
TREC 2013 Temporal Summarization

Javed Aslam Fernando Diaz Matthew Ekstrand-Abueg
Virgi Pavlu Tetsuya Sakai

February 11, 2014

1 Introduction

Unexpected news events such as earthquakes or natural disasters represent a
unique information access problem where traditional approaches fail. For ex-
ample, immediately after an event, the corpus may be sparsely populated with
relevant content. Even when, after a few hours, relevant content is available, it
is often inaccurate or highly redundant. At the same time, crisis events demon-
strate a scenario where users urgently need information, especially if they are
directly affected by the event.

The goal of this track is to develop systems for efficiently monitoring the in-
formation associated with an event over time. Specifically, we are interested
in developing systems which (1) can broadcast short, relevant, and reliable
sentence-length updates about a developing event and (2) can track the value
of important event-related attributes (e.g. number of fatalities).

The track has the following goals,

• to develop algorithms which detect sub-events with low latency,

• to model information reliability in the presence of a dynamic corpus,

• to understand and address the sensitivity of text summarization algo-
rithms in an online, sequential setting, and

• to understand and address the sensitivity of information extraction algo-
rithms in dynamic settings.

2 Task Descriptions

2.1 Sequential Update Summarization

During the simulation, a system should emit relevant and novel sentences to an
event (exact metrics will be released in a separate document). Conceptually, a
simulator should be structured as in Figure 1. The arguments to the simulator
are the participant summarization system, the time-ordered corpus, the keyword

1

TemporalSummarization(S, C, q, ts, te)
S � Participant system.
C � Time-ordered corpus.
q � Event keyword query.
ts � Event start time.
te � Event end time.

1 U ← {}
2 S.Initialize(q)
3 for d ∈ C
4 do
5 S.Process(d)
6 t← d.Time()
7 if t ∈ [ts, te]
8 then
9 Ut ← S.Decide()

10 for u ∈ Ut
11 do
12 U .Append(u, t)
13 return U

Figure 1: Sequential update summarization simulator.

query, and the relevant time range. In line 1, we initialize the output summary
to empty. In line 2, we initialize the sequential update summarization system
with the event query. The system should store some representation of this query
for later processing and filtering. We iterate over the corpus in temporal order
(line 3), processing each document in sequence (line 5). If the document we are
processing is in the event timeframe (line 7), then we check to see if adding the
document resulted in the system deciding to output a set of summary sentence
ids (line 9). We then add these sentence ids to the summary timestamped with
the time of the decision (lines 10-12).

We have tried to present an abstract representation of sequential update
summarization. There are several comments worth making. First, if a par-
ticipant is interested in efficiency and does not anticipate needing documents
outside of the event timeframe, then the call to S.Process(d) can be moved
inside of the condition in line 7. Participants should be clear about any filtering
of C. For example, a participant should note if they are just iterating over doc-
uments with a high BM25 score. However, if this is done, care must be taken
to make sure that filtering out a document d does not exploit information from
sources after d.Time() (e.g. retrospective IDF values).

2

ValueTracking(S, C, q, a, ts, te)
S � Participant system.
C � Time-ordered corpus.
q � Event keyword query.
a � Event attribute.
ts � Event start time.
te � Event end time.

1 V ← {}
2 S.Initialize(q, a)
3 v ← S.InitialEstimate()
4 V.Append(〈v, ∅〉, ts)
5 for d ∈ C
6 do
7 S.Process(d)
8 t← d.Time()
9 if t ∈ [ts, te]

10 then
11 〈v, s〉 ← S.EstimateValue()
12 if 〈v, s〉 6= ∅
13 then
14 V.Append(〈v, s〉, t)
15 return V

Figure 2: Value tracking simulator.

2.2 Value Tracking

During the simulation, a system should emit accurate attribute value estimates
for an event. Conceptually, a simulator should be structured as in Figure 2.
The arguments to the simulator are the participant tracking system, the time-
ordered corpus, the keyword query, the attribute of interest, and the relevant
time range. In line 1, we initialize the value summary to empty. In line 2, we
initialize the tracking system with the event query and attribute name. The
system should store some representation of this information for later processing
and filtering. We then ask for an initial estimate based solely on the query and
attribute. Systems are welcome to use any data that existed at or before ts. We
iterate over the corpus in temporal order (line 5), processing each document in
sequence (line 7). If the document we are processing is in the event timeframe
(line 9), then we check to see if adding the document resulted in a change
of the system’s value estimate (line 11). If there is no change in the value
estimate, the system should return ∅ and continue processing documents. If the
estimate changes, the system should return the new value as well as the id of
the supporting sentence.

