
Application of Data Fusion in the Web Track

Chunlan Huang, Shengli Wu, Jinbo Feng, Yongquan Tao, and Yuping Xing

School of Computer Science and Telecommunication Engineering

Jiangsu University, Zhenjiang, China, 212013

Abstract

In this paper, we report on the experiments we conducted whilst participating in the

TREC 2013 Web track. We use data fusion to test how to improve the results from

different information retrieval systems. Linear combination is used for fusion and

multiple linear regression is used to obtain suitable weights for all the component systems

involved. In our experiments, the ClueWeb09 dataset is used as training data to obtain

weights for the three component systems Indri, MG4J, and Terrier. After running the

official evaluation program, we find that all four runs submitted are better than all

component results with one exception.

1. Introduction

This is the first time that we have participated in TREC and we submitted four runs to the

Web track. Two of them are to ad hoc and two others to risk-sensitive tasks. We choose

the ClueWeb12 Catalog-B collection for both tasks. The main technology used is data

fusion, which means that we run three component information retrieval systems Indri
1
,

MG4J
2
, and Terrier

3
 separately to search the same document collection, and then merge

the results from these different systems to obtain the final fused result.

A collection crawled from the Web is likely to contain a considerable amount of

spam pages. Many approaches have been proposed to identify spam pages based on page

content, hyperlink structure, URL form, the similarity between pages of a single host, and

combinations of the above-mentioned features [1]. We use Waterloo’s list that we

downloaded from [2]. After checking the spam pages manually, we set the ―spamminess‖

threshold parameter to 15%, which we believe is a reasonable value to use.

1 http://sourceforge.net/p/lemur/wiki/Indri/
2 http://mg4j.dsi.unimi.it/
3 http://terrier.org/

Figure 1 and Figure 2 show the main processes for ad-hoc and risk-sensitive tasks

respectively. Three state-of-art systems (Indri, MG4J and Terrier) were chosen to obtain

the original results, which is followed by the removal of the spam pages during the

post-retrieval phase. Finally, we use linear combination to fuse the component results,

with the weights obtained by using the ClueWeb09 Category B collection and 50 queries

used in the TREC 2011 Web track.

Figure 1. Flow chart for the ad-hoc task Figure 2. Flow chart for the risk-sensitive task

The remainder of this report is structured as follows. In Section 2, we describe those

component systems involved. Section 3 details our data fusion strategy. In Section 4, we

describe the settings of the data fusion approach and all related issues. In Section 5, we

present the results for the 4 runs submitted to the ad-hoc task and the risk-sensitive task.

Conclusive remarks are given in Section 6.

2. Description of Component Retrieval Systems

In this section, we briefly discuss Indri, MG4J, and Terrier. All of them are well-known

retrieval systems in the information retrieval research community.

2.1 Indri

Indri is a search engine that provides state-of-the-art text search capabilities and a rich

structured query language for text collections of up to 50 million documents (single

machine) or 500 million documents (distributed search). It is available for Linux, Solaris,

Windows and Mac OSX. Indri is a part of the Lemur project and developed by

researchers from UMass and Carnegie Mellon University.

From an academic perspective, Indri combines inference networks with language

modeling. The query language, which is reminiscent of the Inquery query language,

allows researchers to experiment with proximity, document structure, text passages, and

other document features without writing code. Like other academic engines, Indri can

parse TREC newswire and web collections, and it is able to return results in the TREC

standard format.

From an industrial perspective, Indri is efficient and easy to integrate with other

software components. Indri is freely available from UMass with a flexible BSD-inspired

license. Indri includes an API that is accessible from C++, Java, C# and PHP. Indri can

also be distributed across a cluster of nodes for high speed query performance. In version

2.0, Indri adds true multithreaded operation, so documents can be added, queried and

deleted concurrently.

 2.2 MG4J

MG4J (Managing Gigabytes for Java) is a free full-text search engine for large document

collections written in Java. It is a customizable search engine providing state-of-the-art

features (such as BM25/BM25F scoring) and new research algorithms. As described by

its developers, it main characteristics are:

 Support for document collections and factories makes it possible to

analyze, index and query consistently large document collections, providing

easy-to-understand snippets that highlight relevant passages in the retrieved

documents.

 It supports multi-index interval semantics. When a query is submitted,

MG4J returns, for each index, a list of intervals satisfying the query. This

provides the basis for several high-precision scorers and for very efficient

implementation of sophisticated operators. The intervals are built in linear time

using new research algorithms.

http://mg4j.di.unimi.it/docs/it/unimi/di/big/mg4j/search/score/BM25Scorer.html
http://mg4j.di.unimi.it/docs/it/unimi/di/big/mg4j/search/score/BM25FScorer.html

 MG4J provides implementations of phrase queries, proximity

restrictions, ordered conjunction, and combined multiple-index queries. Each

operator is represented internally by an abstract object, so a user can easily plug

in one’s favorite syntax.

