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Abstract  

In this paper, we report on the experiments we conducted whilst participating in the 

TREC 2013 Web track. We use data fusion to test how to improve the results from 

different information retrieval systems. Linear combination is used for fusion and 

multiple linear regression is used to obtain suitable weights for all the component systems 

involved. In our experiments, the ClueWeb09 dataset is used as training data to obtain 

weights for the three component systems Indri, MG4J, and Terrier. After running the 

official evaluation program, we find that all four runs submitted are better than all 

component results with one exception. 

1. Introduction 

This is the first time that we have participated in TREC and we submitted four runs to the 

Web track. Two of them are to ad hoc and two others to risk-sensitive tasks. We choose 

the ClueWeb12 Catalog-B collection for both tasks. The main technology used is data 

fusion, which means that we run three component information retrieval systems Indri
1
, 

MG4J
2
, and Terrier

3
 separately to search the same document collection, and then merge 

the results from these different systems to obtain the final fused result. 

A collection crawled from the Web is likely to contain a considerable amount of 

spam pages. Many approaches have been proposed to identify spam pages based on page 

content, hyperlink structure, URL form, the similarity between pages of a single host, and 

combinations of the above-mentioned features [1]. We use Waterloo’s list that we 

downloaded from [2]. After checking the spam pages manually, we set the ―spamminess‖ 

threshold parameter to 15%, which we believe is a reasonable value to use. 

                                                        
1 http://sourceforge.net/p/lemur/wiki/Indri/ 
2 http://mg4j.dsi.unimi.it/ 
3 http://terrier.org/ 



Figure 1 and Figure 2 show the main processes for ad-hoc and risk-sensitive tasks 

respectively. Three state-of-art systems (Indri, MG4J and Terrier) were chosen to obtain 

the original results, which is followed by the removal of the spam pages during the 

post-retrieval phase. Finally, we use linear combination to fuse the component results, 

with the weights obtained by using the ClueWeb09 Category B collection and 50 queries 

used in the TREC 2011 Web track. 

  
Figure 1. Flow chart for the ad-hoc task         Figure 2. Flow chart for the risk-sensitive task 

The remainder of this report is structured as follows. In Section 2, we describe those 

component systems involved. Section 3 details our data fusion strategy. In Section 4, we 

describe the settings of the data fusion approach and all related issues. In Section 5, we 

present the results for the 4 runs submitted to the ad-hoc task and the risk-sensitive task. 

Conclusive remarks are given in Section 6. 

2. Description of Component Retrieval Systems 

In this section, we briefly discuss Indri, MG4J, and Terrier. All of them are well-known 

retrieval systems in the information retrieval research community. 

 

2.1 Indri 

Indri is a search engine that provides state-of-the-art text search capabilities and a rich 

structured query language for text collections of up to 50 million documents (single 



machine) or 500 million documents (distributed search). It is available for Linux, Solaris, 

Windows and Mac OSX. Indri is a part of the Lemur project and developed by 

researchers from UMass and Carnegie Mellon University. 

From an academic perspective, Indri combines inference networks with language 

modeling. The query language, which is reminiscent of the Inquery query language, 

allows researchers to experiment with proximity, document structure, text passages, and 

other document features without writing code. Like other academic engines, Indri can 

parse TREC newswire and web collections, and it is able to return results in the TREC 

standard format. 

From an industrial perspective, Indri is efficient and easy to integrate with other 

software components. Indri is freely available from UMass with a flexible BSD-inspired 

license. Indri includes an API that is accessible from C++, Java, C# and PHP. Indri can 

also be distributed across a cluster of nodes for high speed query performance. In version 

2.0, Indri adds true multithreaded operation, so documents can be added, queried and 

deleted concurrently. 

 

 2.2 MG4J 

MG4J (Managing Gigabytes for Java) is a free full-text search engine for large document 

collections written in Java. It is a customizable search engine providing state-of-the-art 

features (such as BM25/BM25F scoring) and new research algorithms. As described by 

its developers, it main characteristics are: 

 Support for document collections and factories makes it possible to 

analyze, index and query consistently large document collections, providing 

easy-to-understand snippets that highlight relevant passages in the retrieved 

documents.  

