
PITT at TREC 2013 Contextual Suggestion Track
Ming Jiang, Daqing He

School of Information Sciences
University of Pittsburgh

{mij32, dah44}@pitt.edu

ABSTRACT
This paper reports the IRIS Lab@Pitt’s participation to 2013
TREC Contextual Suggestion track, which focuses on technology
and issues related to location-based recommender systems
(LBRSs). Besides the data provided by the track, our
recommendation algorithms also retrieve information from Yelp
for creating candidate, example and user profiles. Our algorithms
uses linear regression model to combine multiple attributes of
candidate profiles into the calculation, and performed 5-fold cross
validation for training and testing on 2012 track data. The two
runs we submitted this year both obtained reasonable good
performance comparing with the median results of all runs.

Keywords
TREC, contextual suggestion, vector space model, linear
regression model.

1. INTRODUCTION
Recommender systems (RSs) provide personalized suggestions by
analyzing users’ history record and thus they expand the users’
capabilities of interacting with web content [1, 2]. Traditional RSs
only focus on user-item ratings, whereas location-based
recommender systems combing such ratings with real-world
location information [1, 8]. With the advancements in wireless
communication and mobile location techniques, accessing users’
location information in real time becomes easier and faster [2, 3].
Consequently, many personalized recommendation services
integrate such location information. Examples include travel
recommendation [5], point of interests (POIs, e.g., restaurants,
shopping malls, etc.) recommendation [2, 4], and commercial
recommendation [6]. However, there are still some important
open questions. For example, what could be the relationship
between users’ locations and other factors in recommendation
(e.g., user’s preferences, the general popularity of items)? How
can the location information be effectively utilized in LBRSs?

TREC contextual suggestion track provides an open platform with
standard testing data for researchers to study LBRSs [9]. The
recommendation task involves the design of a recommender
system that can suggest interesting venues to users based on their
locations and preference history. The evaluation of each
suggestion is based on the relevance of the suggestion to users’
preferences and the accessibility of the site for the users. More
detail about this track is available in the track’s official website
[7] and the track overview paper.

Our participation to the 2013 TREC Contextual Suggestion track
generates two runs of results. Both of them used Yelp API to
generate a list of candidates and then used Google to obtain the
description of each candidate. We extracted important features
(e.g., title, description, category, etc.) for each candidate, and used
linear regression model with 5-fold cross validation to compute a
ranking model.

The rest of the paper is organized as follows. Related works are
discussed in Section 2. The architecture of whole system and the
methods used for data collection, profile creation, ranking as well
as description generation are discussed in Section 3. In Section 4,
the evaluation of experiment results is described. Finally,
conclusions are discussed in Section 5.

2. RELATED WORK
Compared with the demands and given data of last year [9], 2013
TREC Contextual Suggestion track has three main differences at
candidate resources, the content of given data, and the format of
results. The corpora for this year’s track include ClueWeb12 (i.e.,
a dataset containing 870,043,929 English web pages) [10] as a
choice of data source in addition to open web. While context file
eliminates the temporal attribute (i.e., time, day and season),
which reduces some factors that should be considered when
collecting candidates, the number of testing users (increasing from
34 to 550) and the ratings (which are on a 5-point scale rather than
3-point scale) still bring new challenges to participants.

Top five runs of last year, including iritSplit3CPv1 [11], guinit
[12], gufinal [12], UDInfoCSTc [13], and PRISabc [14], are
analyzed in this section. Based on the concerns of this track, we
mainly focus on the candidate collection and ranking algorithms.

2.1 Candidate Collection
Table 1 analyzes different approaches of these five runs on
candidate collection. Compared the data source, three mainstream
open datasets (i.e., Google Places, Yelp, and Foursquare), storing
the information of locations, are all used. Among them, two runs
use Google Places [11, 12] and the other two select Yelp [12, 13].
Consequently, these two datasets are also used in our method. As
to the collecting approaches, three of them formulate the query by
the categories of each example as well as each context [11, 12].
The other two only consider about contexts [13, 14]. According to
the result of these five runs [9], using a pair of context and
categories as a query obtained more related candidates. Since the
contexts of this year do not have temporal attributes, in this paper,
the combination of category for each example and geo coordinates
belong to each context is used as a query to search candidates.