 It supports virtual fields—fields containing text for a different, virtual

document; the typical example is anchor text, which must be attributed to the

target document.

 MG4J is flexible so that smaller indices are possible by dropping term

positions, or even term counts. Several different types of codes can be chosen to

balance efficiency and index size. Documents coming from a collection can be

renumbered (e.g., to match a static rank or experiment with indexing

techniques).

2.3 Terrier

Terrier is an open source search engine developed at Glasgow University. It is written in

Java, readily deployable on large-scale collections of documents. Terrier provides another

good platform for research and experimentation in text retrieval, especially for research

carried out on standard TREC test collections.

Terrier can index large corpora of documents, and provides multiple indexing

strategies, such as multi-pass, single-pass and large-scale MapReduce indexing. A user

can specify fields that need to be indexed. Terrier also offers many models for retrieval,

such as BM25, TF_IDF and the BB2 weighting model. When running Terrier in the

experiment, we chose the multi-pass mode. During indexing, all the words in the

collection were stemmed using the well-known Krovetz stemmer and stop-words were

removed using the stop-word list embedded within Terrier.

3. Data Fusion Strategy

Previous studies demonstrate that data fusion, which uses a group of information

retrieval systems to search the same document collection, and then merges the results

from these different systems, is an attractive option to improve retrieval effectiveness.

http://www.terrier.org/docs/current/bibliography.html
http://www.terrier.org/docs/current/configure_indexing.html

Among different data fusion methods, linear combination is an effective method because

of its flexibility in assigning different weights to different component systems. For a

query q, each of the systems iri provides a result 𝑟𝑖 and each 𝑟𝑖 comprises a ranked list of

documents with associated scores. The linear combination method uses the following

formula to calculate score for every document d:

M d, q = βi ∗ Si d, q

n

i=1

Here 𝑆𝑖 𝑑, 𝑞 is the normalized score of document d in result 𝑟𝑖 , 𝛽𝑖 is the weight

assigned to system 𝑖𝑟𝑖 , and M (d, q) is the calculated score of d for q . All the documents

can be ranked according to their calculated scores.

How to assign weights to the component systems is a key issue in linear

combination. Multiple linear regression (LCR) is an effective method [3] that minimizes

the difference between the estimated scores of all documents by linear combination and

the judged scores of those documents in the sense of least squares.

Let us assume that there are n information retrieval systems ir1, ir2,…, irn, m queries

and l documents in a document collection D. Every document in at least one of the results

can be represented as a score vector < i

k

i

nk

i

k

i

k ysss ,,...,, 21 > for i= (1, 2… m), k= (1, 2… l).

Here 𝑠𝑗𝑘
𝑖 stands for the score assigned by retrieval system jir to document kd for

query iq and i

ky is the judged relevance score of dk for query q
i
. We want to estimate

Y = 𝑦𝑘
𝑖 ; 𝑖 = (1, 2, … ,𝑚), 𝑘 = (1,2,… , 𝑙)

using the linear combination of scores from all component systems. The least squares

estimates are used for the calculation of 𝛽
0

, 𝛽
1

, … , 𝛽
𝑛
 for which the quantity

q = [yk
i − (𝛽 0 + 𝛽 1𝑠1𝑘

𝑖 + 𝛽 2𝑠2𝑘
𝑖 + ⋯ + 𝛽 𝑛𝑠𝑛𝑘

𝑖)]2

l

k=1

m

i=1

is a minimum.

Coefficients 𝛽1, 𝛽2, … , 𝛽𝑛 , are numerical parameters that can be determined from

some training data and can be used as weights by 𝑖𝑟1, 𝑖𝑟2, … , 𝑖𝑟𝑛 for fusion.

A related issue is how to obtain reliable scores for those retrieved documents.

Sometimes scores are provided by component retrieval systems, but usually those raw

scores from different retrieval systems are not comparable and some kind of score

normalization is needed before fusing those documents. An alternative is to convert

ranking information into scores if raw scores are not available or not reliable. In our

experiment, we use a reciprocal function of rank [4] for this.

4. Experimental setup

In this section we provide information for the setup of the experiment including how to

obtain weights, running component retrieval systems, score normalization, etc.

3.1 Obtaining weights from training data

The ClueWeb09 Category B dataset is indexed by three information retrieval systems

Indri, MG4j and Terrier, separately. 50 queries in the TREC 2011 web track are used to

obtain results and each retrieves 10000 documents for every query. In the training process,

documents are divided into two types, relevant and irrelevant documents, for linear

regression analysis. The weights we obtain are 5.2534, 6.0191, and 5.1540 for Indri,

MG4J, and Terrier, respectively.

