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Abstract 

This year we participate in the TREC Session Track Task 1. We adopt the Query Change Model (QCM), 
weighted QCM, re-ranking, clustering, and error analysis in our approaches. The QCM retrieval model is 
employed to combine all queries in a session. QCM allows documents that are relevant to any query in a 
session to appear in the final retrieval list. Weighted QCM combines queries unevenly based on a 
prediction of query quality. It is based on the following intuition: if a query does not bring any document 
that leads to a SAT-Click from the user, it suggests that this query is poorly formed. Our re-ranking 
module is based on implicit feedback from the user; in this case the SAT-Clicked documents. The module 
boosts a document’s ranking position if it has been SAT-Clicked in the session or in other sessions that 
share similar search topics. We apply K-means clustering algorithm to detect which sessions share similar 
search topics. Each unique term is one dimension of the vector and is weighted by its idf. We also apply 
session error analysis in RL3. From the query log, we first identify sessions with similar topics by 
clustering, then we use SAT-Clicks from most sessions to re-rank the documents for the sessions that the 
algorithm predicts as poorly issued sessions, i.e. more difficult session due to ill-form queries. Combining 
above approaches, we achieve a 20.9% nDCG@10 increment and a 13.0% P@10 increment from RL1 to 
RL2, and with utilization of the whole log data, we achieve a 4% nDCG@10 increment and a 0.5% P@10 
increment from RL2 to RL3. 

1. Introduction 

Session search involves multiple search iterations triggered by query reformulations to accomplish a 
complex search task. In our groups’ 2013 work [1], we model this interactive process of session search as 
a MDP process. In our 2014 work [3][4], we model it as a POMDP process. TREC 2014 Session track 
Task 1 intends to test whether we can utilize user interactions with a search engine in a session to improve 
search accuracy. The task data includes log data of 1021 sessions. The log data of each session records a 
sequence of queries q1,q2, … ,qn-1,qn triggered by users, where qn is the current query in the session. The 
log also contains retrieved ranking lists for each past query, q1 to qn-1. Finally the log data collects user-
clicked documents/snippets and the dwell time that users spend on each clicked document. There are three 
subtasks, RL1, RL2 and RL3. RL1 ignores all information in the session log and only relies on the current 
query to retrieve results. RL2 uses only information from current session to retrieve. RL3 uses any 
information in the session log to retrieve.  
We apply different technologies in each sub tasks. In RL1, we directly feed the last query of a session to 
Lemur Search Engine. The retrieval algorithm is set as Language Modeling with Dirichlet smoothing. The 
smoothing parameter mu is set as 5000. In RL2, we adopt QCM algorithm [1] where we combine all 
queries in a session to formulate effective structured queries. Each search term is assigned with a weight, 
which is calculated based on whether the term occurs in previous SAT-Clicked documents and whether 
the term is newly added or removed from previous query. Further more we decrease a previous query’s 
weight if the query didn’t bring any document, which leads to a SAT-Click from user. Finally we boost a 
document’s ranking score if it has been SAT-Clicked in the session. In RL3, we also apply QCM and 
decrease query weight if no SAT-Click documents are retrieved by it. And we boost a document’s 
ranking score if it is SAT-Clicked in sessions that belongs to the same or similar topic. We identify 



similar topics by clustering sessions based on query similarity using K-means clustering algorithm. 
Another tactic we applied in RL3 is to replacing bad session’s retrieval results with good session’s results 
whose search topic is similar. We evaluate session’s performance based on user’s click numbers.  
We organize this paper as follow. We discuss each technical approach in detail from Section 2 to Section 
7. In Section 8, we present our submissions and the evaluation results. In Section 9, we conclude our 
work. 

