICST4 apply
hierarchical clustering method with distance threshold β =
0.3. Besides, the former one adopts score threshold α = 4.5
to select relevant tweets while the latter one employs man-
ually selected top ranked N tweets for each query.

Table 2 shows recall (unweighted and weighted), precision,
and F1 (unweighted and weighted) scores of different runs.
Note that the w superscript indicates the weighted variant
of the metric. The weighted version of the metrics attempts
to account for the fact that some semantic clusters are (in-
tuitively) more important than others. We can observe from
the table that TTGPKUICST1 shows significant superiority
in terms of unweighted recall and weighted recall over other
runs, while it performs poorly in terms of precision and F1

values. TTGPKUICST2 performs better in precision and F1

values compared with other runs. Besides, TTGPKUICST3
and TTGPKUICST4 have medium and stable performance
over all metrics. Both of them adopt manually selected top
N parameter for each query.

Note that we utilize the ten subtopics’ ground truth,
which are provided by the official organization as our
training set, to tune the threshold parameters for star
clustering and hierarchical clustering algorithms. In the
training set, there’s no need to judge which tweet is relevant
to the given query; while in the test set, our system has
to determine how many retrieved tweets should be regarded
as relevant tweets. Thus, the trained parameters may have



Table 2: Performance of submitted runs for TTG
Run ID Auto/Manual recall recallw precision F1 F1

w

TTGPKUICST1 Auto 0.5221 0.7016 0.2682 0.2691 0.3276
TTGPKUICST2 Auto 0.3698 0.5840 0.4571 0.3540 0.4575
TTGPKUICST3 Manual 0.4849 0.6583 0.3635 0.3496 0.4062
TTGPKUICST4 Manual 0.5174 0.6615 0.3664 0.3579 0.4057

a certain amount of deviation with optimal parameters for
the test set. This may lead to the low precision of our four
runs as it is hard for the system to trade off between the
recall and precision. Further investigation and experiments
are required to solve this issue.

5. CONCLUSION
In this paper, we present our systems for TREC 2014

Microblog track. In the ad hoc search, we apply a learning to
rank framework which utilizes not only the various content
relevance of a tweet, but also the quality of a tweet. In the
TTG task, we apply some traditional clustering algorithm,
i.e. hierarchical and star clustering on the retrieved tweets
from ad hoc search task. Experimental results show the
effectiveness of our systems for both tasks.
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