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ABSTRACT 
This paper reports the IRIS Lab@Pitt’s participation to 2013 
TREC Contextual Suggestion track, which focuses on technology 
and issues related to location-based recommender systems 
(LBRSs). Besides the data provided by the track, our 
recommendation algorithms also retrieve information from Yelp 
for creating candidate, example and user profiles. Our algorithms 
uses linear regression model to combine multiple attributes of 
candidate profiles into the calculation, and performed 5-fold cross 
validation for training and testing on 2012 track data. The two 
runs we submitted this year both obtained reasonable good 
performance comparing with the median results of all runs. 
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1. INTRODUCTION 
Recommender systems (RSs) provide personalized suggestions by 
analyzing users’ history record and thus they expand the users’ 
capabilities of interacting with web content [1, 2]. Traditional RSs 
only focus on user-item ratings, whereas location-based 
recommender systems combing such ratings with real-world 
location information [1, 8]. With the advancements in wireless 
communication and mobile location techniques, accessing users’ 
location information in real time becomes easier and faster [2, 3]. 
Consequently, many personalized recommendation services 
integrate such location information. Examples include travel 
recommendation [5], point of interests (POIs, e.g., restaurants, 
shopping malls, etc.) recommendation [2, 4], and commercial 
recommendation [6]. However, there are still some important 
open questions. For example, what could be the relationship 
between users’ locations and other factors in recommendation 
(e.g., user’s preferences, the general popularity of items)? How 
can the location information be effectively utilized in LBRSs? 

TREC contextual suggestion track provides an open platform with 
standard testing data for researchers to study LBRSs [9]. The 
recommendation task involves the design of a recommender 
system that can suggest interesting venues to users based on their 
locations and preference history. The evaluation of each 
suggestion is based on the relevance of the suggestion to users’ 
preferences and the accessibility of the site for the users. More 
detail about this track is available in the track’s official website 
[7] and the track overview paper. 

Our participation to the 2013 TREC Contextual Suggestion track 
generates two runs of results. Both of them used Yelp API to 
generate a list of candidates and then used Google to obtain the 
description of each candidate. We extracted important features 
(e.g., title, description, category, etc.) for each candidate, and used 
linear regression model with 5-fold cross validation to compute a 
ranking model. 

The rest of the paper is organized as follows. Related works are 
discussed in Section 2. The architecture of whole system and the 
methods used for data collection, profile creation, ranking as well 
as description generation are discussed in Section 3. In Section 4, 
the evaluation of experiment results is described. Finally, 
conclusions are discussed in Section 5. 

2. RELATED WORK 
Compared with the demands and given data of last year [9], 2013 
TREC Contextual Suggestion track has three main differences at 
candidate resources, the content of given data, and the format of 
results. The corpora for this year’s track include ClueWeb12 (i.e., 
a dataset containing 870,043,929 English web pages) [10] as a 
choice of data source in addition to open web. While context file 
eliminates the temporal attribute (i.e., time, day and season), 
which reduces some factors that should be considered when 
collecting candidates, the number of testing users (increasing from 
34 to 550) and the ratings (which are on a 5-point scale rather than 
3-point scale) still bring new challenges to participants. 

Top five runs of last year, including iritSplit3CPv1 [11], guinit 
[12], gufinal [12], UDInfoCSTc [13], and PRISabc [14], are 
analyzed in this section. Based on the concerns of this track, we 
mainly focus on the candidate collection and ranking algorithms. 

2.1 Candidate Collection 
Table 1 analyzes different approaches of these five runs on 
candidate collection. Compared the data source, three mainstream 
open datasets (i.e., Google Places, Yelp, and Foursquare), storing 
the information of locations, are all used. Among them, two runs 
use Google Places [11, 12] and the other two select Yelp [12, 13]. 
Consequently, these two datasets are also used in our method. As 
to the collecting approaches, three of them formulate the query by 
the categories of each example as well as each context [11, 12]. 
The other two only consider about contexts [13, 14]. According to 
the result of these five runs [9], using a pair of context and 
categories as a query obtained more related candidates. Since the 
contexts of this year do not have temporal attributes, in this paper, 
the combination of category for each example and geo coordinates 
belong to each context is used as a query to search candidates. 