Table 1. Summary of candidate collection for top 5 runs

Runs Data Source Approach
Problems (P)

&
Solutions (S)

iritSplit3
CPv1

Google Places
(GP)

• Get the categories of
each example on
GP;

• Based on the
temporal
component,
construct place sets
with different
categories;

P:
The limitation of
GP for each
query;
S:
Split each query
into 3 sub
queries
according to the
categories of
each example

guinit
/

gufinal

Google

Google Places

Bing

Yelp

Yellow Pages

• Get the categories
of each example on
Yelp;

• For each category
and context pair,
crawl the
information listed in
the first 5 pages of
results on search
engine;

• Extract features by
Nokogiri library;

• Filter the set

P:
• Yelp category is

too specific;
• Not all examples

have on Yelp;
S:

• Move the
categories of
Yelp into more
general ones;

• Ignore examples
without Yelp
records;

UDInfo
CSTc

Yelp

Foursquare

• Get the results for
each context on
Yelp and
Foursquare;

• Crawl the
information of each
candidate on its web
site;

N/A

PRISabc Open Web

• Construct the spider
framework;

• Filter the candidates
by context file;

N/A

2.2 Ranking
Among five aforementioned runs, analyzing the sentiment of
users to each example based on users’ ratings and computing the
similarity between candidates and examples to predict the
sentiment score of each candidate for each user is the general idea
of ranking candidates. For similarity computation, three of five
runs [11, 13, 14] select Vector Space Model (VSM) (See Table 2),
showing that this model is quite useful in the computation of
similarity. Thus, in this paper, we also choose VSM to compute
the similarity and our basic idea is similar to [13].

Table 2. Summary of ranking candidates for top 5 runs
Runs Used Model Approach

iritSplit3
CPv1 VSM

• For each user, constructing a positive
vector VP to represent all terms in
examples that user prefers and a negative
vector VN to represent the terms of
example that user dislikes;

• Remove stopwords for each candidate;
• Compute the ranking score for each

candidate based on the similarity with VP
and VN;

guinit

SVMRank

• Build a matrix, counting the number of
positive suggestions (judged by initial
ratings) for each profile and each
category, to determine the category
score;

• Process each raw category score;
• Rank a list of resources for each

category using SVMRank and Google
ranking;

• Select top 10 results of each category
and merge them by their category
scores;

gufinal SVMRank
• Do the same way as guinit, the only

difference is positive suggestions are
judged by final ratings;

UDInfo
CSTc VSM

• The basic idea is to compute the
similarity between each candidate and
each example. Then, separate examples

into positive examples as well as
negative ones to compute the similarity
between each candidate and use pair;

• This run focuses on the category
similarity rather than description
similarity;

• Combine the category similarity of Yelp
and Foursquare;

PRISabc VSM

• Select 10 words from the description as
well as website of examples that user
prefers, with the biggest TF-IDF, to
represent each user;

• Compute the similarity between each
candidate and 10 words pair with the
consideration of temporal constraints;

Through the analysis of existing works, candidates’ descriptions
[11, 14] and categories [12, 13] are two key factors when
considering the ranking problem. However, these five runs only
consider the similarity based on one aspect rather than combining
these two factors. Except the constraints of contexts (i.e., geo
location or temporal attributes), current works mainly focus on the
matching of personal preferences, whereas the general popularity
of sites and the accessibility from users’ location to the site are
other important factors when considering the problem of ranking.
In this paper, five features, containing users’ preferences, general
popularity as well as accessibility, are extracted from each
candidate and considered for ranking. Hence, a more
comprehensive way used for ranking candidates is presented.

3. PROBLEM STATEMENT
Given the information about users, we aim to provide
recommendations by considering the users’ contexts, personal
preferences as well as the general popularity of candidates to be
recommended. The given information includes a set of contexts
(only containing locations) L, a set of example suggestions E
located in Philadelphia including title, description and url, and a
set of ratings R provided by the users. Two types of ratings, of
which one describe the example e’s title and description rt+d(u, e)
and one judge the example e’s website rw(u, e), are included in R
graded by each user u. With this information in mind, the
problems of providing recommendations can be formalized as
follows:

• Candidate Collection. Given E and L, search for a set of
candidate sites C = c e ∈ E, 𝑙 ∈ L}, where c is similar
with at least one e and c is around 𝑙.

