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Abstract

The University of Waterloo participated in the Tem-
poral Summarization Track at TREC 2013 and sub-
mitted 8 runs for the Sequential Update Summariza-
tion Task. Methods like query likelihood ranking,
pseudo relevance feedback, BM25 and cosine similar-
ity, as well as, algorithms for passage retrieval and
term expansion using distributional similarity to a
set of seed words, were used for returning relevant
sentences from a stream of time-ordered documents.
Higher scores relative to the average score for all
submitted runs were achieved on the Latency Com-
prehensiveness Metric (returning as many nuggets as
possible), however, submitted runs performed poorly
on the Expected Latency Gain Metric (speediness of
updates).

1 Introduction

The Temporal Summarization Track allows re-
searchers to investigate the problem of retrieving rel-
evant material from a collection that is dynamic in
terms of size and is ordered by time. This closely re-
flects real world applications in the way documents
are generated (on the web) and then collected and
processed by information retrieval systems. In ad-
dition, by enforcing the retrieval unit to be a sen-
tence, the track encourages researchers to develop al-
gorithms that not only are capable of handling high-
volume document streams but are also adept at find-
ing specific highly relevant content within the stream.

Although iterations of the Microblog Track [5] ad-
dress the problem of a time ordered document stream,
the documents are short blurbs of at most 140 char-
acters. The collection used for the Temporal Summa-
rization Track is much more diverse and contains web
documents of various lengths and content types like
news articles, blogs and forums. The text in the doc-
uments was also tagged with Named Entities, which

could possibly be used for improving retrieval perfor-
mance.

Our motivations for participating in the track were
manifold. We wanted to understand: how to work
with a time-ordered document stream; if the meth-
ods used for past Microblog tracks would work for
Temporal Summarization; if fundamental algorithms
would return relevant sentences with adequate per-
formance on the metrics. We were also driven by the
fact that the track’s task of providing speedy news
updates has direct real world applications.

Techniques like cosine similarity, query likelihood
ranking, pseudo-relevant feedback, passage retrieval,
Okapi BM25 and term expansion using distributional
similarity to a set of seed words, were employed to
find and rank relevant sentences from the corpus. The
collection was processed and converted to a form that
was flexible enough to support the application of the
techniques. It was found that our approaches find
relevant sentences (within a given time-frame), how-
ever, getting speedy/early relevant updates may re-
quire a different approach than the one described in
this work.

1.1 Track Description

The Temporal Summarization Track at TREC 2013
1, aims to return short relevant updates about an
event from a time-ordered stream of documents.
TREC 2013 is the first iteration for this track and
consisted of two tasks. Task 1, Sequential Update
Summarization (SUS), required finding relevant and
novel updates (sentences) for an event. Task 2, Value
Tracking, required estimating values for a particular
attribute for an event.

A participant was required to simulate a system as
follows:
Input1: a time ordered stream of documents
Input2: topic description with query (event), start

1http://www.trec-ts.org/



<event>

<id>1</id>

<start>1329910380</start>

<end>1330774380</end>

<query>buenos aires train crash</query>

<type>accident</type>

<locations/>

<deaths/>

<injuries/>

</event>

Figure 1: Example Query: “buenos aires train crash”.

time, end time, type of event ∈ {accident, bombing,
earthquake, shooting, storm}, attributes ∈ {deaths,
displaced, financial impact, injuries, locations}.
Output:
Task 1 : Sentences relevant to the query between start
and end times
Task 2 : Estimate of the values for the attributes in
the query as time progresses.
Constraints: we cannot use corpus statistics (or ex-
ternal corpora) that are in the future with respect to
the query start time.

Figure 1 shows a query of type accident. The
“user” wants to be updated about attributes like lo-
cations, deaths, injuries for the given accident. The
query spans 10 days (240 hours) starting 2012-02-22-
11. A training topic “iran earthquake” (referencing
the 2012 East Azerbaijan earthquake), along with rel-
evant nuggets was provided by the track organizers.

Two metrics, Expected Latency Gain (ELG) and
Latency Comprehensiveness (LC), were developed
by the track organizers to measure the quality of runs.
ELG (when only considering binary relevance) can be
thought of as similar to traditional precision except
that runs are penalized for delaying the emission of
relevant updates. LC is analogous to traditional re-
call and it measures the coverage of relevant nuggets
in a run. The University of Waterloo submitted 8
runs for the SUS task. We achieved above average
performance with respect to LC for most of the runs,
but performed poorly with respect to ELG.