2. Ad-hoc Retrieval Model (Ad-hoc) 

Our RL1 approach directly uses the current query of each session as search terms. The retrieval algorithm 
is Language Modeling with Dirichlet smoothing [2]. The document d’s relevance score towards a search 
term t is calculated by formula: 

𝑃 𝑡 𝑞 =
𝑡𝑓 𝑡,𝑑 + 𝜇𝑃(𝑡|𝐶)
𝑙𝑒𝑛𝑔𝑡ℎ 𝑑 + 𝜇

 

where length(d) is document d’s length. P(t|C) is the probability that term t appears in corpus C. µ is the 
Dirichlet smoothing parameter and is set to 5000 in our experiment.  

3. The Query Change Retrieval Model (QCM) 

In session, users modify queries to better express their information needs. In Query Change Retrieval 
Model (QCM) [1], query changes are considered as relevance feedback to adjust query term weights. First, 
it defines Δqi=qi-qi-1 as the query change between two adjacent queries, qi-1 and qi. Then Δqi is divided 
into three parts: the added terms (+Δqi) the removed terms (−Δqi) and the theme terms (qtheme). 

Table 1    A Query Change Example (TREC 2014 Session 52) 
Session Queries Query Change Qtheme 
Session52 q1 = hydropower efficiency +Δq2 = environment hydropower 
 q2 = hydropower environment -Δq2 = efficiency  
 q3 = hydropower damage +Δq3 = damage  
  -Δq3 = environment  

Table 1 presents an example of query changes in TREC 2014 Session track. In query qi, query term 
weights are adjusted based on four types of strategies, WTheme, WAdd,In, WAdd,Out and WRemove [1]. The 
relevance score between query qi and a document d becomes: 

𝑆𝑐𝑜𝑟𝑒 𝑞!   ,𝑑 = logP 𝑞! 𝑑 + 𝛼𝑊!!!"! − 𝛽𝑊!"",!" + 𝜀𝑊!"",!"# − 𝛿𝑊!"#$%" 

Parameters α, β, ε and δ are the linear weighting coefficients for each type of strategies. They are set as 
α=2.2, β=1.8, ε=0.07 and δ=0.4 in our submission. The QCM model combines all queries in a session 
using formula: 

𝑆𝑐𝑜𝑟𝑒!"# 𝑞!..!,𝑑 = 𝛾!!!
!

!!!

𝑆𝑐𝑜𝑟𝑒(𝑞! ,𝑑) 

where γ is the discount factor for the prior queries in the session. In TREC Session track’s setting, 
evaluation is based on the whole session. The prior queries are equally important as current query, hence 
we set γ as 1 in our experiment. 

4 Weighted QCM 

QCM allows documents that are relevant to any query in a session to appear in the final retrieval list. 
When set parameter γ = 1, we combine all queries in a session evenly. However we argue that queries 



shouldn’t be evenly combined. Here we define two concepts, Strong SAT-Clicked document and Weak 
SAT-Clicked document. Strong SAT-Clicked document means a retrieved document that has been 
clicked by a user and he/she dwelled more than 30 seconds on this document. Weak SAT-Clicked 
document is also a clicked document but with dwell time more than 10 seconds and less than 30 seconds.  
We assume that dwell time on a clicked document indicates how relevant that document is. If a query 
doesn’t bring any document that leads to a SAT-Click from the user, it indicates that this query is poor 
formed. Hence these queries’ weight should be decrease. Weighted QCM combine queries based on query 
quality. Poor formed queries’ weight is decreased by a factor ω ∈ (0, 1). Its score function is: 

𝑆𝑐𝑜𝑟𝑒!"#$ 𝑞!..!,𝑑 = 𝑆𝑐𝑜𝑟𝑒!"#(𝑞! ,𝑑)
!!∈!!""#

+   𝜔 𝑆𝑐𝑜𝑟𝑒!"#(𝑞! ,𝑑)
!!∈!!"#

 

Qgood is the query set in which every query brings at least one SAT-Click from users. While Qbad is the 
query set in which every query brings zero SAT-Click from users. The current query is an exception. It 
brings zero SAT-Click because it has no retrieval results yet, however it belongs to Qgood.  

5 User-Click Model 

Since SAT-Click indicates a document’s relevance, we boost a document’s ranking score, if it is SAT-
Clicked by users.  