• Feature Extraction. Given C and E, extract features from

c ∈ C and e ∈ E that represent the user u’s personal
preferences. For c, features representing its general
popularity and accessibility also should be extracted.
The set of candidates and examples should be
reorganized as: C! = c, 𝑙 f!, f!,… , f!"} and
E! = {e|f!, f!,… , f!"} , where 𝑙 ∈ L , f represents a
feature, NC is the number of candidate features and NE
is the number of example features.

• Preferences Detection. Given R and E!, identify a set of

examples with positive sentiments E!!(u) and a set of
examples with negative sentiments E!!(u) for each user
u.

• Candidate Ranking. Given C! , E!, E!!(u) and E!!(u) ,
integrating the value of different features and compute
the ranking score of c ∈ C! for each user u at the context
𝑙.

4. OUR APPROACH
The Pitt recommendation system designed for 2013 TREC
Contextual Suggestion track uses data collected from Yelp. Our
approach also uses VSM to compute the similarity of descriptions
between candidates and examples, and a linear regression model
[15] to compute the ranking score for each candidate. The system
was trained and tested using 5-fold cross validation on 2012 track
data.

4.1 Overview
The framework of our approach is shown in Figure 1. There are
four main parts: 1) data collection module gets the relevant
information of examples and candidates from Yelp1; 2) profile
construction module creates and maintains users’ profiles; 3)
candidate ranking module generates a list of candidate sites in
order based on the context l for each user u; and 4) description
generation module produces a description for each ranked
candidate.

Example

Context

Profile

Yelp
Example
Feature

Extraction
Example File

Candidate
Feature

Extraction

Candidate
File

Personal File

Ranking Description
Generation

Google

Recommend
Suggstions

Data Collection

Profile Construction

Description

Figure 1. The framework of our approach

4.2 Candidate Collection
As the problem in candidate collection mentioned above, all
candidates collected from open web should be similar with at least
one example suggestion, so that we can detect users’ preferences
on these candidates based on users’ ratings to relevant examples.
Thus, how to determine the similarity between candidates and
examples is a problem that we need to consider during the
candidate collection. Based on the analysis of related works, each
item returned by open geo-dataset (i.e., Google Places, Yelp and
Foursquare) is accompanied by its categories, and hence we used
the category classified by these geo-datasets to judge the
similarity. We believe that any two items with a common category
are similar to each other. In this case, each item in E also needs to
be searched on the open dataset to obtain its categories. The way
for us to obtain such information is by searching the titles of
examples and their located city “Philadelphia” on the dataset.
Initially, we choose Google Places API for searching data. Due to
the context constraint of candidates, we tried to use the “nearby
search” function to collect nearby places around the users’
contexts as the candidates. We therefore performed Google Place
search with the radius of 20km to the users’ context to look for
candidates. However, by analyzing the categories of returned
results for both candidates and examples, we find that the
candidates returned by Google Places are for both commercial and

1 http://www.yelp.com/

non-commercial use, whereas the examples of E were mainly
focus on commercial places. Therefore Google Places gives us
lots of non-relevant candidates. Also, Google Places’ categories
contain many sub-categories and most of returned results always
contain a sub-category “establishment”, which is hard for us to
determine whether the candidate is similar with any item of E. For
example, Smokey Joe's (an example suggestion in 2012 TREC
Contextual Suggestion) is labeled as “cafe”, “restaurant”, “food”,
and “establishment”. One candidate we collected, Seven Dolors
Catholic Church, is labeled as “church”, “place of worship”,
“establishment”. These two items are completely irrelevant and
therefore it was a mistake for our way to classify these two items
as similar because they share a common sub-category
“establishment.
We therefore explored Yelp as the data source for identifying
candidates. The advantages of using Yelp include: 1) places in
Yelp are mainly commercial sites, which is more align with the
relevant candidates in this track; 2) the category structure in Yelp
is simple and more direct to identify whether the candidate is
similar with any example suggestion. For example, Smokey Joe's
is only categorized as bars, which is specific enough to be used
directly in our task; and 3) the data for each candidate is
accompanied with more detail reviews than those of Google
Places -- the more information that we can harvest to describe the
candidate. However, Yelp only returns at most 20 sites for each
context, which are less than 50 candidates we want to achieve.
Also, some results of nearby search are not similar with examples.
We, therefore, complement the Yelp location search with the
categories of examples. For each category, at most 20 related
results are returned. As there are 50 examples in E, for each
context 𝑙, at most 1000 results can be obtained. However,
examples with the same category brought duplicated results. In
this case, those results that have the same title with the former one
are eliminated. Finally, the candidate set is composed by
processed results.