2 The Preliminaries

Described in this section are the steps that were taken
to process the KBA stream-corpus2, the time-ordered
document collection for the track. The corpus was
converted to a TREC-style document formatting and

2Details available at http://trec-kba.org/

kba-stream-corpus-2013.shtml

<doc>

<docno>...</docno>

<lang>..</lang>

<abs_url>...</abs_url>

<original_url>...</original_url>

<time>...</time>

<tagger>...</tagger>

<sentences>

...

</sentences>

</doc>

Figure 2: Outline of the TREC-style format of Doc-
uments.

all documents within the query time were scored us-
ing query likelihood model. Sentences were extracted
for output only from those documents that had query
likelihood scores above a specified threshold. The fol-
lowing subsections elaborate on our corpus prepro-
cessing steps.

2.1 Corpus Collection and Prepro-
cessing

The KBA Corpus was downloaded locally in late
May 2013. Once the corpus was secured, the C++
thrift sample from https://github.com/trec-kba/

streamcorpus was modified to allow an examination
of the content provided by the Thrift format. On ex-
amination of the Named Entity Tags in the document
text, it was seen that some tagged elements did not
appear to correlate well with their intended mean-
ing. Therefore, these tags were ignored during pre-
processing as they could also be generated at a later
stage. Further, it was decided that the document
chunks would be converted from their Thrift format
to a TREC-style format to facilitate easier processing
and avoid the Thrift processing overhead. Figure 2 il-
lustrates the TREC-style format that each document
was converted to. Note that: <time> refers to the
Epoch timestamp, <tagger> refers to the sentence
tagger, and <sentences> is a list of the sentences in
the document, such that each sentence in the Thrift
format corresponds to a line in the sentences field.

2.2 Initial Wumpus Attempt

Initially, the search engine of choice was the Wum-
pus Search Engine 3, which implements the rank-
ing algorithm described in Section 2.4 (as well as

3http://www.wumpus-search.org



others) and various forms of pseudo-relevance feed-
back (PRF). However, there were three main issues
in getting the KBA corpus to work with Wumpus:
(1) Wumpus would not index some documents of the
type MAINSTREAM NEWS and it was uncertain how such
removal would affect run performance, (2) duplicate
document identifiers are present in the corpus and
it would have required significant preprocessing to
remove them and allow Wumpus to index the col-
lection, (3) Wumpus indexes documents in the order
they were received and accordingly would either re-
quire extensive preprocessing of the hourly blocks or
delaying return to the end of the hour. Due to these
issues, it was decided that Wumpus should be re-
placed with our own solution to facilitate formulation
of runs.

2.3 Hour-Wise Query Likelihood with
Dirichlet Smoothing

The time-ordering of documents was a major hurdle
to overcome when using the corpus. Even if an index
could have been built with Wumpus, it could have
been difficult to limit the collection statistics to times
before the start times of each query. A further com-
plication was that the documents in the collection,
though grouped together in hours, were not ordered
within the hour.

The following procedure outlines our process for
generating runs:

1. Rank documents using query likelihood.

2. Extract ranked documents (above specified
threshold) from the collection (Document Set S).

3. Process ranked documents in order of increasing
time stamps and extract relevant sentences using
various algorithms.

4. Construct runs using the extracted sentences.

To facilitate techniques like PRF or re-ranking, as
well as steps 1 and 2, we converted the collection to
a “reduced” form with:

i Each hour’s documents reduced to their term-
frequency feature vectors in one file, with each
line containing features of one document.

ii Each hour’s documents’ metadata in a file with
each line containing doc-id, source .gz file of the
document, document timestamp and document
length.

iii Each hour’s vocabulary and term-frequency
(hour-term-counts) in a file.

iv Other statistics of interest like the number of
terms in the collection (lC) up until that hour
and the number of terms in each hour (lH), were
also noted.

This reduced dataset (approximately 600 GB com-
pressed) helped us in computing (using cumulative
sum of hour-term-counts) the collection statistics
up to a query’s start time and continue on to the
query’s end time easily. Of course, this resulted in
the collection statistics being updated every hour and
not for every time-ordered document in the stream as
it becomes available to rank.