Table 1. Summary of candidate collection for top 5 runs 

Runs Data Source Approach 
Problems (P)  

& 
Solutions (S) 

iritSplit3
CPv1 

Google Places 
(GP) 

• Get the categories of 
each example on 
GP; 

• Based on the 
temporal 
component, 
construct place sets 
with different 
categories; 

P:  
The limitation of 
GP for each 
query; 
S:  
Split each query 
into 3 sub 
queries 
according to the 
categories of 
each example 



guinit 
/ 

gufinal 

Google 

Google Places 

Bing 

Yelp 

Yellow Pages 

• Get the categories 
of each example on 
Yelp; 

• For each category 
and context pair, 
crawl the 
information listed in 
the first 5 pages of 
results on search 
engine; 

• Extract features by 
Nokogiri library; 

• Filter the set 

P:  
• Yelp category is 

too specific; 
• Not all examples 

have on Yelp; 
S: 

• Move the 
categories of 
Yelp into more 
general ones; 

• Ignore examples 
without Yelp 
records; 

UDInfo
CSTc 

Yelp 

Foursquare 

• Get the results for 
each context on 
Yelp and 
Foursquare; 

• Crawl the 
information of each 
candidate on its web 
site; 

N/A 

PRISabc Open Web 

• Construct the spider 
framework; 

• Filter the candidates 
by context file; 

N/A 

 

2.2 Ranking 
Among five aforementioned runs, analyzing the sentiment of 
users to each example based on users’ ratings and computing the 
similarity between candidates and examples to predict the 
sentiment score of each candidate for each user is the general idea 
of ranking candidates. For similarity computation, three of five 
runs [11, 13, 14] select Vector Space Model (VSM) (See Table 2), 
showing that this model is quite useful in the computation of 
similarity. Thus, in this paper, we also choose VSM to compute 
the similarity and our basic idea is similar to [13].  

Table 2. Summary of ranking candidates for top 5 runs 
Runs Used Model Approach 

iritSplit3
CPv1 VSM 

• For each user, constructing a positive 
vector VP to represent all terms in 
examples that user prefers and a negative 
vector VN to represent the terms of 
example that user dislikes; 

• Remove stopwords for each candidate; 
• Compute the ranking score for each 

candidate based on the similarity with VP 
and VN;  

 
guinit 

 
 

SVMRank 

• Build a matrix, counting the number of 
positive suggestions (judged by initial 
ratings) for each profile and each 
category, to determine the category 
score; 

• Process each raw category score; 
• Rank a list of resources for each 

category using SVMRank and Google 
ranking; 

• Select top 10 results of each category 
and merge them by their category 
scores; 

gufinal SVMRank 
• Do the same way as guinit, the only 

difference is positive suggestions are 
judged by final ratings; 

UDInfo
CSTc VSM 

• The basic idea is to compute the 
similarity between each candidate and 
each example. Then, separate examples 

into positive examples as well as 
negative ones to compute the similarity 
between each candidate and use pair; 

• This run focuses on the category 
similarity rather than description 
similarity; 

• Combine the category similarity of Yelp 
and Foursquare; 

PRISabc VSM 

• Select 10 words from the description as 
well as website of examples that user 
prefers, with the biggest TF-IDF, to 
represent each user; 

• Compute the similarity between each 
candidate and 10 words pair with the 
consideration of temporal constraints; 

 

Through the analysis of existing works, candidates’ descriptions 
[11, 14] and categories [12, 13] are two key factors when 
considering the ranking problem. However, these five runs only 
consider the similarity based on one aspect rather than combining 
these two factors. Except the constraints of contexts (i.e., geo 
location or temporal attributes), current works mainly focus on the 
matching of personal preferences, whereas the general popularity 
of sites and the accessibility from users’ location to the site are 
other important factors when considering the problem of ranking. 
In this paper, five features, containing users’ preferences, general 
popularity as well as accessibility, are extracted from each 
candidate and considered for ranking. Hence, a more 
comprehensive way used for ranking candidates is presented. 