Table 3. The description of attributes in candidate profile
Attributes Description Usage

Id

The combination of each context’s
geometry and the sequence
number of results for each
context;

Identification

Title The name of candidate; Candidate
Representation

Review

A bag of terms, which are created
by removing common stopwords
and stemming by Lucene from
snipped text on Yelp and Google
search engine (the first is only
based on Yelp; the second run is
based on two resources);

Users’
Preferences
Matching

Url The link address of Yelp webpage
describing each candidate;

Candidate
Representation

Lv2-category Specific category collected from
Yelp;

Users’
Preferences
Matching

Lv1-category Broad category collected
manually;

Users’
Preferences
Matching

Rating The general popularity of each
candidate graded by Yelp users;

General
Popularity

Distance The distance between each Accessibility

candidate to related context;

Coordinate The location of each candidate; Accessibility

4.3 Profile Construction
4.3.1 Candidate Profile
For each candidate suggestion, nine attributes, presented in detail
in Table 3, are extracted. These attributes are used to represent
candidates and compute the ranking score by considering personal
preferences, general popularity as well as context constraints. Of
the nine attributes, three are focused on the matching of users’
preferences, two on the representation of candidates in the final
result, two on the accessibility by considering users’ current
contexts, one on the general popularity and one on the
identification of each candidate (See “Usage” in Table 3). This
profile was created by indexing those nine attributes for each
candidate as a record with Lucene, a java-based platform that
provides indexing and searching technologies, as well as text
preprocessing.

For the consideration of each candidate’s category, we assume
that users who like a specific object might like a broader area
where that object belongs. For example, if a person likes sushi and
disserts, we infer that he/she likes food. Thus, Lv1-category is
defined by classifying Lv2-category (i.e., the specific categories
of all candidates from Yelp) manually (See Table 4). The
classification rule is constructed by considering the category
hierarchy of Foursquare [16] and Yelp [17] as well as our
experience.

Generally, people are easier affected by community and hence we
assume that a candidate with high general popularity, belong to
the category that a user prefers, is more likely than other
candidates in the same category to attract a user’s attention. In this
way, we extracted rating from raw data collected on Yelp to
reflect the general popularity of a candidate.

Table 4. The description of Lv1-category & Lv2-category

Lv1-category Lv2-category

Food

cafes, mideastern, desserts, mediterranean,
food, sandwiches, turkish, coffee, icecream,
gourmet, chinese, burmese, italian,
localflavor, irish, tea, bbq, mexican, japanese,
dimsum, sushi, mediterranean, vegetarian,
greek, korean, chicken_wings, breweries,
chocolate;

Art
&

Entertainment

newamerican, ticketsales, theater, arts,
galleries, arcades, venues, hindu_temples,
theater, spas, massage, laser_hair_removal,
museums, jazzandblues, musicvenues,
mini_golf, bowling, yoga, comedyclubs,
pilates, sportsteams

Nightlife
bars, wine_bars, juicebars, eventplanning,
danceclubs, gastropubs, sportsbars, lounges,
divebars, jazzandblues, pubs, comedyclubs

Outdoor zoos, parks, amusementparks, gardens, lakes,
travelservices, ticketsales

Shopping
homedecor, deptstores, stationery,
tobaccoshops, icecream, gourmet, grocery,
localflavor, shoppingcenters, bookstores,
farmersmarket, fleamarkets, hobbyshops,

tradamerican, chocolate, toys, breweries

Tour

religiousorgs, localflavor, airports,
hindu_temples, hotels, tours, landmarks,
publicservicesgovt, lakes, travelservices,
ticketsales

4.3.2 Example Profile
The example profile is used to represent the users’ preferences
that can be matched with candidates. Similar to the candidate
profile, six attributes except rating, distance, and coordinate, are
stored using Lucene to represent each example. Of these
attributes, the information of title, descriptions and url comes
from the original data set E while others are accessed like
candidates.