2.4 Computing hour-wise Document
Scores

Language Modeling with Dirichlet smoothing (LMD)
was used to score documents with respect to the
query (as described in section 9.3 of Büttcher et al.
[1]), as shown below:

scoreLMD =
∑
t∈q

qt ·log
(

1 +
ft,d
µ
· lC
lt

)
−n·

(
1 +

ld
µ

)
(1)

where, t is the term, q is the query term vector, qt
is the term frequency of t in the query, ft,d is the
term frequency of t in document d, lC is the length
of the collection (the total number of times all terms
appear in the collection), lt is the number of times
the term t appears in the collection, and µ is the
Dirichlet smoothing factor. For our experiments we
set µ = 1000.

Given the query, its start time and end time, and
the reduced corpus, a query.score file was gener-
ated for each hour between the start and end times
containing for each document in that hour: its docu-
ment id, document timestamp, and scoreLMD. The
following algorithm was used to compute LMD and
collection statistics:

for each hour from collectionStart_time \

until query start_time:

l_t += hour-term-counts(t)

l_C += l_H

end for

for each hour from query start_time \

until query end_time:

for each document in hour:

compute LMD score for document

write out LMD score to query.score file

end for

update l_t and l_C for the hour

end for



It was found during testing that the corpus had
duplicate document identifiers. Further, the content
within each duplicate was different, resulting in dif-
ferent scores. It was decided that all documents that
shared document identifiers would be ignored, even
if they were relevant. Hour-wise LMD worked out
favourably here because it allowed duplicate docu-
ments to be easily identified and ignored using the
query.score files.

Once the documents were ranked for a query, all
documents with scoreLMD > 0 were extracted from
the corpus for further processing (document set S).
A score greater than zero would mean that the doc-
ument contains query terms with a reasonable fre-
quency while being of reasonable length. Note that
the threshold was not set after observing the scores
of all documents, or to ensure a definite number of
documents in the result set. Rather, the aim was to
find all documents that were likely to be relevant and
hence the cut-off threshold of 0. An arbitrary score
cut-off does not break the system simulation as spec-
ified by the track guidelines, whereas a fixed number
of top ranked documents for every hour would.

3 Runs CosineEgrep and
NormEgrep

The runs in this section were intended to be base-
line approaches and aimed to explore the differences
in the two similarity measures. Accordingly, both
runs for each hour ran egrep over documents in S
and extracted all lines that contained any word in a
list of synonyms with the event type. The list of syn-
onyms was hand-crafted by one of the authors. Table
1 lists the queries provided to egrep. Note that for
the submitted runs the ignore case option of egrep
was not used. The results of using the ignore case
option are reported in Table 8. Inclusion of lines re-
turned through the ignore case option, increased the
number of sentences for each topic across the board
(except Topic 7) with substantial increases for Topics
3, 5, and 6, which saw 1M+ increases.

Once the sentences were collected from S, they
were processed first in order of their document id and
then their order within a document. A sentence was
selected to be emitted for a topic if it was sufficiently
dissimilar to the previously emitted sentences. Two
similarity metrics were used on a feature vector com-
prising of the following: the frequency of each lower
case character, the frequency of each upper case char-
acter, and the frequency of each digit (e.g. 0-9). This
results in a feature vector of 62 elements which is the
basis for the 2-norm based similarity metric.

Event Pattern
Accident “accident|calamity|casuality

|disaster|hazard|mishap|pileup
|setback|collision|fender-
bender|smash”

Bombing “bombing|bomb|explosion|device
|explosive|charge|shell|projectile
|rocket|missile|mine|homemade
|terrorist|detonate|timer”

Earthquake “earthquake|shock|fault|quake
|shake|shaking|tremor|fault|temblor
|quake|quaking”

Shooting “shooting|shots|shot|fired|firing
|gunfire|gun|gunning|trigger|bullet
|machine|fire|terrorist|firefight
|automatic|rifle|shotgun”

Storm “storm|blast|blizzard|cyclone
|disturbance|downpour|gale|gust
|hurricane|monsoon|snowstorm
|squall|tempest|tornado|twister
|windstorm”

Table 1: Patterns issued to egrep for each query.