3

3 Evaluation

3.1 Temporal Summarization

Each event will be retrospectively analyzed for important sub-events or ‘nuggets’,
each with a precise timestamp and text describing the sub-event. Our evaluation
metrics will measure the degree to which a system can generate these nuggets
in a timely manner.

A system/run update is a timestamped short text string comparable in
length to a sentence. Colloquially, an update can be thought of as an SMS
message or tweet. We generally denote an update as the pair (string, time):
u = (u.string, u.t). For example u = (“The hurricane was upgraded to

category 4”, 1330169580) represents an update describing the hurricane cate-
gory, now 4, pushed out by system S at UNIX time 1330169580 (i.e. 1330169580
seconds after 0:00 UTC on January 1, 1970). In this year’s evaluation, the up-
date string is chosen from the set of segmented sentences in the corpus as defined
in the guidelines.

Two updates are semantically comparable using a text similarity measure or
a manual annotation process applied to their string components; if two updates
u and u′ refer to the same information (semantically matching), then we write
this as u ≈ u′, irrespective of their timestamps. Because two systems might
deliver the same update string at different times, it is generally not the case
that u.string = u′.string implies u.t = u′.t.

Given an event, our manual annotation process generates a set of gold stan-
dard updates called nuggets, extracted from wikipedia event pages and times-
tamped according to the revision history of the page. Editorial guidelines recom-
mend that nuggets be a very short sentence, including only a single sub-event,
fact, location, date, etc, associated with topic relevance. We refer to the canon-
ical set of updates as N . This manual annotation process is retrospective and
subject to error in the precision of the timestamp. As a result we might en-
counter situations where the timestamp of the nugget is later than the earliest
matching update.

In response to an event’s news coverage, a system/run broadcasts a set of
timestamped updates generated in the manner described in the Guidelines. We
refer to a system’s set of updates as S. The set of updates received before time
τ is,

Sτ = {u ∈ S : u.t < τ} (1)

Our goal in this evaluation is to measure the precision, recall, timeliness,
and novelty of updates provided by a system.

3.1.1 Preliminaries

Our evaluation metrics are based on the following auxiliary functions.

4

• Nugget Relevance. Each nugget n ∈ N has an associated relevance/importance
grade,

R : N → [0, 1] (2)

R(n) measures the importance of the content (information) in the nugget.
Nugget importance was provided on a 0-3 scale by assessors (no impor-
tance to high importance). For graded relevance, we normalize on an
exponential scale, since high importance nuggets are described as “of key
importance to the query”, whereas low importance nuggets are “of any
importance to the query”. When binary relevance is needed, everything
of any relevance is relevant (0 is the only non-relevant grade). The ac-
tual relevance functions used are presented below; n.i denotes the nugget
importance as assigned by the assessor.

Rgraded(n) =
en.i

emaxn′∈N n
′.i

Graded relevance (3)

Rbinary(n) =

{
1 iff n.i > 0

0 otherwise
Binary relevance (4)

(5)

Note that for graded relevance, returning exactly the nugget set as the
system output updates and nothing more (“perfect system”), would usu-
ally not result in an expected gain of 1. However, using binary relevance,
the perfect system would score an expected gain of 1.

The relevance can be discounted in time or in size, hence the following
discounting functions.

• Latency Discount. Given a reference timestamp of a matching nugget,
t∗, a latency penalty function L(t∗, t) is a monotonically decreasing func-
tion of t− t∗. A system may return an update matching Wikipedia infor-
mation before the Wikipedia information exists; thus we use a function
that is smooth and decays on both the positive and negative sides.

The actual function used is presented below with arguments the nugget
Wikipedia time (wiki-edit timestamp) n.t, and the update time u.t as
indicated by the system.

L(n.t, u.t) = 1− 2

π
arctan(

u.t− n.t
α

) latency-discount (6)

α = 3600 ∗ 6 latency-step (6 hours) (7)

5

Time Delay from Nugget Time u.t - n.t (in Hours)

L
at

en
cy

D
is

co
u

n
t

L

Latency Discount Function

-50 -40 -30 -20 -10 0 10 20 30 40 50
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Current parameters allow the latency discount factor to vary from 0 to 2
(1 means nugget time equal to update time), and flattens at around one
day(± 24 hours). Note that as a result, gain and expected gain can be
greater than 1.