5.1 Session Level User-Click Model 

In this approach, we only use information in the current session. We boost a document’s ranking score if 
it has been SAT-Clicked in the current session. The score function is: 

𝑆𝑐𝑜𝑟𝑒!"!!#$%!!"#!$ 𝑞!..!,𝑑 = 𝑆𝑐𝑜𝑟𝑒!"# 𝑞!..!,𝑑 + 𝑆𝑐𝑜𝑟𝑒!"!!#$%!!""#$(𝑞!..!,𝑑) 

𝑆𝑐𝑜𝑟𝑒!"!!#$%!!""#$ 𝑞!..!,𝑑 =
  𝜓 𝑆𝑡𝑟𝑜𝑛𝑔𝑆𝐴𝑇𝐶𝑙𝑖𝑐𝑘𝑠! +   𝜃|𝑊𝑒𝑎𝑘𝑆𝐴𝑇𝐶𝑙𝑖𝑐𝑘𝑠!|

(  𝜓 𝑆𝑡𝑟𝑜𝑛𝑔𝑆𝐴𝑇𝐶𝑙𝑖𝑐𝑘𝑠!! +   𝜃 𝑊𝑒𝑎𝑘𝑆𝐴𝑇𝐶𝑙𝑖𝑐𝑘𝑠!! )!!∈!"!!#$%
 

Where |StrongSATClicksd| is the number of times that document d is strongly SAT-Clicked in the current 
session. |WeakSATClicksd| is the number of times that d is weakly SAT-Clicked. The boosting score is 
normalized by the total number of SAT-Clicks in the session. We experimentally set ψ=2 and θ=1. 

5.2 Topic Level User-Click Model 

This approach is similar to the Session Level User-Click Model. The difference is that instead of only 
using the information in the current session, we utilize information in all sessions that share similar search 
topics. We cluster sessions based on their search topics. The cluster algorithm is described in detail in 
Section 6. We boost a document’s ranking score if it has been SAT-Clicked in sessions that share similar 
search topics with the current session. The score function is: 

𝑆𝑐𝑜𝑟𝑒!"#$%&'!!"#!$ 𝑞!..!,𝑑 = 𝑆𝑐𝑜𝑟𝑒!"# 𝑞!..!,𝑑 + 𝑆𝑐𝑜𝑟𝑒!"#$%&'!!""#$(𝑞!..!,𝑑) 

𝑆𝑐𝑜𝑟𝑒!"#$%&'!!""#$ 𝑞!..!,𝑑 =
  𝜓 𝑆𝑡𝑟𝑜𝑛𝑔𝑆𝐴𝑇𝐶𝑙𝑖𝑐𝑘𝑠! +   𝜃|𝑊𝑒𝑎𝑘𝑆𝐴𝑇𝐶𝑙𝑖𝑐𝑘𝑠!|

(  𝜓 𝑆𝑡𝑟𝑜𝑛𝑔𝑆𝐴𝑇𝐶𝑙𝑖𝑐𝑘𝑠!! +   𝜃 𝑊𝑒𝑎𝑘𝑆𝐴𝑇𝐶𝑙𝑖𝑐𝑘𝑠!! )!!∈!"#$%&'
 

Where Cluster is a set of sessions that share similar search topics with the current session. 
|StrongSATClicksd| is the number of times that document d is strongly SAT-Clicked in the Cluster. 
|WeakSATClicksd| is the number of times that d is weakly SAT-Clicked. The boosting score is 
normalized by the total number of SAT-Clicks in the Cluster. We also set ψ=2 and θ=1. 

6 Clustering 



We cluster sessions based on search topics by comparing queries’ similarity between different sessions.  

• First, we combine all queries in one session and convert it into a term vector. Each unique search 
term is one dimension of the vector. 

• Then, we assign terms’ idf value as weight to each term dimension. 
• Finally, we cluster sessions based on the Euclidean distance of their query vectors. 