Sperling et al. specify the 2-norm based metric
in their work on identifying duplicates in legal e-
discovery [6]. The formula used in this work was as
follows:

‖x− q‖ >= γ‖q‖ (2)

where x is the feature vector corresponding to a can-
didate sentence, q the feature vector for a previously
emitted sentence, and γ affects how dissimilar a sen-
tence must be before a document is emitted. Sper-
ling et al. prescribe a γ of 0.25 or 0.5, however, in
some very crude experiments with the training topic a
value of 0.75 was selected as other values appeared to
either be too restrictive or too permissive. Although,
a more rigorous study would need to be conducted to
make any conclusions.

The second similarity metric was the standard co-
sine similarity metric such that a cosine of greater
than 0.5, which corresponds to a 60 ◦ between the two
vectors, was used to indicate that a sentence was too
similar. However, little empirical testing was done to
select this value aside from some very rudimentary
experiments with the training topic. It is worth ac-
knowledging that this threshold is also very conserva-
tive with respect to the norm-based metric and that
both similarity metrics are conservative in general.

For both metrics, the score of a sentence was rel-
ative to its emission, i.e., the first sentence emitted
from the first document processed had the highest
score and subsequent scores would be monotonically



decreasing.

4 Runs UWMDSqlec2t25 and
UWMDSqlec4t50

The problem of identifying a “highly” relevant sen-
tence from a document lends itself to the pas-
sage scoring method described in section 9.6.1. of
Büttcher et al. [1]. Given the length of the collection
(counting all terms) lC , the number of times the term
t appears in the collection lt, the score for the passage
can be computed as

scorecover =
∑
t∈q′

(log(lC/lt))−m · log(l) (3)

where q′ is the subset (cover) of the query terms in
the passage, m is the number of query terms in the
passage (|q′|), l is the length of the passage. For
the track’s problem description, we consider each sen-
tence as a passage. As was done for scoreLMD, sen-
tences with scorecover ≤ 0 were ignored and consid-
ered not relevant (as described in section 2.4).

4.1 Overview of Process

This subsection describes the procedure that was fol-
lowed to generate runs UWMDSqlec2t25 and UMD-
Sqlec4t50.

For each query (event/topic),

1. Generate a background language model B for
the query. This language model would be used
to generate expansion terms through pseudo-
relevance feedback (PRF).

2. Get top 20 documents Dh in (current) hour h,
for the query.

3. Get top expansion terms Eh for hour h, using
the document set Dh.

4. Use top k terms from Eh to identify relevant sen-
tences from documents in hour h+ 1 of the doc-
ument stream.

5. Remove duplicate sentences.

The parameter k sets the number of terms chosen
to expand the query. In addition, only those docu-
ments that have at least c (query + expansion) terms
in them where chosen. This helps to prune docu-
ments with low number of query and/or expansion
terms. It was the case that c = 2 and k = 25 for
run UWMDSqlec2t25 and c = 4 and k = 50 for run
UMDSqlec4t50.

We chose to generate expansion terms every hour
in order to capture the possible changes in the content
of the documents for that hour. For instance, for the
training event “iran earthquake”, the first few hours
could be about the fact that the earthquake occurred,
at a particular location, with a particular magnitude.
The next few hours may focus on the updates on num-
ber of killed, injured or displaced people, updates on
magnitudes of aftershocks and regions affected, along
with the response from the government and rescue
units. Later news may be about foreign aid, damages
to property. Later still, we may find articles about the
economic impact of the earthquake and government
plans for rebuilding and resettlement. As important
updates change every hour, the top expansion terms
for each hour may be expected to change as well.

4.2 Query Term Expansion for Rank-
ing Sentences

Pseudo-relevance feedback was performed with the
top 20 documents (as scored by scoreLMD) consid-
ered relevant (prescribed in Büttcher et al. [1], section
8.6.2). We tried various approaches for query expan-
sion and term selection based on (i) choosing terms
from the (pseudo-) Relevance Model (section 7.3.2 of
Croft et al. [4]), (ii) choosing terms using KL diver-
gence (Carpineto et al. [2], section 9.4 of Büttcher et
al. [1]), and (iii) choosing terms based on IDF-like
weights (a modification of the method described in
section 8.6.1 of [1]).