4.3.3 User Profile
To solve the problem of preferences detection, we created user
profile. Based on the 5-point scale of rating, we defined that point
4 and point 3 as positive rating, point 2 as neutral rating and point
1 as well as point 0 as negative rating. In this way, with the
consideration of both rt+d(u, e) and rw(u, e)，examples without
negative ratings are classified into positive set 𝐸!!(𝑢) while those
without positive ratings are classified into negative set 𝐸!!(𝑢). In
our system, examples with both neutral ratings are ignored. Both
𝐸!!(𝑢) and 𝐸!!(𝑢) only store the examples’ id. The user profile
was created to store these two kinds of example set for each user.

4.4 Ranking Model
In this section, how to fuse the information of three profiles and
compute the ranking score for each candidate is discussed. Among
constructed profiles, five features including similarity, level-2
category, level-1 category, rating and distance are computed or
extracted based on the pair of user and context. The ranking
model is designed by combining the value of five features using
linear regression model with 5-fold cross validation. With the
computation of ranking model, each candidate obtains a ranking
score and at most top 50 are selected as suggestions recommended
to users at different context.

4.4.1 Similarity
Based on the general idea of literature [13], the computation of
similarity for each pair of candidate ci and user uj whose context is
𝑙! is focused on comparing ci’s (a candidate suggestion in 𝐶!
around 𝑙!) review and the description of examples in both
𝐸!!(𝑢!) and 𝐸!!(𝑢!), computing the similarity between ci and uj’s
positive set − 𝑆𝑖𝑚 (𝑐! ,𝑢!)! as well as negative set
– 𝑆𝑖𝑚 𝑐! ,𝑢! !

using vector space model, and combine the
results. To normalize 𝑆𝑖𝑚 (𝑐! ,𝑢!)! and 𝑆𝑖𝑚 (𝑐! ,𝑢!)!, we divide
the value by NP, the number of examples in positive example set,
and NN, the number of examples in negative example set,
separately. The formula is shown as the follower:

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑐! ,𝑢! =
!"# !!,!! !

!!
−

!"# !!,!! !
!!

 =
!"# !! ,!!!!∈!!!

!!
−

!"# !! ,!!!!∈!!!

!!
 (1)

4.4.2 Lv2-category & Lv1-category
In addition to the similarity of description, category is also a key
factor to judge whether a candidate meets user’s interests.
Usually, users who like one particular place also prefer other

places that belong to the same category. In this paper, we judge
whether a candidate ci’s category ci_cat is the one that uj prefers
or not by determining whether the category set of 𝐸!! 𝑢! or
𝐸!! 𝑢! contains ci_cat. If ci_cat belongs to the category set of
𝐸!! 𝑢! or 𝐸!! 𝑢! , we will set the value of corresponding
category feature to 1 or -1. Otherwise, the value will be set to 0.
Figure 2 shows the flowchart of this approach.

4.4.3 Rating & Distance
These two features are directly accessed from candidate profile.
Rating represents the general popularity of candidates and
distance determines whether the candidate meets the contextual
constraint that the site should be accessed within a 5h drive from
the context of users.