3. PROBLEM STATEMENT 
Given the information about users, we aim to provide 
recommendations by considering the users’ contexts, personal 
preferences as well as the general popularity of candidates to be 
recommended. The given information includes a set of contexts 
(only containing locations) L, a set of example suggestions E 
located in Philadelphia including title, description and url, and a 
set of ratings R provided by the users. Two types of ratings, of 
which one describe the example e’s title and description rt+d(u, e) 
and one judge the example e’s website rw(u, e), are included in R 
graded by each user u. With this information in mind, the 
problems of providing recommendations can be formalized as 
follows: 

• Candidate Collection. Given E and L, search for a set of 
candidate sites C =    c e ∈ E, 𝑙 ∈ L}, where c is similar 
with at least one e and c is around 𝑙. 

 
• Feature Extraction. Given C and E, extract features from 

c ∈ C  and  e ∈ E  that represent the user u’s personal 
preferences. For c, features representing its general 
popularity and accessibility also should be extracted. 
The set of candidates and examples should be 
reorganized as: C! = c, 𝑙   f!, f!,… , f!"}  and 
E! = {e|f!, f!,… , f!"} , where 𝑙 ∈ L , f  represents a 
feature, NC is the number of candidate features and NE 
is the number of example features.  

 
• Preferences Detection. Given R and E!, identify a set of 

examples with positive sentiments E!!(u) and a set of 
examples with negative sentiments E!!(u) for each user 
u.  

 



• Candidate Ranking. Given C! ,   E!,  E!!(u)  and E!!(u) , 
integrating the value of different features and compute 
the ranking score of c ∈ C! for each user u at the context 
𝑙. 

4. OUR APPROACH 
The Pitt recommendation system designed for 2013 TREC 
Contextual Suggestion track uses data collected from Yelp. Our 
approach also uses VSM to compute the similarity of descriptions 
between candidates and examples, and a linear regression model 
[15] to compute the ranking score for each candidate. The system 
was trained and tested using 5-fold cross validation on 2012 track 
data.  

4.1 Overview 
The framework of our approach is shown in Figure 1. There are 
four main parts: 1) data collection module gets the relevant 
information of examples and candidates from Yelp1; 2) profile 
construction module creates and maintains users’ profiles; 3) 
candidate ranking module generates a list of candidate sites in 
order based on the context l for each user u; and 4) description 
generation module produces a description for each ranked 
candidate. 

Example

Context

Profile

Yelp
Example 
Feature 

Extraction
Example File

Candidate 
Feature 

Extraction

Candidate 
File

Personal File

Ranking Description 
Generation

Google

Recommend 
Suggstions

Data Collection

Profile Construction

Description

Figure 1. The framework of our approach 

4.2 Candidate Collection 
As the problem in candidate collection mentioned above, all 
candidates collected from open web should be similar with at least 
one example suggestion, so that we can detect users’ preferences 
on these candidates based on users’ ratings to relevant examples. 
Thus, how to determine the similarity between candidates and 
examples is a problem that we need to consider during the 
candidate collection. Based on the analysis of related works, each 
item returned by open geo-dataset (i.e., Google Places, Yelp and 
Foursquare) is accompanied by its categories, and hence we used 
the category classified by these geo-datasets to judge the 
similarity. We believe that any two items with a common category 
are similar to each other.  In this case, each item in E also needs to 
be searched on the open dataset to obtain its categories. The way 
for us to obtain such information is by searching the titles of 
examples and their located city “Philadelphia” on the dataset. 
Initially, we choose Google Places API for searching data. Due to 
the context constraint of candidates, we tried to use the “nearby 
search” function to collect nearby places around the users’ 
contexts as the candidates. We therefore performed Google Place 
search with the radius of 20km to the users’ context to look for 
candidates. However, by analyzing the categories of returned 
results for both candidates and examples, we find that the 
candidates returned by Google Places are for both commercial and 