We use K-means clustering algorithm and set K as 60, which is the number of distinctive topic ids in the 
log file.  This number may not be obtainable in a real search environment. We can train it or choose a 
relatively large K in such situation. Other clustering algorithms without requirement of predetermination 
of cluster numbers could be other alternatives, however we didn’t explore them in our experiments. 

7 Session Performance Prediction and Replacement 

We detect a specific schema in sessions that share similar search topics, most of which contain SAT-
Clicks, however a few do not. It indicates that for the few sessions, the bad retrieval results may be caused 
due to ill formed queries rather than difficult search tasks. For these sessions, we replace their retrieval 
results with good session’s results whose search topic is similar.  

Table 2 Features Extracted from Session Data Log 
Feature Definition 
F1 The user’s intent of session s is to make comparison among two or more items. 
F2 The user did not click any retrieved document in session s. 
F3 𝑡!"#$$ ≤5s. 
F4 # of unique terms in the session s≥20. 
F5 

𝑡!"#$$_!"#_!"#!$ <
𝑡!"#$$_!"#_!"#!$
(!)

2
 

F6 Session s does not contain the most frequent term in T(s).  
F7 # of unique terms in session s≤6 
F8 #  𝑜𝑓  𝑆𝐴𝑇  𝑐𝑙𝑖𝑐𝑘𝑠  𝑖𝑛  𝑠𝑒𝑠𝑠𝑖𝑜𝑛  𝑠 <

#  𝑜𝑓  𝑆𝐴𝑇  𝑐𝑙𝑖𝑐𝑘𝑠  𝑖𝑛  𝑠𝑒𝑠𝑠𝑖𝑜𝑛  𝑠′!!∈!(!)

|𝑇(𝑠)|
 

In order to identify good sessions from bad sessions automatically, we extract eight features from session 
click data log. For convenience, we introduce some symbols firstly. For each session s, let us use 𝑡!"#$$   to 
denote the user’s total dwell time in the whole session and calculate the average dwell time 
𝑡!"#$$_!"#_!"#!$   as 

𝑡!"#$$_!"#_!"#!$ =
!!"#$$

#  !"  !"#!$%  !"  !"!!#$%  !
. 

Then all the average dwell times are sorted in a descending order, 

𝑡!"#$$_!"#_!"#!"
(!) , 𝑡!"#$$_!"#_!"#!$

(!) , 𝑡!"#$$_!"#_!"#!$
(!) ,   … 

Moreover, we use T(s) to represent the topic cluster including s. Based on the above symbols, all the 
features can be listed in Table 2. 
Here, F1 is set up to deal with a shortcoming of QCM. According to our experience, when applying QCM 
to session search, the nDCG scores are often small in case that the user try to compare several items in 
one session. For example, the user may want to compare different infant developmental milestones 
depending on culture through posing a query like “culture difference in milestones in 0-12 month olds”. 
This is an example from the 111th session in Session Track 2014. We treat one session as this kind when 
the queries include terms with patterns like “compare”, “differ”, “versus”, “vs” and “v.s.”.  



All the eight features are Boolean, i.e. should be TRUE or FALSE. For each feature Fi (i=1,2,…,8), we 
count the number of sessions satisfying Fi=TRUE. For each session s, an estimation score scoree(s) is 
calculated as follows: 

𝑠𝑐𝑜𝑟𝑒! 𝑠 =
1

#  𝑜𝑓  𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑠  𝑠𝑎𝑡𝑖𝑠𝑓𝑦𝑖𝑛𝑔  𝐹! = TRUE

!

!!!

∗ 𝐼(𝐹!) 

where I(Fi) is an indicator function. It returns 1 if session s satisfies feature Fi, otherwise it returns 0. All 
the sessions are ranked according to their estimation scores. The top 1/3 sessions are regarded as bad 
sessions and the others are regarded as good sessions. 

8 Experiments 
8.1. Data preparation 

We run our experience on dataset Clueweb12 CatA. It consists of 733,019,372 English web pages, 
collected between February 10, 2012 and May 10, 2012. Spam documents are filtered out based on their 
Waterloo Spam scores.  