• Verbosity Normalization. The task definition assumes that a user
receives a stream of updates from the system. Consequently, we want
to penalize systems for including unreasonably long updates, since these
easily lead to significantly higher reading effort. The verbosity can be
defined as a string length penalty function, monotonically increasing in the
number of words of the update string. We will refer to this normalization
function as V(u).

For the actual verbosity implementation, we approximate the number of
extra nuggets worth of information in a given update. This is done by
finding all text which did not match a nugget (as defined by the assessors),
and dividing the number of words in the text by the average number of
words in a nugget for that query.

V(u) = 1 +
|all wordsu| − |nuggetmatching wordsu|

AV Gn|wordsn|
(8)

= 1 +
|u| − | ∪n∈M−1(u,S) M(n,S)|

avgn∈N |n|
verbosity-normalization

(9)

where |u|, |n| are the length (in number of words) of the update u, and
nugget n.

Note that if an update has all its words being part of some match to a
nugget, the verbosity is V (u)=1; otherwise V (u)−1 is an approximation of
the “extra non-matching words” in terms of equivalent number of nuggets.

• Update-Nugget Matching. We also define a key earliest matching
function between a nugget and an update set,

M(n,S) = argmin{u∈S:n≈u}u.t (10)

6

or ∅ if there is no matching update for n. M(n,S) should be interpreted
as “given n, the earliest matching update in S.”

We also define the set of nuggets for which u is the earliest matching
update as,

M−1(u,S) = {n ∈ N : M(n,S) = u} (11)

Note that an update can be the earliest matching update for more than
one nugget.

3.1.2 Metrics

Using the previously defined notion of relevance, latency, verbosity, and match-
ing we can define several measures of interest for Temporal Summarization.

Given an update u and a matching nugget n (i.e. u ≈ n), we can define the
discounted gain as,

g(u, n) = R(n)× discounting factor (12)

Given the previously defined discounts, we have the following family of dis-
counted gains,

gF(u, n) = R(n) discount-free gain (13)

gL(u, n) = R(n)× L(n.t, u.t) latency-discounted gain (14)

(15)

Since an update can be the earliest to match several nuggets (u ≈ n), we
define the gain of an update with respect to a system (or participant run) S
as the sum of [latency-discounted] relevance of the nuggets for which it is the
earliest matching update:

G(u,S) =
∑

n∈M−1(u,S)

g(u, n) (16)

where the gain can be either of the discounted gains described earlier. Note
that for an appropriate discounting function, G(u,S) ∈ [0, 1], although for
the latency-discounted gain, given the imperfect nature of model timestamps,
GL(u,S) ∈ [0, 2].

One way to evaluate a system is to measure the expected gain for a system
update. This is similar to traditional notions of precision in information retrieval
evaluation. Over a large population of system updates, we can estimate this
measure reliably. The computation of the expected update gain for system S

7

by time τ is the average of the gain per update:

EG(S) =
1

|S|
∑
u∈S

G(u,S) (17)

=
1

|S|
∑
u∈S

∑
n∈M−1(u,S)

g(u, n)

=
1

|S|
∑

{n∈N :M(n,S) 6=∅}

g(M(n,S), n) (18)

Additionally, we may penalize “verbosity” by normalizing not by the number
of system updates, but by the overall verbosity of the system

EGV(S) =
1∑

u∈S V(u)

∑
{n∈N :M(n,S)6=∅}

g(M(n,S), n) (19)

Our definition of g is such that it:

• does not penalize for large a update matching several nuggets, as opposed
to a few small updates each matching a nugget, due to verbosity weighting,

• penalizes for late updates (against matched nugget reference timestamp),
and

• penalizes “verbosity” of updates text not matching any nuggets.

Furthermore, we have that G(u,Sτ) ∈ [0, 1] if all update timestamps are at or
after matching model timestamps. Over a set of events, the mean expected gain
is defined as,

MEG =
1

|E|
∑
ε∈E

EG(Sε) (20)

where E is the set of evaluation events and Sε is the system submission for event
ε.

Because a user interest may be concentrated immediately after an event and
because a system’s performance (in terms of gain) may be dependent on the
time after an event, we will also consider a time-sensitive expected gain for
the first τ seconds,

EGτ (S) = EG(Sτ) (21)

with MEGτ defined similarly.
In addition to good expected gain, we are interested in a system providing

a comprehensive set of updates. That is, we would like the system to cover
as many nuggets as possible. This is similar to traditional notions of recall in
information retrieval evaluation. Given a set of system updates, S, we define

8

the comprehensiveness (and latency-comprehensiveness) of the system
as:

C(S) =
1∑

n∈N R(n)

∑
{n∈N :M(n,S)6=∅}

g(M(n,S), n) (22)

=
1∑

n∈N R(n)

∑
u∈S

∑
n∈M−1(u,S)

g(u, n)

=
1∑

n∈N R(n)

∑
u∈S

G(u,S) (23)

We also define a time-sensitive notion of comprehensiveness,

Cτ (S) = C(Sτ) (24)

with an aggregated measure defined as,∫ te

ts

Cτ (S)dτ (25)

which measures how quickly a system captures nuggets.