 It supports multi-index interval semantics. When a query is submitted, 

MG4J returns, for each index, a list of intervals satisfying the query. This 

provides the basis for several high-precision scorers and for very efficient 

implementation of sophisticated operators. The intervals are built in linear time 

using new research algorithms.  

http://mg4j.di.unimi.it/docs/it/unimi/di/big/mg4j/search/score/BM25Scorer.html
http://mg4j.di.unimi.it/docs/it/unimi/di/big/mg4j/search/score/BM25FScorer.html


 MG4J provides implementations of phrase queries, proximity 

restrictions, ordered conjunction, and combined multiple-index queries. Each 

operator is represented internally by an abstract object, so a user can easily plug 

in one’s favorite syntax.  

 It supports virtual fields—fields containing text for a different, virtual 

document; the typical example is anchor text, which must be attributed to the 

target document. 

 MG4J is flexible so that smaller indices are possible by dropping term 

positions, or even term counts. Several different types of codes can be chosen to 

balance efficiency and index size. Documents coming from a collection can be 

renumbered (e.g., to match a static rank or experiment with indexing 

techniques). 

 

2.3 Terrier 

Terrier is an open source search engine developed at Glasgow University. It is written in 

Java, readily deployable on large-scale collections of documents. Terrier provides another 

good platform for research and experimentation in text retrieval, especially for research 

carried out on standard TREC test collections. 

Terrier can index large corpora of documents, and provides multiple indexing 

strategies, such as multi-pass, single-pass and large-scale MapReduce indexing. A user 

can specify fields that need to be indexed. Terrier also offers many models for retrieval, 

such as BM25, TF_IDF and the BB2 weighting model. When running Terrier in the 

experiment, we chose the multi-pass mode. During indexing, all the words in the 

collection were stemmed using the well-known Krovetz stemmer and stop-words were 

removed using the stop-word list embedded within Terrier. 

3. Data Fusion Strategy 

Previous studies demonstrate that data fusion, which uses a group of information 

retrieval systems to search the same document collection, and then merges the results 

from these different systems, is an attractive option to improve retrieval effectiveness. 

http://www.terrier.org/docs/current/bibliography.html
http://www.terrier.org/docs/current/configure_indexing.html


Among different data fusion methods, linear combination is an effective method because 

of its flexibility in assigning different weights to different component systems. For a 

query q, each of the systems iri provides a result 𝑟𝑖  and each 𝑟𝑖  comprises a ranked list of 

documents with associated scores. The linear combination method uses the following 

formula to calculate score for every document d: 

M d, q =  βi ∗ Si d, q 

n

i=1

 

Here 𝑆𝑖 𝑑, 𝑞  is the normalized score of document d in result 𝑟𝑖 ,  𝛽𝑖  is the weight 

assigned to system 𝑖𝑟𝑖 , and M (d, q) is the calculated score of d for q . All the documents 

can be ranked according to their calculated scores. 

How to assign weights to the component systems is a key issue in linear 

combination. Multiple linear regression (LCR) is an effective method [3] that minimizes 

the difference between the estimated scores of all documents by linear combination and 

the judged scores of those documents in the sense of least squares. 

Let us assume that there are n information retrieval systems ir1, ir2,…, irn, m queries 

and l documents in a document collection D. Every document in at least one of the results 

can be represented as a score vector < i

k

i

nk

i

k

i

k ysss ,,...,, 21 > for i= (1, 2… m), k= (1, 2… l). 

Here 𝑠𝑗𝑘
𝑖  stands for the score assigned by retrieval system jir  to document kd  for 

query iq  and i

ky  is the judged relevance score of dk for query q
i
. We want to estimate 

Y =   𝑦𝑘
𝑖 ; 𝑖 = (1, 2, … ,𝑚), 𝑘 = (1,2,… , 𝑙)  

using the linear combination of scores from all component systems. The least squares 

estimates are used for the calculation of  𝛽 
0

, 𝛽 
1

, … , 𝛽 
𝑛
  for which the quantity 
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is a minimum. 

Coefficients 𝛽1, 𝛽2, … ,  𝛽𝑛 , are numerical parameters that can be determined from 

some training data and can be used as weights by 𝑖𝑟1, 𝑖𝑟2, … , 𝑖𝑟𝑛  for fusion. 

A related issue is how to obtain reliable scores for those retrieved documents. 

Sometimes scores are provided by component retrieval systems, but usually those raw 

scores from different retrieval systems are not comparable and some kind of score 



normalization is needed before fusing those documents. An alternative is to convert 

ranking information into scores if raw scores are not available or not reliable. In our 

experiment, we use a reciprocal function of rank [4] for this. 