                                                                    
1 http://www.yelp.com/ 

non-commercial use, whereas the examples of E were mainly 
focus on commercial places. Therefore Google Places gives us 
lots of non-relevant candidates. Also, Google Places’ categories 
contain many sub-categories and most of returned results always 
contain a sub-category “establishment”, which is hard for us to 
determine whether the candidate is similar with any item of E. For 
example, Smokey Joe's (an example suggestion in 2012 TREC 
Contextual Suggestion) is labeled as “cafe”,  “restaurant”, “food”, 
and “establishment”. One candidate we collected, Seven Dolors 
Catholic Church, is labeled as “church”, “place of worship”, 
“establishment”. These two items are completely irrelevant and 
therefore it was a mistake for our way to classify these two items 
as similar because they share a common sub-category 
“establishment. 
We therefore explored Yelp as the data source for identifying 
candidates. The advantages of using Yelp include: 1) places in 
Yelp are mainly commercial sites, which is more align with the 
relevant candidates in this track; 2) the category structure in Yelp 
is simple and more direct to identify whether the candidate is 
similar with any example suggestion. For example, Smokey Joe's 
is only categorized as bars, which is specific enough to be used 
directly in our task; and 3) the data for each candidate is 
accompanied with more detail reviews than those of Google 
Places -- the more information that we can harvest to describe the 
candidate. However, Yelp only returns at most 20 sites for each 
context, which are less than 50 candidates we want to achieve. 
Also, some results of nearby search are not similar with examples. 
We, therefore, complement the Yelp location search with the 
categories of examples. For each category, at most 20 related 
results are returned. As there are 50 examples in E, for each 
context 𝑙, at most 1000 results can be obtained. However, 
examples with the same category brought duplicated results. In 
this case, those results that have the same title with the former one 
are eliminated. Finally, the candidate set is composed by 
processed results. 

Table 3. The description of attributes in candidate profile 
Attributes Description Usage 

Id 

The combination of each context’s 
geometry and the sequence 
number of results for each 
context; 

Identification 

Title The name of candidate; Candidate 
Representation 

Review 

A bag of terms, which are created 
by removing common stopwords 
and stemming by Lucene from 
snipped text on Yelp and Google 
search engine (the first is only 
based on Yelp; the second run is 
based on two resources); 

Users’ 
Preferences 
Matching 

Url The link address of Yelp webpage 
describing each candidate; 

Candidate 
Representation 

Lv2-category Specific category collected from 
Yelp; 

Users’ 
Preferences 
Matching 

Lv1-category Broad category collected 
manually; 

Users’ 
Preferences 
Matching 

Rating The general popularity of each 
candidate graded by Yelp users; 

General 
Popularity 

Distance The distance between each Accessibility  



candidate to related context; 

Coordinate The location of each candidate; Accessibility 

4.3 Profile Construction 
4.3.1 Candidate Profile 
For each candidate suggestion, nine attributes, presented in detail 
in Table 3, are extracted. These attributes are used to represent 
candidates and compute the ranking score by considering personal 
preferences, general popularity as well as context constraints. Of 
the nine attributes, three are focused on the matching of users’ 
preferences, two on the representation of candidates in the final 
result, two on the accessibility by considering users’ current 
contexts, one on the general popularity and one on the 
identification of each candidate (See “Usage” in Table 3).  This 
profile was created by indexing those nine attributes for each 
candidate as a record with Lucene, a java-based platform that 
provides indexing and searching technologies, as well as text 
preprocessing. 

For the consideration of each candidate’s category, we assume 
that users who like a specific object might like a broader area 
where that object belongs. For example, if a person likes sushi and 
disserts, we infer that he/she likes food. Thus, Lv1-category is 
defined by classifying Lv2-category (i.e., the specific categories 
of all candidates from Yelp) manually (See Table 4). The 
classification rule is constructed by considering the category 
hierarchy of Foursquare [16] and Yelp [17] as well as our 
experience. 

Generally, people are easier affected by community and hence we 
assume that a candidate with high general popularity, belong to 
the category that a user prefers, is more likely than other 
candidates in the same category to attract a user’s attention. In this 
way, we extracted rating from raw data collected on Yelp to 
reflect the general popularity of a candidate. 

Table 4. The description of Lv1-category & Lv2-category 

Lv1-category Lv2-category 

Food 

cafes, mideastern, desserts, mediterranean,  
food, sandwiches, turkish, coffee, icecream, 
gourmet, chinese, burmese, italian, 
localflavor, irish, tea, bbq, mexican, japanese, 
dimsum, sushi, mediterranean, vegetarian, 
greek, korean, chicken_wings, breweries, 
chocolate; 

Art 
& 

Entertainment 

newamerican, ticketsales, theater, arts, 
galleries, arcades, venues, hindu_temples, 
theater, spas, massage, laser_hair_removal, 
museums, jazzandblues, musicvenues, 
mini_golf, bowling, yoga, comedyclubs, 
pilates, sportsteams 