3.2 Running component retrieval systems

When running the component retrieval systems on the ClueWeb12 Category B

collection, we use all the words given by TREC for each topic. For example, the words

for topic 203 are ―reviews of les miserables‖. Next, we remove probable spam pages (top

15% of the pages in the list downloaded from [2]). We keep two slightly different results

for each component retrieval systems: the original result and the result with the spam

pages removed.

3.3 Normalizing scores

In order to generate reliable and comparable scores for all the documents involved,

we use a reciprocal function of rank [4]. For a group of ranked documents <d1, d2…, dn>,

whose ranks are 1, 2, …, n, we normalize them by si =
1

i+60
 for 1 ≤ i ≤ n.

3.4 Data fusion

For the ad hoc task, we fuse results from Indri, MG4J and Terrier with the

aforementioned weights in Section 3.1. Two runs are generated: UJS13LCRAd1 from

the original results of those component systems, and UJS13LCRAd2 from modified

results with spam pages removed. For the risk-sensitive task, we fuse results from Indri,

MG4J, Terrier and the baseline (as provided by TREC) as well. The weights for Indri,

MG4J, and Terrier are the same as in the ad hoc task; we give baseline a weight equal to

the average of all 3 component systems. As in the ad hoc task, we also submitted two

runs UJS13LCRAd1 and UJS13LCRAd2. The former is the fused result from original

results, while the latter is the one from modified results after spam page removal.

5. Results analysis and conclusions

Results from component systems and fusion are presented in Tables 1 and 2 for ad hoc

and risk-sensitive tasks, respectively.

Table 1. Performance of component and fused results in ad-hoc task

Run ERR@20 nDCG@20 P@20 MAP

UJS13LCRAd1 0.097 0.144 0.248 0.045

UJS13LCRAd2 0.107 0.148 0.251 0.052

Terrier 0.082 0.112 0.186 0.026

Indri 0.1 0.122 0.203 0.044

MG4J 0.082 0.106 0.175 0.033

Table 2. Performance of component and fused results in risk-sensitive task

Run ERR-IA@20 @-nDCG@20 NRBP

UJS13Risk1 0.451 0.511 0.415

UJS13Risk2 0.468 0.522 0.434

Terrier 0.367 0.431 0.328

Indri 0.387 0.450 0.345

MG4J 0.431 0.493 0.393

Baseline 0.326 0.385 0.291

From Tables 1 and 2, we can see that the fused results are better than all component

results with only one exception. When measured by ERR@20, UJS13LCRAd1 does not

perform quite as well as Indri. In the ad-hoc task, UJS13LCRAd2 is the best performer

outperforming the best component result (Indri) by 7.00% (measured by ERR@20),

21.31% (measured by nDCG@20), 23.65% (measured by P@20), and 18.18% (measured

by MAP) - the improvement is notable. In the risk-sensitive task, UJS13Risk2 is the best,

outperforming the best component result by 8.58% (measured by ERR-IA@20), 5.88%

(measured by @-nDCG@20), and 10.43% (measured by NRBP). If we consider the

improvement rate of the fused result to the best component result, then data fusion did

better in the ad-hoc task than in the risk-sensitive task. This is not very surprising since

the method of data fusion we have used was initially designed for ad hoc tasks, in

particular with the measures for binary relevance judgment such as MAP and P@20.

6. Conclusive remarks

This is the first time that we have participated in TREC. In the future, we will

investigate data fusion algorithms that are suitable for different kinds of situations such as

the risk-sensitive task and measures that are based on graded relevance judgment. We

will participate in more such evaluation activities to evaluate our algorithms.

7. References

[1] Ntoulas, A., Najork, M., Manasse, M. and Fetterly, D.: Detecting spam web pages

through content analysis. In Proceedings of the 15
th

 international conference on

World Wide Web, pages 83–92, 2006.

 [2] http://www.mansci.uwaterloo.ca/~msmucker/cw12spam/

 [3] Wu, S., Bi, Y., and Zeng, X.: The linear combination data fusion method in

information retrieval. In Proceedings of 22
nd

 International Conference on Database

and Expert Systems Applications, Part II，pages 219-233, 2011.

[4] Cormack, G. V., Clarke, C. L., & Buettcher, S.: Reciprocal rank fusion outperforms

Condorcet and individual rank learning methods. In Proceedings of the 32nd

international ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 758-759, 2009.

http://www.mansci.uwaterloo.ca/~msmucker/cw12spam/