We select a term t for expansion, if it has a high
value for

nt,r · wt (4)

where, nt,r is the number of times the term appears
in relevant documents and wt = log(lC/lt). lC is
the length of the collection up until the current hour
in the time-ordered document stream and lt is the
number of times the term occurs in the collection up
until the current hour.

4.3 The Background Language Model

Ideally, the collection model should be the back-
ground model against which we compute wt. How-
ever, the document collection is time-ordered and as
we go further along the collection, we should get bet-
ter estimates of a term’s importance. In the inter-
est of computation time, we adopted an approximate
background model B rather than the whole collection
model. Given that the queries spanned 10 days, we
started building our background model 20% time (2
days) in advance. For hour h, we scored all docu-
ments using query likelihood (scoreLMD), and chose



the top 20 documents. The terms (and term counts)
from these documents were added to B. lB , the to-
tal number of terms in B was updated with the to-
tal number of terms in hour h. For hour h + 1, the
terms and terms counts were cumulatively added to
B. This process resulted in a background model that
grows with time which may produce better expansion
terms as time progresses.

As we encounter new terms for every hour pro-
cessed, to calculate the true lt for each new term, we
need to go back to start of collection and cumulatively
add their hour-term-counts, because of our hour-wise
index layout (section 2.3). In the interest of time,
we approximated wt = log(lB/ltB ), where ltB is the
number of times the term t occurs in B. In hind-
sight, this may have been a poor approach and we
should have used the complete collection model. It
may be useful to compare our formulation wt with the
Robertson/Spärk Jones weighting formula or BM25
weights for terms, now that we have the test collec-
tion for the track.

4.4 Choosing a Query for Term Ex-
pansion

The problem definition for the track specifies upto
five attributes of an event for which we need to find
relevant sentences. Therefore, we are now in a posi-
tion to choose a “seed” query that would help us to
get good expansion terms through PRF. Table 2 lists
the various possible seed queries for the training topic
(query: “iran earthquake”, type=“earthquake”). For
each of these queries, top 20 documents were iden-
tified, relevance models were created and expansion
terms were generated.

We observed that top expansion terms changed
every hour (See Tables 3 and 4 for an example on
the changes in expansion terms for hours 2012-08-11-
18 and 2012-08-11-21 respectively). Queries of type
“specific all attributes” and “generic all attributes”
were found to give better expansion terms across
hours. Recall that we use the expansion terms ob-
tained in hour h to score sentences in hour h+1 (sec-
tion 4.1). The idea was to capture relevant sentences
even as the content about the topic/event changes
with time, i.e., each hour (or time period) may report
about different aspects of the event and we wanted
to capture terms relevant to the time period.

4.5 Variability in Expansion Terms

It was observed that the (top 20) documents obtained
by PRF do not necessarily contribute good expansion
terms when the seed query is of type “specific all at-

query type seed query
Generic All
Attributes
(GAA)

earthquake injuries locations
deaths displaced financial
impact

Generic earthquake injuries
Single earthquake locations
Attributes earthquake deaths

earthquake displaced
earthquake financial impact

Specific All
Attributes
(SAA)

iran earthquake injuries loca-
tions deaths displaced financial
impact

Specific iran earthquake injuries
Single iran earthquake locations
Attributes iran earthquake deaths

iran earthquake displaced
iran earthquake financial impact

Table 2: Choice of queries to generate expansion
terms.

tributes” (SAA). However, the query of type “generic
all attributes” (GAA) does provide some terms re-
lated to the event across hours. Tables 3 and 4 show
the top 10 terms for query term expansions with SAA
and GAA queries for the training topic “iran earth-
quake”.

In order to maintain a balance between the generic
and the specific queries, we turned to Reciprocal
Rank Fusion (RRF) (Cormack et al. [3]) to fuse the
list of expansion terms generated by seed queries of
type SAA and GAA. The third column in Tables 3
and 4 shows the top 10 terms of the RRF fused list
of expansion terms.

Table 3 shows an example of the SAA query expan-
sion terms showing specific locations (Haris, Varza-
qan, Ahar) which are not top terms for expanded
GAA query. Whereas, Table 4 shows an example
where GAA query expansion terms may be useful.
Terms like ANSS4, RMSS5, shakemap6, may help
provide further detailed information related to earth-
quakes in general.