Nightlife 
bars, wine_bars, juicebars, eventplanning, 
danceclubs, gastropubs, sportsbars, lounges, 
divebars, jazzandblues, pubs, comedyclubs 

Outdoor zoos, parks, amusementparks,  gardens, lakes, 
travelservices, ticketsales 

Shopping 
homedecor, deptstores, stationery, 
tobaccoshops, icecream, gourmet, grocery, 
localflavor, shoppingcenters, bookstores, 
farmersmarket, fleamarkets, hobbyshops, 

tradamerican, chocolate, toys, breweries 

Tour 

religiousorgs, localflavor, airports, 
hindu_temples, hotels, tours, landmarks, 
publicservicesgovt, lakes, travelservices, 
ticketsales 

 

4.3.2 Example Profile 
The example profile is used to represent the users’ preferences 
that can be matched with candidates. Similar to the candidate 
profile, six attributes except rating, distance, and coordinate, are 
stored using Lucene to represent each example. Of these 
attributes, the information of title, descriptions and url comes 
from the original data set E while others are accessed like 
candidates.  

4.3.3 User Profile 
To solve the problem of preferences detection, we created user 
profile. Based on the 5-point scale of rating, we defined that point 
4 and point 3 as positive rating, point 2 as neutral rating and point 
1 as well as point 0 as negative rating. In this way, with the 
consideration of both rt+d(u, e) and rw(u, e)，examples without 
negative ratings are classified into positive set 𝐸!!(𝑢) while those 
without positive ratings are classified into negative set 𝐸!!(𝑢). In 
our system, examples with both neutral ratings are ignored. Both 
𝐸!!(𝑢) and 𝐸!!(𝑢) only store the examples’ id. The user profile 
was created to store these two kinds of example set for each user. 

4.4 Ranking Model 
In this section, how to fuse the information of three profiles and 
compute the ranking score for each candidate is discussed. Among 
constructed profiles, five features including similarity, level-2 
category, level-1 category, rating and distance are computed or 
extracted based on the pair of user and context. The ranking 
model is designed by combining the value of five features using 
linear regression model with 5-fold cross validation. With the 
computation of ranking model, each candidate obtains a ranking 
score and at most top 50 are selected as suggestions recommended 
to users at different context. 

4.4.1 Similarity 
Based on the general idea of literature [13], the computation of 
similarity for each pair of candidate ci and user uj whose context is 
𝑙! is focused on comparing ci’s (a candidate suggestion in 𝐶! 
around 𝑙! ) review and the description of examples in both 
𝐸!!(𝑢!) and 𝐸!!(𝑢!), computing the similarity between ci and uj’s 
positive set −  𝑆𝑖𝑚  (𝑐! ,𝑢!)!   as well as negative set 
–   𝑆𝑖𝑚   𝑐! ,𝑢! !

using vector space model, and combine the 
results. To normalize 𝑆𝑖𝑚  (𝑐! ,𝑢!)!   and 𝑆𝑖𝑚  (𝑐! ,𝑢!)!, we divide 
the value by NP, the number of examples in positive example set, 
and NN, the number of examples in negative example set, 
separately. The formula is shown as the follower: 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑐!  ,𝑢! =   
!"#   !!,!! !  

!!
−

!"#   !!,!! !  
!!

                 

                                                                        =
!"# !!  ,!!!!∈!!!

!!
−

!"# !!  ,!!!!∈!!!

!!
                      (1)  

4.4.2 Lv2-category & Lv1-category 
In addition to the similarity of description, category is also a key 
factor to judge whether a candidate meets user’s interests. 
Usually, users who like one particular place also prefer other 



places that belong to the same category. In this paper, we judge 
whether a candidate ci’s category ci_cat is the one that uj prefers 
or not by determining whether the category set of 𝐸!! 𝑢!  or 
𝐸!! 𝑢!  contains ci_cat. If ci_cat belongs to the category set of 
𝐸!! 𝑢!  or 𝐸!! 𝑢! , we will set the value of corresponding 
category feature to 1 or -1. Otherwise, the value will be set to 0. 
Figure 2 shows the flowchart of this approach. 