8.2. Submission 

Table 3 TREC 2014 Session Track Submissions 
 GUS14RUN1 GUS14RUN2 GUS14RUN3 

RL1 • Ad-hoc Retrieval Model • Ad-hoc Retrieval Model • Ad-hoc Retrieval Model 
RL2 • Weighted QCM 

(ω=0.65) 
• Session Level User-

Click Model 

• Weighted QCM (ω=0.8) 
• Session Level User-

Click Model 

• Weighted QCM (ω=0.8) 
• Session Level User-Click 

Model 

RL3 • Weighted QCM 
(ω=0.65) 

• Topic Level User-Click 
Model 

• Weighted QCM (ω=0.8) 
• Topic Level User-Click 

Model 

• Weighted QCM (ω=0.8) 
• Topic Level User-Click Model 

using topic ids 
• Session Performance 

Prediction and Replacement 

Table 4 nDCG@10 and P@10 for top 100 sessions 
 GUS14RUN1 GUS14RUN2 GUS14RUN3 Max Med 
 nDCG@10 P@10 nDCG@10 P@10 nDCG@10 P@10 nDCG@10 P@10 nDCG@10 P@10 
RL1 0.2053 0.378 0.2053 0.378 0.2053 0.378 0.3890 0.629 0.1549 0.348 
RL2 0.2458 0.426 0.2482 0.427 0.2482 0.427 0.4865 0.712 0.1626 0.372 
RL3 0.2443 0.423 0.2458 0.424 0.258 0.429 0.5111 0.744 0.1790 0.404 

 
Table 3 lists our submissions in TREC 2014 Session Track and their configurations. We submit three runs 
in total: GUS14RUN1, GUS14RUN2 and GUS14RUN3. Each run contains three ranking lists, one for 
task RL1, one for task RL2 and one for task RL3.  

It is worthwhile to point out that in GUS14RUN3 task RL3, we apply Topic Level User-Click differently. 
Here we did not using clustering to determine sessions that share similar search topics, instead we directly 
apply topic id in the log file to determine session topic’s similarity. By doing this we can evaluate the 
effectiveness of applying the clustering method in Session Search. Further when we apply Session 
Performance Prediction and Replacement, we also use topic id to determine session clusters. We don’t 
use clustering to determine session clusters, because clustering is based on comparing query similarity. If 



the queries are similar, then the retrieval performance should be close too. Hence it is difficult to find a 
good session to replace bad sessions when sessions are clustered by query similarity. 

8.3.  Results 

Table 4 shows the evaluation results of our submissions. The result shows that by utilizing current session 
information, we achieve a 20.9% nDCG@10 increment and a 13.0% P@10 increment from RL1 to RL2, 
and with utilization of the whole log data, we achieve a 4% nDCG@10 increment and a 0.5% P@10 
increment from RL2 to RL3. All submissions achieve a significant performance improvement from RL1 
to RL2, however only GUS14RUN3 achieves a small improvement from RL2 to RL3. It may be caused 
by the features of Session track tasks. The search tasks are relatively complex. There are rich interactions 
in the session to help search engine to infer user intent. However there are few similar sessions can be 
used to recommend good documents for the current session. GUS14RUN2 RL3 and GUS14RUN3 RL3’s 
performances are close, which suggests that clustering sessions by query similarity is as good as directly 
using topic ids. GUS14RUN3’s RL3 gets highest P@10 scores in 20 sessions out of first 100 sessions. It 
proves that our approaches are highly effective. 

9. Conclusion 

We apply a combination of several technologies to TREC 2014 Session track. We achieve a significant 
performance boost from RL1 to RL2, and a small improvement from RL2 to RL3. The evaluation results 
suggest that 1) considering previous queries and the current query is suitable for session search task; 2) 
user SAT-Clicks is useful to estimate query quality and document relevance; 3) clustering sessions by 
query similarity is effective; 4) in session search, a session itself contains rich interaction information 
which can be used to improve search accuracy. 
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