
HU DB at TREC 2014 Microblog Track
Jennifer Klein, Yishai Oltchik, Nerya Or, Sara Cohen

The Rachel and Selim Benin School of Computer Science and Engineering,
The Hebrew University of Jerusalem

Abstract—This paper describes our system for the Tweet
Timeline Generation (TTG) task of the Microblog track, at
the Text Retrieval Conference (TREC) 2014. Intuitively, given a
collection of microblog posts (i.e., tweets), and a keyword query
Q, the goal is to generate a timeline of related tweets. Such a
timeline consists of representative tweets, relevant to Q. In our
system we employ query expansion to identify highly relevant
tweets, and then use affinity propagation to cluster the tweets,
based on their word similarity, hashtag similarity and temporal
similarity. We then return a representative tweet from each
cluster. The result is a system with relatively good precision, but,
unfortunately, poor recall. We discuss the techniques employed,
as well as the insights gleaned while developing and testing our
system.

I. INTRODUCTION

Microblogging platforms, such as Twitter, Google+ and
Tumblr, are a popular means to share and discover timely
information. Such platforms differ from standard social net-
works, in that users post only short messages. As such, mi-
croblogging gives rise to new information retrieval challenges.
One such important challenge, which is the focus of this
TREC task, is that of summarizing non-redundant information,
relevant to a given information need. Both the problem of
finding relevant microblog posts, and that of grouping them
into disjoint clusters, is challenging, due to the brevity of
microblog posts.

The Microblog track at TREC 2014 focused only on Twitter,
and defined the following task, called the Tweet Timeline
Generation (TTG) task:

Task 1. Given a keyword query Q and a time cutoff t, retrieve
a timeline of the most informative tweets about Q which were
posted no later than t, where a timeline is simply a list of
representative tweets, sorted according to time.

As part of the TREC framework, an online API to a
historical Twitter dataset was made available. Keyword queries
were dispatched to the API and matching sets of tweets were
returned. We used only this API in our implementation, and no
additional external datasets. Our goal was to determine how
well queries can be answered in this fashion, i.e., whether
one must resort to additional external data in order to achieve
satisfactory precision and recall in such a setting.

The TTG task poses several inherent difficulties. First,
tweets are very short. Hence, determining whether a tweet
is relevant is a difficult task. Unlike longer documents, con-
sidered in standard information retrieval tasks, there are few
context clues that can help determine the tweet’s topic focus.
Second, as we are returning representative tweets, each such

tweet should be non-redundant, given the other tweets, i.e.,
tweets should each contain distinct information one from
another, and thus, every tweet containing distinctly different
information should be returned. Third, the system should not
return too many tweets, as the goal is to create a timeline
of representative related tweets, and not to exhaustively return
every related tweet. Thus, tweets similar one to another should
have a single representative in the final results.

We note that the second and third challenges give rise to
rather contradictory solutions. In order to make sure that all
representatives are returned (Challenge 2) one is motivated
to return many tweets. However, too many representatives
should not be returned (Challenge 3), and thus, among tweets
that are similar (but not identical) a single representative
should be chosen. To deal with these challenges, we clustered
the tweets and returned a single representative from each
cluster. As it turned out, choosing the correct cluster sizes
(and thereby determining the number of representatives) is
critical to achieving satisfactory recall. As we discuss later
on, our choice of too large clusters seems to have been a
determining factor which caused our system to have recall
that was insufficient.

This paper is organized as follows. Section II describes our
system. Empirical results of our submitted runs are presented
in Section III. In Section IV we discuss insights gleaned from
participation in this task. Finally, in Section V we conclude.

II. SYSTEM OVERVIEW

Given a keyword query Q and time t, our system proceeds
in three stages:

1) Find relevant tweets, for the given query.
2) Cluster the tweets into highly related semantic groups.
3) Choose a representative tweet from each cluster.

Finally, we return a timeline consisting of a time-sorted list
of representative tweets. Each of these stages is discussed in
detail below.

A. Generating a Corpus of Relevant Tweets

In the first stage, the system gathers tweets that seem to be
relevant to the given keyword query Q. To find such tweets,
we start by removing stop words from Q, thereby deriving
a new query Q1. We dispatch Q1 to the TREC API as a
conjunctive query. If Q1 returned no results, we attempt to
dispatch variations of Q in which one or more terms is omitted.
This gives us a first set of relevant tweets R1.