4.4.3 Rating & Distance 
These two features are directly accessed from candidate profile. 
Rating represents the general popularity of candidates and 
distance determines whether the candidate meets the contextual 
constraint that the site should be accessed within a 5h drive from 
the context of users. 

4.4.4 Integration 
In this paper, a linear regression model is used to combine the 
values of aforementioned five features into computing the final 
ranking score. Using the data of last year as training data, we 
compute the weight of each feature by SPSS, a software package 
that contains statistic models used for analysis. To evaluate the 
performance of the linear regression model, we used 5-fold cross 
validation on last year’s results. Based on our data, the weight of 
each feature is set as the following: ws = -8.660, wc1 = 0.351, wc2 
= 0.013, wr = -0.086, wd = 0. One problem of our approach is that 
we didn’t consider the degree of value variation between features, 
which is the main reason why the weight of distance is zero. After 
normalizing the features of last year’s judgment data and 
rerunning the model, of the five features reported by SPSS, Lv1-
category is the only significant feature, with the p-value as 0.000. 
Although Yelp’s reviews are comparatively more detail than 
Google Places’, most of them expressed the feeling of users rather 
than the description of candidates. We think this leads to the 
similarity without significance. In the future, we will solve such 
problem by accessing the description of candidates from other 
data sources like candidates’ official website or social networks. 
The final ranking score formula is shown in the following: 

𝑆𝑐𝑜𝑟𝑒 𝑐!  ,𝑢! =   𝑤!×𝑆𝑖𝑚 𝑐!  ,𝑢! + 𝑤!!×𝐿𝑣1!"! + 𝑤!!×𝐿𝑣2!"#
+ 𝑤!×𝑅𝑎𝑡𝑖𝑛𝑔 + 𝑤!×𝐷𝑖𝑠                                                            (2) 

 

ci_cat =el_cat 
el∈EP

Category of ci
(ci_cat)

Set ci_cat = 1Y

ci_cat =ek_cat 
ek∈EN

N

Y Set ci_cat = -1

N

Set ci_cat = 0
 

Figure 2. The flow chart of setting candidates’ categories 
based on user's preferences 

4.5 Description Generation 
Originally, we planed to use reviews on Yelp as descriptions for 
candidates. However, those reviews are a bit broad. For example, 
one review for Abraham Lincoln Presidential Library and 

Museum is “A-Maz-Ing! I have been told by several different 
members of my family and several of my friends that I would love 
this Museum, and I was NOT...”, which mainly describes 
reviewer’s feeling instead of the site itself. Thus, we switched to 
searching each candidate’s title on Google through the URL 
connection and intercepted the snipped text of the first result from 
HTML metadata as a description. 

5. RESULTS AND EVALUATION 
In this section, two runs, submitted to TREC 2013 Contextual 
Suggestion Track, are introduced. Also, the official results of 
these two runs are evaluated. 

5.1 Submitted Runs 
For this year’s participation, two runs, labeled as ming_1 and 
ming_2, are both constructed based on the same data sets and 
ranking methods. The differences are mainly on the data 
collection: 

• The first run ming_1 only accessed the first returned 
result from Yelp when using the category of each 
example with each context as a query. In this situation, 
the best result is 50 candidates for each context when 
the categories of each example are different. Also, the 
description of each candidate is based on the reviews on 
Yelp. 

• The second run ming_2 obtained at most top 20 
returned results from Yelp when using the same query 
as the first run. The reason to expand the number of 
results is because many categories overlap between 
different examples so that many instances of searching 
results are duplicated. Also, the description of each 
candidate is based on both reviews on Yelp and snipped 
text searched on Google. 

5.2 Evaluation 
In this paper, all candidates are judged based on the context and 
the attractiveness of description. All judgments are collected by 
NIST from user themselves. After accessing users’ judgments, 
NIST computes the value of P@5, MRR as well as TBG for each 
candidate in each run. Generally, for each user, NIST randomly 
selects two contexts’ candidates to evaluate the performance of 
recommendations. Also, NIST provides the best, median and the 
worst results for each selected pair of user and context based on 
the results of all participated runs. 