4.4.4 Integration
In this paper, a linear regression model is used to combine the
values of aforementioned five features into computing the final
ranking score. Using the data of last year as training data, we
compute the weight of each feature by SPSS, a software package
that contains statistic models used for analysis. To evaluate the
performance of the linear regression model, we used 5-fold cross
validation on last year’s results. Based on our data, the weight of
each feature is set as the following: ws = -8.660, wc1 = 0.351, wc2
= 0.013, wr = -0.086, wd = 0. One problem of our approach is that
we didn’t consider the degree of value variation between features,
which is the main reason why the weight of distance is zero. After
normalizing the features of last year’s judgment data and
rerunning the model, of the five features reported by SPSS, Lv1-
category is the only significant feature, with the p-value as 0.000.
Although Yelp’s reviews are comparatively more detail than
Google Places’, most of them expressed the feeling of users rather
than the description of candidates. We think this leads to the
similarity without significance. In the future, we will solve such
problem by accessing the description of candidates from other
data sources like candidates’ official website or social networks.
The final ranking score formula is shown in the following:

𝑆𝑐𝑜𝑟𝑒 𝑐! ,𝑢! = 𝑤!×𝑆𝑖𝑚 𝑐! ,𝑢! + 𝑤!!×𝐿𝑣1!"! + 𝑤!!×𝐿𝑣2!"#
+ 𝑤!×𝑅𝑎𝑡𝑖𝑛𝑔 + 𝑤!×𝐷𝑖𝑠 (2)

ci_cat =el_cat
el∈EP

Category of ci
(ci_cat)

Set ci_cat = 1Y

ci_cat =ek_cat
ek∈EN

N

Y Set ci_cat = -1

N

Set ci_cat = 0

Figure 2. The flow chart of setting candidates’ categories
based on user's preferences

4.5 Description Generation
Originally, we planed to use reviews on Yelp as descriptions for
candidates. However, those reviews are a bit broad. For example,
one review for Abraham Lincoln Presidential Library and

Museum is “A-Maz-Ing! I have been told by several different
members of my family and several of my friends that I would love
this Museum, and I was NOT...”, which mainly describes
reviewer’s feeling instead of the site itself. Thus, we switched to
searching each candidate’s title on Google through the URL
connection and intercepted the snipped text of the first result from
HTML metadata as a description.

5. RESULTS AND EVALUATION
In this section, two runs, submitted to TREC 2013 Contextual
Suggestion Track, are introduced. Also, the official results of
these two runs are evaluated.

5.1 Submitted Runs
For this year’s participation, two runs, labeled as ming_1 and
ming_2, are both constructed based on the same data sets and
ranking methods. The differences are mainly on the data
collection:

• The first run ming_1 only accessed the first returned
result from Yelp when using the category of each
example with each context as a query. In this situation,
the best result is 50 candidates for each context when
the categories of each example are different. Also, the
description of each candidate is based on the reviews on
Yelp.

• The second run ming_2 obtained at most top 20
returned results from Yelp when using the same query
as the first run. The reason to expand the number of
results is because many categories overlap between
different examples so that many instances of searching
results are duplicated. Also, the description of each
candidate is based on both reviews on Yelp and snipped
text searched on Google.

5.2 Evaluation
In this paper, all candidates are judged based on the context and
the attractiveness of description. All judgments are collected by
NIST from user themselves. After accessing users’ judgments,
NIST computes the value of P@5, MRR as well as TBG for each
candidate in each run. Generally, for each user, NIST randomly
selects two contexts’ candidates to evaluate the performance of
recommendations. Also, NIST provides the best, median and the
worst results for each selected pair of user and context based on
the results of all participated runs.

According to the results of P@5 displayed on Figure 3 and Figure
4, where the red line shows the comparison between the best
results and the median results, the green line shows the
comparison of worst results and median ones, and the bar chart
shows our results compared with median performance, many
cases of our approach are better than the median value according
to the users’ preferences and contexts, even some of them
achieved the best results.

Figure 3 shows the judgment of each user to recommendations at
different contexts. By comparing our results with median value,
both of our runs have over 30% cases better than the average
performance of all runs and over 35% cases are similar with the
average. Based on the overall performance, Ming_1 is better than
Ming_2, which shows that candidates constructed by the first
returned result from Yelp are more consistent with example set
and thus the computation of similarity between each pair of user
and candidate is more precise. However, there are 10% of cases in
Ming_2 that achieved the best value while in Ming_1 is 8%. We
consider this is because the number of candidates in Ming_2 is

much larger than Ming_1 and thus people are more likely to
access their preferred recommendations.