We then perform query expansion, to derive additional,
relevant, tweets as follows. Let W be the set of words w in
R1 that satisfy the following conditions:

• w is not a stop word;
• w appears in at least α|R1| of the tweets of R1.

Intuitively, w is a popular term in the results of Q1, and is
not a stop word, and hence, is likely to be relevant to query
Q. After some testing, we chose α = 0.2.

Now, if query Q1 contained at least i terms, we create
and dispatch additional queries, using the words in W . These
new queries are created in the following fashion. For each
word w1 in Q1 and each word w ∈ W , we create a query
Qw1↔w derived by swapping w1 with w. Note that a choice
of a sufficiently large i is necessary to avoid topic drift. In our
experiments, we often (but not always) chose i = 4. Additional
details appear in Section III.

Let R2 be the set of tweets containing both R1, as well as
the results derived by all queries created in the expansion pro-
cess. According the the TREC guidelines, we removed from
R2 tweets that are deemed to be “retweets” (i.e., duplicates of
other tweets, generated as a result of a user sharing a tweet
generated by another user), as well as non-English tweets.
We also removed duplicates tweets. Note that we removed
illegal tweets from R2 (and not from R1), as such tweets can
contain valuable information (such as frequent words), even if
they should not be returned to the user. Let R be the set of
remaining tweets. We use R in the next stages, to create our
clusters and final results.

B. Clustering the Tweets

In the second stage, we cluster the corpus of tweets R,
which was obtained in the first stage. The goal is to place
similar tweets in the same cluster. However, determining
whether tweets are similar is not a trivial problem. Our system
is based on three assumptions:

• Tweets containing similar sets of words are similar. This
is natural, as tweets using mostly the same words are
likely to be on the same topic.

• Tweets containing similar hashtags are similar. Hashtags
are essentially labels, chosen by the microblog poster, to
describe his or her tweet. If users choose the same labels,
their tweets are likely to be on the same topic.

• Tweets that were tweeted close in time one to another are
similar. Since many tweets are tweeted based on breaking
events, if users post tweets at similar times, their tweets
are likely to be in reaction to the same event.

We now consider how to turn each of these assumptions into
a numerical similarity score.

Let t1 and t2 be tweets.

Definition 1 (Word Similarity). Let B(ti) be the bag of words
derived by (1) removing stop words from ti and (2) stemming
all remaining words. Then, the word similarity of t1 and t2,
denoted dword(t1, t2), is the normalized Dice coefficient over

B(t1) and B(t2), i.e.,

dword(t1, t2) =
|B(t1) ∪ B(t2)| − 2|B(t1) ∩ B(t2)|
|B(t1) ∪ B(t2)| − |B(t1) ∩ B(t2)|

.

Note that bag union and intersection is used in the above
formula.

Definition 2 (Hashtag Similarity). Let H(ti) be the set of
hashtags in ti. Then, the hashtag similarity of t1 and t2,
denoted dhash(t1, t2), is the Jaccard coefficient of H(t1) and
H(t2), i.e.,

dhash(t1, t2) = 1− |H(t1) ∩H(t2)|
|H(t1) ∪H(t2)|

.

Finally, we define the temporal similarity of tweets t1 and
t2.

Definition 3 (Temporal Similarity). Let m be the maximal time
difference between the timestamps of any two tweets in R. Let
ts(ti) be the timestamp of ti. Then, the temporal similarity of
t1 and t2, denoted dtime(t1, t2) is defined as follows

dtime(t1, t2) = 1− gm(|ts(t1)− ts(t2)|) ,

where gm is the Gaussian bell curve formula where parameter
σ is chosen to be a linear function of m.

In order to compute the distance between t1 and t2, we used
a linear combination of the three similarity measures defined
above. We considered three weighting schemes:
• Equal Weight: In this weighting scheme, we gave equal

weight to all three parameters, based on the intuition that
a priori, it is not known which is the most important, i.e.,

deqWeight(t1, t2) =

dword(t1, t2) + dhash(t1, t2) + dtime(t1, t2)

3
.

• Decreased Temporal Weight: Due to the large number of
tweets that are posted at any given moment in time, it is
likely that many unrelated tweets will be posted at the
same time. Hence, in this scheme, we give lower relative
weight to temporal similarity, defining,

dlowTemporal(t1, t2) =

5 (dword(t1, t2) + dhash(t1, t2)) + 2 · dtime(t1, t2)

12
.