4ANSS: Advanced National Seismic System http://

earthquake.usgs.gov/monitoring/anss/
5“RMSS: root-mean-square travel time residual in sec-

onds” - source http://earthquake.usgs.gov/earthquakes/

glossary.php
6Shakemap: A map that presents information on the shak-

ing of ground rather than epicenter and magnitude. http:

//earthquake.usgs.gov/research/shakemap/



Top 10 expansion terms for
training query type

GAA SAA RRF-fused
earthquake injured earthquake
quake earthquake injured
magnitude magnitude magnitude
injured haris quake
hundreds varzaqan killed
killed ahar hundreds
seismic quake haris
iran killed ahar
earthquakes hundreds varzaqan
northwestern iran iran

Table 3: Hour 2012-08-11-18: Expansion Terms
for the training topic “iran earthquake”, generated
using seed queries of type Generic All Attributes
(GAA) and Specific All Attributes (SAA).

4.6 Weighting Term Importance with
RRF Scores

To account for the revised ranking of terms we mod-
ified equation 3 as

scorecover =
∑
t∈q′

(
log

(
lC
lt
× rrf(t)

))
−m · log(l)

(5)
where, rrf(t) is the RRF value for the term t com-
puted as

rrf(t) =
∑
i

1

k + ri(t)
(6)

where, 1 ≤ i ≤ number of lists to fuse, ri(t) is the
rank of the term t in list i, and prescribed parameter
value of k is 60.

The revised formula 5 for scorecover drives down
the IDF-like weights for all terms, but does so based
on the RRF score for the term. This ensures that
terms having higher relevance/importance to the
query contribute more to the sentence score. The
original query terms were treated as having the high-
est possible RRF value (1/61), so that their impor-
tance is not devalued as compared to the expansion
terms.

4.7 Building the Run

Many duplicate documents were found (and hence
duplicate sentences) in the stream corpus and as such
we need a deduplication module to eliminate dupli-
cate sentences. We simulate deduplication (while ad-
hering to the track’s guidelines) by using the Unix
commands sort and uniq. All updates were sorted

Top 10 expansion terms for
training query type

GAA SAA RRF-fused
earthquake earthquake earthquake
magnitude iran seismogram
seismogram villages anss
anss magnitude nsmp
nsmp least rmss
rmss northwestern magnitude
recenteqsww earthquakes recenteqsww
crustal tv crustal
shakemap injured shakemap
seismologist news seismologist

Table 4: Hour 2012-08-11-21: Expansion Terms
for the training topic “iran earthquake”, generated
using seed queries of type Generic All Attributes
(GAA) and Specific All Attributes (SAA).

first by sentence and then by time. Then exact du-
plicate sentences were eliminated using uniq. In a real
system, one may keep all updates in a map or lookup
table in order to avoid emitting exact duplicates of
previous updates.

While working with the training topic, it was seen
that there are many irrelevant sentences that score
high on scorecover, due to the presence of high rank-
ing expansion terms in them. To mitigate this prob-
lem, it was reasoned that a “relevant” document may
have relevant material spread throughout its content.
Therefore, scorecover for a sentence could be weighted
with the scoreLMD for the document from which the
sentence was selected. In effect, the sentences from
low ranking documents would receive a lower confi-
dence rating and sentences from high ranking docu-
ments would receive a higher confidence rating, with
scorecover × scoreLMD.

Finally, as described in section 4.1, the two pa-
rameters k and c need to be tuned. Table 5 shows
the number of unique sentences obtained for various
setting of the parameters. We opted to emit more
number of sentences in order not to miss too many
updates.

5 Runs rg1, rg2, rg3 and rg4

The rg runs (rg1, rg2, rg3, rg4), were generated from
the set of documents scored by query likelihood model
described in section 2.4. Sentences from document set
S were used to generate the runs. In this section, the
methods used to generate the runs are reviewed.



c k unique
sentences

2 25 7425
2 50 7699
2 100 5495
4 25 6111
4 50 7073
4 100 5446
10 25 3488
10 50 5047
10 100 5700

Table 5: Number of unique updates for the topic
“iran earthquake” obtained for values of parameters
c and k. Rows in bold represent parameter values for
submitted runs.