Figure 4 shows the performance of two runs based on contexts.
By recommending suggestions to different people at the same

context, the results of two runs show that over 45% cases are
better than the median value and over 30% cases are similar with
the median results. Unfortunately, evaluation in this way
illustrates none of our results got to the best value.

-­‐0.8	

-­‐0.6	

-­‐0.4	

-­‐0.2	

0	

0.2	

0.4	

0.6	

0.8	

1	

435	
 534	
 266	
 199	
 525	
 119	
 216	
 350	
 438	
 565	
 666	
 510	
 157	
 78	
 P@
5

Va
lu

e

User

Ming_1: Compared with Median by User (P@5)	

ming_1_m	

best_m	

worst_m	

Figure 3 (a). Ming_1 compared with Median by User

-­‐0.6	

-­‐0.4	

-­‐0.2	

0	

0.2	

0.4	

0.6	

0.8	

1	

88
	

78
	

81
	

92
	

71
	

95
	

54
	

98
	

99
	

67
	

73
	

76
	

82
	

85
	

10
0	
 66
	

87
	

89
	

63
	

75
	

83
	

59
	

60
	

90
	

56
	

57
	

62
	

68
	

69
	

70
	

74
	

58
	

77
	

94
	

80
	

84
	

51
	

65
	

52
	

55
	

64
	

91
	

93
	

96
	

53
	

61
	
 P@

5
Va

lu
e

Context

Ming_1: Compared with Median by Context (P@5)	

ming_1_m	

best_m	

worst_m	

-­‐0.8	

-­‐0.6	

-­‐0.4	

-­‐0.2	

0	

0.2	

0.4	

0.6	

0.8	

1	

435	
 122	
 660	
 534	
 450	
 464	
 119	
 353	
 573	
 443	
 67	
 535	
 589	
 382	
 P@
5

Va
lu

e

User

Ming_2: Compared with Median by User (P@5)	

ming_2_m	

best_m	

worst_m	

Figure 3 (b). Ming_2 compared with Median by User

Figure 4 (a). Ming_1 compared with Median by Context

To further analyzing the performance of our two runs, we referred
to the idea of Georgetown’s presentation [18] and explored the
relationship between our results and the population size of
contexts. Based on the data of population for each context in 2012
on Google, contexts are divided into four classes shown in Figure
5, where records in yellow are first class cities (i.e., cities with
more than 1,000,000 inhabitants), in green are second class (i.e.,
cities with a population between 100,000 and 1,000,000), in red
are third class (i.e., cities with a population between 50,000 and
100,000) and the rest are fourth class (i.e., cities with not more
than 50,000 inhabitants). The contexts used for judgments have
one first class city, 12 second-class cities, 19 third-class cities and
14 belong to the fourth class.

Based on the average precision of both runs for each kind of city
type, the performance of the approach proposed in this paper is
determined by the population size of contexts. The results show
that the average precision of two runs decreases with the size of
population increases (See Table 5). We hypothesize that contexts
with a large population might have more candidates than those
with small size, so that how to effectively rank them according to
uses’ preferences become quite challenging. Also, the number of
noise candidates for large-scale contexts might be higher than that
for small-scale contexts, which might be another reason that leads
to the lowest performance of our approaches on metropolises. All
these assumptions will be verified in the future work.

Table 5. Results based on the scale of context

City Type Avg_P@5 compared with median results

First class -0.05
Second class -0.01789683
Third class 0.03259398
Fourth class 0.05761905

6. CONCLUSIONS AND FUTURE WORKS
This paper discusses UPitt’s participation in the 2013 TREC
Contextual Suggestion track, which aims to design and implement
a location-based recommender system based on given testing data
about their locations and preferences. Two runs, using VSM
model and linear regression model on data collected from Yelp
and Google, were submitted. A multi-criteria ranking approach
considering personal preferences, general popularity and
accessibility was proposed in this paper. For both runs, all
suggestions meet the location constraint that the distance between
each pair of candidate and user should be less than five-hour drive
away. Based on the evaluation of NIST, the performance of both
runs is reasonable good compared with the median performance.