• No Temporal Scoring: Finally, in our last weighting
scheme, we completely ignored temporal similarity, as
this factor may sometimes be more misleading than
helpful, and defined

dnoTemporal(t1, t2) =
dword(t1, t2) + dhash(t1, t2)

2
.

Now, given a tweet distance function d (which is one
of deqWeight, dlowTemporal, or dnoTemporal), we create a
distance matrix Md, with dimensions |R| × |R|. The entry
in place Md[i, j] is simply d(ti, tj), where ti and tj are the
i-th and j-th tweets in R. Note that identical tweets will have
distance 0, and the largest possible distance value is 1.



Finally, we cluster the tweets using Md with the Affinity
Propagation clustering algorithm [1]. Affinity Propagation is
an iterative algorithm that uses message passing between
samples in the data set in order to determine which sam-
ples are best exemplified by which other samples. One of
the significant advantage of Affinity Propagation over other,
more standard, clustering algorithms, is that the number of
clusters does not have to be predetermined. This was a distinct
advantage in the context of the TREC TTG task.

C. Cluster Representative Selection

In our third, and final stage, for each cluster C created
in the second stage, we choose a representative tweet. This
is necessary in order to generate the final desired result—a
timeline of informative tweets.

Let C be a cluster of tweets. Two ideas were used in order
to choose a representative for C:
• Centrality: Intuitively, the closer a tweet is to the entire

cluster, the more similar it is to all tweets in the cluster.
Formally, for t ∈ C, and a tweet distance function d, we
define

centd(t, C) =
1∑

t′∈C d(t, t
′)
.

• Amount of retweets: Tweets which were shared many
times by other users were deemed highly relevant by real
users. Hence, such tweets received a boost in ranking.
Formally, we define retweet(t) as the number of times
that t was retweeted.

For a representative tweet rep(C) of C, we chose the tweet
t in C that maximized the combined centrality and retweet
scores

rep(C) = argmax
t∈C

(centd(t, C) + retweet(t)) .

In our implementation, we also considered different ways of
combining these two factors, with similar results derived.

III. RESULTS

A total of 4 runs were submitted by our team, denoted
Standard, SR, SRTD and SRTL. These runs differed one from
each other in our choice of i (the minimal size of queries
for which expansion is performed) and d (the tweet distance
function). These choices appear in Table I.

Run Name i d

Standard 3 deqWeight

SR 4 deqWeight

SRTD 4 dlowTemporal

SRTL 4 dnoTemporal

TABLE I
RUN PARAMETERS.

TTG task outputs are assessed according to two metrics:
precision and recall. Precision is measured as the ratio of
semantic clusters represented, divided by the total size of the

Fig. 1. Unweighted recall vs. precision of all submitted TREC microblog
runs.

Fig. 2. Weighted recall vs. precision of all submitted TREC microblog runs.

result set. Recall is defined as the ratio between the number
of semantic clusters represented and the actual number of
semantic clusters that exist in the dataset, as determined by
a human assessor. Additionally, a weighted variant of scoring
was used, in which tweets that were marked as highly relevant
by the human assessors contributed twice as much weight to
the score of results that contained them.

Table II shows the results of our submitted runs. Fig-
ures 1 and 2 are scatter-plots of the results of all runs submitted
by teams participating in the 2014 TREC microblog track.
Within these figures, our results form a cluster around the
top-left area, displaying high precision but relatively low recall
performance. The low recall reflects the fact that our system
tends to partition the tweet corpus into fewer large clusters,
rather than many small ones.

IV. LIMITATIONS AND SUGGESTED IMPROVEMENTS

The TTG task was new for 2014, and thus, this was
our first time in participating in such an initiative. In this



Run Unweighted Recall Weighted Recall Precision

SR 0.0780 0.2481 0.5905
SRTD 0.0868 0.2764 0.5798
SRTL 0.0942 0.2851 0.5615
Standard 0.0850 0.2759 0.5337

TABLE II
RESULTS OF OUR SUBMITTED RUNS: UNWEIGHTED/WEIGHTED RECALL, AND PRECISION.

section we discuss insights, system limitations and suggested
improvements, gleaned in a post-mortem, from our system
results. It is our hope that these will be useful for others,
interested in solving the TTG task (or similar problems) in
the future.