According to the results of P@5 displayed on Figure 3 and Figure 
4, where the red line shows the comparison between the best 
results and the median results, the green line shows the 
comparison of worst results and median ones, and the bar chart 
shows our results compared with median performance, many 
cases of our approach are better than the median value according 
to the users’ preferences and contexts, even some of them 
achieved the best results. 

Figure 3 shows the judgment of each user to recommendations at 
different contexts. By comparing our results with median value, 
both of our runs have over 30% cases better than the average 
performance of all runs and over 35% cases are similar with the 
average. Based on the overall performance, Ming_1 is better than 
Ming_2, which shows that candidates constructed by the first 
returned result from Yelp are more consistent with example set 
and thus the computation of similarity between each pair of user 
and candidate is more precise. However, there are 10% of cases in 
Ming_2 that achieved the best value while in Ming_1 is 8%. We 
consider this is because the number of candidates in Ming_2 is 



much larger than Ming_1 and thus people are more likely to 
access their preferred recommendations. 

Figure 4 shows the performance of two runs based on contexts. 
By recommending suggestions to different people at the same 

context, the results of two runs show that over 45% cases are 
better than the median value and over 30% cases are similar with 
the median results. Unfortunately, evaluation in this way 
illustrates none of our results got to the best value.
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Figure 3 (a). Ming_1 compared with Median by User 
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Figure 3 (b). Ming_2 compared with Median by User 

Figure 4 (a). Ming_1 compared with Median by Context 



 

To further analyzing the performance of our two runs, we referred 
to the idea of Georgetown’s presentation [18] and explored the 
relationship between our results and the population size of 
contexts. Based on the data of population for each context in 2012 
on Google, contexts are divided into four classes shown in Figure 
5, where records in yellow are first class cities (i.e., cities with 
more than 1,000,000 inhabitants), in green are second class (i.e., 
cities with a population between 100,000 and 1,000,000), in red 
are third class (i.e., cities with a population between 50,000 and 
100,000) and the rest are fourth class (i.e., cities with not more 
than 50,000 inhabitants). The contexts used for judgments have 
one first class city, 12 second-class cities, 19 third-class cities and 
14 belong to the fourth class.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the average precision of both runs for each kind of city 
type, the performance of the approach proposed in this paper is 
determined by the population size of contexts. The results show 
that the average precision of two runs decreases with the size of 
population increases (See Table 5). We hypothesize that contexts 
with a large population might have more candidates than those 
with small size, so that how to effectively rank them according to 
uses’ preferences become quite challenging. Also, the number of 
noise candidates for large-scale contexts might be higher than that 
for small-scale contexts, which might be another reason that leads 
to the lowest performance of our approaches on metropolises. All 
these assumptions will be verified in the future work. 

Table 5. Results based on the scale of context 

City Type Avg_P@5 compared with median results 

First class -0.05 
Second class -0.01789683 
Third class 0.03259398 
Fourth class 0.05761905 

 

6. CONCLUSIONS AND FUTURE WORKS 
This paper discusses UPitt’s participation in the 2013 TREC 
Contextual Suggestion track, which aims to design and implement 
a location-based recommender system based on given testing data 
about their locations and preferences. Two runs, using VSM 
model and linear regression model on data collected from Yelp 
and Google, were submitted. A multi-criteria ranking approach 
considering personal preferences, general popularity and 
accessibility was proposed in this paper. For both runs, all 
suggestions meet the location constraint that the distance between 
each pair of candidate and user should be less than five-hour drive 
away. Based on the evaluation of NIST, the performance of both 
runs is reasonable good compared with the median performance.  

One limitation of our approach lies in that the level-1 categories 
of candidate locations were labeled manually. Therefore, it 
remains unclear whether the locations can be categorized 
automatically and how well human wisdom can be approximated. 
As shown in our analysis, such categorical information is 
beneficial for the TREC contextual suggestion task. Thus, this 
also suggests that one of our future works is to solve this problem. 
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Figure 5. The population of contexts 



Besides, due to the reviews on Yelp focus more on users’ feelings 
than candidates’ descriptions, the accuracy of similarity 
computation is hard to guarantee. So in the future, we plan to 
collect such information from other data sources like social 
networks or candidates’ official websites to improve the accuracy 
of similarity computation. Also, providing a list of options to 
users in contexts with a large population size, which can highly 
satisfied their personal demands is another challenging work need 
to be considered in the future.  
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