5.1 Scoring sentences

Okapi BM25 (eq.7) was used as the ranking function
to score the sentences in the document with respect
to the query.

scoresentence =∑
t∈q

qt ×
ft,d(k1 + 1)

k1((1− b) + b(ld/lavg)) + ft,d
× wt (7)

where, ft,d is the frequency of term t in sentence
d, wt is the IDF of term t, ld is length of sentence,
lavg is the average sentence length (found to be 34)
and parameters k1 = 1.2, b = 0.75 (as prescribed by
Büttcher et al. [1]).

Since the query terms are fewer and the sentences
are relatively short (lavg = 34) compared to docu-
ment lengths, query expansion techniques were used
to improve the recall of the results. Hence, the tech-
nique used for finding expanded words forms one of
the key components of the approach and is outlined
in the next section.

5.2 Distributional Similarity Based
Term Expansion (DSTE)

As seen earlier in section 1.1, a query can belong to
one of the following event types: accident, bombing,
earthquake, shooting, storm. For each of the event
types, seed words (around 30 words per event type)
were found manually from prior Wikipedia7 articles
of each event type. A list of training topics was also
created, one for each event type.

Top K (=10000) sentences were then retrieved from
S for each training topic, using the BM25 score and

7www.wikipedia.com

seed word Top 10 expansion terms gen-
erated with DSTE

quake earthquake tremor disaster mag-
nitude aftershock temblor toll
damage province death

damaged destroyed killed left hit injured
struck wounded leveled brought
died

cities counties areas towns regions
provinces parts villages people
states residents

assistance aid help food relief money work
medicine team sympathy water

disaster earthquake quake emergency
relief tremor crisis aftershock
catastrophe development region

Table 6: Examples of seed and expansion terms for
rg runs

the seed words list. These top K sentences, along with
the seed words, are given as input to an algorithm
that uses distributional similarity to find expansion
terms [7]. These newly identified expansion words
along with the initial seed words and query terms,
constitute the expanded words list (q in equation 7)
for calculating the scoresentence. Table 6 shows ex-
amples for seed words and their expansions for the
training topic (“iran earthquake”).

5.3 Modified score function

Similar to the previously discussed runs (section 4.7),
it was found that scoresentence alone isn’t sufficient
to judge the relevance of a sentence with respect to
the query. It was observed that there were quite a
few sentences which contain the expanded words, but
are from very low scoring documents which are not
relevant to the query.

For example, there were earthquakes in some parts
of China during the same time as the Iran earthquake,
which is the training topic. With only the sentence
scores, the sentences from documents related to the
earthquake in China would be as relevant as the sen-
tences from Iran earthquake, which is unlikely to be
the case. Also, the document score of a document
related to the Chinese earthquake is much smaller
than that of a document related to the Iranian earth-
quake. In an attempt to combat this, we combine
the scoresentence and scoreLMD to ensure that we re-
turn relevant sentences from relevant documents. It
was seen that the simple product of these two scores



would in general lead to better updates, i.e.,

scorecombined = scoresentence × scoredocument (8)

This function needs to be evaluated with a series of
experiments which we will pursue as a future work.

5.4 Sentence Selection Criteria

To avoid redundancy in updates, and to improve their
quality, we need to shortlist sentence updates as well
as avoid duplicate sentences.

A rigid cutoff for scoresentence to shortlist sen-
tences was not used due to the diversity in the doc-
uments returned every hour. Hence, an incremental
cutoff score (scorecutoff ) for scoresentence was used
every hour to decide whether a sentence should be
included in the list of updates.

The following algorithm was used to generate the
list of updates:

S_h = 5000; //max num of sentences per hour

score_cutoff = 0; //cutoff=0 for first hour

updatelist[] //list of updates

for every hour between the start \

and end timestamps

count = 0;

score[]; //sentence scores current hour

for all the sentences in the hour:

if score_sentence > score_cutoff:

add sentence to updatelist;

score[count] = score_sentence;

count++;

end if

end for

if count > S_h: //update score_cutoff

sort score[] desc

score_cutoff = score[S_h];

end if

end for

return updatelist

For the first hour, all sentences were included in
the update set. For subsequent hours, only sentences
with scoresentence > scorecutoff , i.e. minimum score
cutoff from previous hour, were added to the up-
date set. Similarly, an incremental minimum cutoff
score was computed for documents, which is depen-
dent upon Dh number of documents every hour. For
a sentence to be included in updates, both the sen-
tence score cutoff and document score cutoff should
be passed.