4. Experimental setup 

In this section we provide information for the setup of the experiment including how to 

obtain weights, running component retrieval systems, score normalization, etc. 

3.1 Obtaining weights from training data 

The ClueWeb09 Category B dataset is indexed by three information retrieval systems 

Indri, MG4j and Terrier, separately. 50 queries in the TREC 2011 web track are used to 

obtain results and each retrieves 10000 documents for every query. In the training process, 

documents are divided into two types, relevant and irrelevant documents, for linear 

regression analysis. The weights we obtain are 5.2534, 6.0191, and 5.1540 for Indri, 

MG4J, and Terrier, respectively. 

3.2 Running component retrieval systems 

When running the component retrieval systems on the ClueWeb12 Category B 

collection, we use all the words given by TREC for each topic. For example, the words 

for topic 203 are ―reviews of les miserables‖. Next, we remove probable spam pages (top 

15% of the pages in the list downloaded from [2]). We keep two slightly different results 

for each component retrieval systems: the original result and the result with the spam 

pages removed. 

3.3 Normalizing scores 

In order to generate reliable and comparable scores for all the documents involved, 

we use a reciprocal function of rank [4]. For a group of ranked documents <d1, d2…, dn>, 

whose ranks are 1, 2, …, n, we normalize them by si =
1

i+60
 for  1 ≤ i ≤ n. 

3.4 Data fusion 

For the ad hoc task, we fuse results from Indri, MG4J and Terrier with the 

aforementioned weights in Section 3.1. Two runs are generated: UJS13LCRAd1  from 

the original results of those component systems, and UJS13LCRAd2 from modified 

results with spam pages removed. For the risk-sensitive task, we fuse results from Indri, 

MG4J, Terrier and the baseline (as provided by TREC) as well. The weights for Indri, 



MG4J, and Terrier are the same as in the ad hoc task; we give baseline a weight equal to 

the average of all 3 component systems. As in the ad hoc task, we also submitted two 

runs UJS13LCRAd1 and UJS13LCRAd2. The former is the fused result from original 

results, while the latter is the one from modified results after spam page removal. 

5. Results analysis and conclusions 

Results from component systems and fusion are presented in Tables 1 and 2 for ad hoc 

and risk-sensitive tasks, respectively.  

Table 1. Performance of component and fused results in ad-hoc task 

Run ERR@20 nDCG@20 P@20 MAP 

UJS13LCRAd1 0.097 0.144 0.248 0.045 

UJS13LCRAd2 0.107 0.148 0.251 0.052 

Terrier 0.082 0.112 0.186 0.026 

Indri 0.1 0.122 0.203 0.044 

MG4J 0.082 0.106 0.175 0.033 

Table 2. Performance of component and fused results in risk-sensitive task 

Run ERR-IA@20 @-nDCG@20 NRBP 

UJS13Risk1 0.451 0.511 0.415 

UJS13Risk2 0.468 0.522 0.434 

Terrier 0.367 0.431 0.328 

Indri 0.387 0.450 0.345 

MG4J 0.431 0.493 0.393 

Baseline 0.326 0.385 0.291 



From Tables 1 and 2, we can see that the fused results are better than all component 

results with only one exception. When measured by ERR@20, UJS13LCRAd1 does not 

perform quite as well as Indri. In the ad-hoc task, UJS13LCRAd2 is the best performer 

outperforming the best component result (Indri) by 7.00% (measured by ERR@20), 

21.31% (measured by nDCG@20), 23.65% (measured by P@20), and 18.18% (measured 

by MAP) - the improvement is notable. In the risk-sensitive task, UJS13Risk2 is the best, 

outperforming the best component result by 8.58% (measured by ERR-IA@20), 5.88% 

(measured by @-nDCG@20), and 10.43% (measured by NRBP). If we consider the 

improvement rate of the fused result to the best component result, then data fusion did 

better in the ad-hoc task than in the risk-sensitive task. This is not very surprising since 

the method of data fusion we have used was initially designed for ad hoc tasks, in 

particular with the measures for binary relevance judgment such as MAP and P@20. 

6. Conclusive remarks 

This is the first time that we have participated in TREC. In the future, we will 

investigate data fusion algorithms that are suitable for different kinds of situations such as 

the risk-sensitive task and measures that are based on graded relevance judgment. We 

will participate in more such evaluation activities to evaluate our algorithms. 
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