One limitation of our approach lies in that the level-1 categories
of candidate locations were labeled manually. Therefore, it
remains unclear whether the locations can be categorized
automatically and how well human wisdom can be approximated.
As shown in our analysis, such categorical information is
beneficial for the TREC contextual suggestion task. Thus, this
also suggests that one of our future works is to solve this problem.

-­‐0.6	

-­‐0.4	

-­‐0.2	

0	

0.2	

0.4	

0.6	

0.8	

1	

82
	

85
	

78
	

54
	

88
	

94
	

75
	

81
	

76
	

83
	

69
	

91
	

96
	

95
	

87
	

89
	

80
	

55
	

71
	

98
	

99
	

77
	

67
	

73
	

68
	

51
	

65
	

93
	

58
	

52
	

56
	

57
	

64
	

53
	

74
	

92
	

63
	

60
	

70
	

84
	

61
	

59
	

90
	

10
0	
 62
	

66
	

P@
5

Va
lu

e

Context

Ming_2: Compared with Median by Context (P@5)	

ming_2_m	

best_m	

worst_m	

Figure 4 (b). Ming_2 compared with Median by Context

Figure 5. The population of contexts

Besides, due to the reviews on Yelp focus more on users’ feelings
than candidates’ descriptions, the accuracy of similarity
computation is hard to guarantee. So in the future, we plan to
collect such information from other data sources like social
networks or candidates’ official websites to improve the accuracy
of similarity computation. Also, providing a list of options to
users in contexts with a large population size, which can highly
satisfied their personal demands is another challenging work need
to be considered in the future.

7. REFERENCES
[1] Baltrunas, L., Ludwig, B., Peer, S., & Ricci, F. (2012).

Context relevance assessment and exploitation in mobile
recommender systems. Personal and Ubiquitous Computing,
16(5), 507-526.

[2] Zheng, Y., Zhang, L., Ma, Z., Xie, X., & Ma, W. Y. (2011).
Recommending friends and locations based on individual
location history. ACM Transactions on the Web (TWEB),
5(1), 5.

[3] Gruteser, M., & Grunwald, D. (2003, May). Anonymous
usage of location-based services through spatial and temporal
cloaking. In Proceedings of the 1st international conference
on Mobile systems, applications and services (pp. 31-42).
ACM.

[4] Bao, J., Zheng, Y., & Mokbel, M. F. (2012, November).
Location-based and preference-aware recommendation using
sparse geo-social networking data. In Proceedings of the 20th
International Conference on Advances in Geographic
Information Systems (pp. 199-208). ACM.

[5] Majid, A., Chen, L., Chen, G., Mirza, H. T., Hussain, I., &
Woodward, J. (2013). A context-aware personalized travel
recommendation system based on geotagged social media
data mining. International Journal of Geographical
Information Science, 27(4), 662-684.

[6] Yuan, S. T., & Tsao, Y. W. (2003). A recommendation
mechanism for contextualized mobile advertising. Expert
Systems with Applications, 24(4), 399-414.

[7] https://sites.google.com/site/treccontext/trec-2013-guidelines

[8] Adomavicius, G., & Tuzhilin, A. (2011). Context-aware
recommender systems. In Recommender systems handbook
(pp. 217-253). Springer US.

[9] http://trec.nist.gov/pubs/trec21/papers/CONTEXTUAL12.ov
erview.pdf

[10] http://lemurproject.org/clueweb12/

[11] Hubert, G., & Cabanac, G. IRIT at TREC 2012 Contextual
Suggestion Track.

[12] YANG, H., Frieder, O., Yates, A., DeBoer, D., Goharian, N.,
& Kunath, S. (2012). (Not Too) Personalized Learning to
Rank for Contextual Suggestion.

[13] Yang, P., & Fang, H. (2012). An Exploration of Ranking-
based Strategy for Contextual Suggestion.

[14] http://trec.nist.gov/pubs/trec21/papers/PRIS.context.nb.pdf
[15] http://en.wikipedia.org/wiki/Linear_regression/
[16] http://aboutfoursquare.com/foursquare-categories/
[17] http://www.yelp.com/developers/documentation/all_category

_list

[18] https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGV
mYXVsdGRvbWFpbnx0cmVjY29udGV4dHxneDo1ZjE3N
DY4NGYzZmYzZTMw