RunID Sentences Documents
per hour (Sh) per hour (Dh)

rg1 and rg2 5000 3000
rg3 and rg4 1000 500

Table 7: Sh and Dh for rg runs

RunID Expected
Latency
Gain

Latency
Com-
prehen-
siveness

CosineEgrep 0.0104 0.0179
CosineEgrepIgnoreCase 0.0146 0.0130
NormEgrep 0.0011 0.0611
NormEgrepIgnoreCase 0.0010 0.0534
UWMDSqlec2t25 0.0173 0.5375
UWMDSqlec4t50 0.0176 0.5304
rg1 0.0205 0.5705
rg2 0.0218 0.5624
rg3 0.0261 0.5063
rg4 0.0275 0.5165
Average All Runs 0.0599 0.2996

Table 8: Average ELG and LC across Topics.

The deduplication step kicks in while adding a sen-
tence to the update list. If more than 90% of the
words in the current sentence are covered in any of
the previous update sentences, then it was discarded
as a duplicate.

Table 7 lists the the number of sentences and doc-
uments shortlisted for each rg run. The incremental
minimum cut-off scores change every hour based on
the score of the Sth

h sentence of the previous hour.
Run rg2 differs from rg1 in that, the length of the

sentences was normalized. While testing on the train-
ing topic, it was observed that the sentence scores
alone do not account for the verbosity of the sentence,
even with the BM25 score (after changing b parame-
ter). Due to this, the sentence score was multiplied

by log(1+
lavg

ld
); as explained in document length nor-

malization in Büttcher et al. [1]. Similar to rg2, rg4
performs sentence length normalization, whereas rg3
does not. Runs rg2 and rg4 try to increase the ELG
of the results by reducing the penalty for verbosity.

6 Discussion of Results

While neither of the baseline runs (CosineEgrep and
NormEgrep) performed particularly well, this is not
overly surprising given that both are quite conser-
vative in the number of sentences emitted per topic;
approximately 12 on average for CosineEgrep and 151



for NormEgrep. This disparity makes it apparent
as to why NormEgrep likely has a higher LC than
CosineEgrep. However, even though both emit rela-
tively few sentences per topic the ELG is quite low
and likely stems from the simplistic sentence selec-
tion measure. It is interesting that introducing more
sentences with egrep’s ignore case option decreases
the performance of the norm-based similarity mea-
sure and likely has to do with the introduction of
non-relevant sentences.

The performance of runs UWMDSqlec2t25
(0.5375) and UMDSqlec4t50 (0.5304) with respect
to the LC metric, is above the average reported
amongst all submitted runs to the track (0.2996). In
addition, the maximum scores for these runs (0.979
and 0.9872 respectively) are close to the reported
maximum of 0.999. Both these runs performed
poorly with respect to the ELG metric. This could
be in part because of the differences in the content of
the relevant documents as time progresses. Compre-
hensive (news) articles (or documents) would score
higher with scoreLMD, however they would likely
occur later in the time-ordered document stream.
The confidence rating of scorecover × scoreLMD

would give more importance to sentences from such
articles.

Table 8 shows that high recall (LC) is achieved in
all rg runs, which can be attributed to the expanded
words for the query which were obtained using the
DSTE algorithm (section 5.2). On the other hand,
the rg runs have performed poorly with respect to
ELG, which could be because of the weak dedupli-
cation algorithm, and due to the penalty of missing
good sentences in low scoring documents which are
early. Improvements in these two areas may help in
better performance as measured by ELG for the rg
runs.

7 Conclusions

Participation in the Temporal Summarization Track
has provided an opportunity to explore various ap-
proaches to the task of identifying relevant sentences
in a timely manner. Many of the runs submitted
performed quite well with respect to Latency Com-
prehensiveness (i.e. recall), which may be attributed
to the use of standard retrieval techniques. However,
all our runs performed poorly with respect to Ex-
pected Latency Gain and methods of improving this
while not decreasing Latency Comprehensiveness re-
main to be investigated.
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