Fixed parameter values. Our choices of i and d were
fixed within a run. However, in practice, it is apparent that
different choices were preferable for different queries. More
experimentation is needed to learn query properties that imply
preference for one set of parameters over another. If such
learning is accomplished, a single run could combine different
parameters for different queries, thus improving their results,
in general.

Going beyond stop-words. Our system used a coarse sepa-
ration of query terms into stop-words and non-stop-words. In
practice, finer distinctions were necessary to determine words
that are critical to a query, and should never be removed (i.e.,
swapped out) in the query expansion process. For example
in the query ‘Argo wins Oscar’, the term ‘Argo’ is critical
and it is virtually impossible to obtain a good set of results
when searching without this term. The term ‘wins’ is not a
stop-word, yet could have been omitted without incurring too
much query drift.

Grammar-based term modification during query expan-
sion. The corpus of tweets against which we applied queries
was available only via the API. Hence, we could not perform
stemming on this corpus. Thus, queries using terms in a
different grammatical form from that of a tweet, could not
return the tweet. A possible solution to this problem would
have been expanding the query with modified grammatical
forms of query terms, e.g., for the query ‘injuries by pets’,
one could expand with terms such as ‘injury’ and ‘pet’.

Using clustering to find representative tweets. Our system
was built leveraging the idea that by clustering tweets, and
choosing cluster representatives, one can create a timeline
of representative tweets. Our clustering technique created
relatively large clusters. At development time, this was deemed
to be an advantage to the system, i.e., that it succinctly
summarizes large numbers of tweets. In practice, our approach
towards choosing representatives did not agree with that of the
human assessors (who had many more representatives than us),

and thus, our system received very low recall scores. We note
that the semantic clusters created by the human assessors were
often singletons, and thereby giving clear preference by them
to large numbers of representative tweets.

Ontologies or external knowledge bases. Our system did
not employ any sort of ontology or external knowledge base
in order to better perform query expansion. As it turned out,
this was a bad design decision. As tweets are short, it is not
possible to find all related terms only by taking popular terms
within the first tweet set R1. Use of an external knowledge
base or ontology would have been helpful in overcoming this
difficulty, e.g., in queries such as “injuries by pets’, expanding
pets with dogs, cats, etc., using an ontology, would have been
beneficial.

Query expansion using hashtags. In Twitter, it is common
that an event has more than one hashtag associated with it.
Thus, by determining which hashtags are related to an event,
one can derive new relevant queries to run and obtain more
data. Thus, query expansion should proceed not only with
words, but also with hashtags. This was not included in our
system.

Ambiguous queries. Choosing relevant tweets and creating
timelines was made more difficult due the fact that (as
often happens in real life), queries were ambiguous, and
their interpretation as information needs were not available
during system development. Some queries were interpreted in
a very narrow fashion by the human assessors, e.g., ‘cherry
blossom Washington’ was interpreted as tweets expressing
interest in attending the National Cherry Blossom Festival in
Washington (and not information about cherries blossoming in
Washington). Obviously, query interpretation has a significant
effect on precision, but it is difficult to overcome this issue in
an information retrieval system.

In addition, the TTG task seems to be well fitted for
queries searching for information about events, as in such
a case it is natural for a timeline to be generated. On the
other hand, queries looking for specific information do not
seem to be suited for TTG. Some of the queries given for
the task fell into the second category, which made finding
representative tweets, in a timeline, more difficult. The ability
to automatically differentiate between such queries, and apply
different techniques, depending on query type, would be a



useful future system feature.

V. CONCLUSION

Our system employed a fairly simple mechanism, based
on query expansion and clustering, to solve the TTG task.
Even though external data sources were not used, relatively
high precision was achieved, with somewhat less satisfactory
recall. Besides providing system details, we have discussed
new directions and extensions that can help to significantly
boost the recall. We leave such implementations for future
work.

VI. ACKNOWLEDGMENTS

The authors were partially supported by the Israel Science
Foundation (Grant 1467/13) and the Ministry of Science and
Technology (Grant 3-9617).

REFERENCES

[1] B. J. Frey and D. Dueck. Clustering by passing messages between data
points. Science, 315:972–976, 2007.