3.2 Value Tracking

3.2.1 Notation

Let V be the set of possible values deliverable to the user. A value is either a
real number or a pair of numbers, depending on the type. A value update u
refers to a timestamped value indexed such that uv ∈ V and ut is the timestamp
of the update.

Given a set of value updates U for an event, we assume the predicted value
at time τ is the value of the most recent update before τ . We represent this as
fU (τ) ∈ V. In order for this function to be well-defined, we request that partic-
ipants provide a baseline or prior prediction before having seen any evidence.

Given an event and an attribute type, our manual annotation process gen-
erates a set of timestamped target attribute values U∗. In most cases, the
annotation process will generate a single target value (i.e. fU∗(τ) is constant
for all τ).

3.2.2 Metrics

We evaluate a system according to the expected error with respect to the true
attribute value fU∗ ,

EE(U ,U∗, τ) =
1

te − ts

∫ te

ts

Err(U ,U∗, τ)dτ (26)

9

Figure 3: Extraction interface used by assessors to extract nuggets from
Wikipedia edits.

where, for scalar attributes, the error is defined as

Err(U ,U∗, τ) = |fU∗(τ)− fU (τ)| (27)

and for geographic attributes, we use the Vincenty distance. We gathered tar-
get attribute values from a variety of sources, including Wikipedia and official
weather reports.

4 Judging

The evaluation process occurred in two phases: 1) Gold Nugget Extraction and
2) Update-Nugget Matching. The first phase defined the space of relevant infor-
mation for the queries and the second phase matched this information to updates
provided by participants in order to evaluate their accuracy and coverage of the
information space.

4.1 Gold Nugget Extraction

In this first phase, assessors were asked to read all edits of the Wikipedia article
for each query, manually extracting text perceived as relevant and novel for
that edit. Additionally, assessors assigned an importance grade to every text
fragment, or nugget, as well as noted any dependencies in the information. An
example portion of the extraction interface can be seen in Figure 3.

In order to simplify later matching, assessors were told to extract nuggets
such that they were atomic pieces of information relevant to the query. However,
knowing that information can be highly contextual, we allow for the notion of
dependencies between nuggets: a nugget may be relevant to a query if and
only if another nugget is also present. For evaluation purposes, a nugget was
considered unmatched if it had unmatched nuggets on which it depended.

10

Figure 4: Matching interface used by assessors to match updates and nuggets.

Additionally, we provided a method for assessors to track updates to pieces
of information. This was primarily used to allow them to collate their work
and reduce redundancy, but it was also used in the matching phase to help the
assessor find the closest piece of information to a match.

4.2 Update-Nugget Matching

Once submissions were received, we performed a variant of depth-pooling in
order to sample updates for evaluation. We sampled the top 60 updates per
query and run as sorted by the provided confidence scores (highest first). Addi-
tionally, we performed near-duplicate detection among update text to increase
the covered set. This resulted in sampled update counts as per Table 1. One
note here is that not all runs contained 60 updates per query; for the run-query
pairs with less than 60 updates, all updates were sampled.

The sampled updates were presented in an interface similar to the one for
extraction. Assessors examined and matched updates to nuggets by selecting
portions of updates which matched a given nugget, as nuggets are atomic but
updates are not. An assessor was allowed to break a nugget into two or more
new nuggets to improve atomicity if desired. Note that a nugget may match
multiple updates, and an update may match multiple nuggets. An example view
of the matching interface can be seen in Figure 4.

5 Results

5.1 Sequential Update Summarization

The results for the sequential update summarization task are summarized in
Table 2. For evaluation results for individual queries, see the appendices of the
TREC proceedings. It is important to note that performance on the Gain-based
measures tends to be anti-correlated with the performance on the Comprehensiveness-
based measures. This is expected, as these measures, like precision and recall,
are difficult to simultaneously optimize.

11

RunID # Updates
UWaterlooMDS-rg1 414.1 (113.2)
UWaterlooMDS-rg2 402.8 (113.7)
UWaterlooMDS-UWMDSqlec2t25 370.4 (104.6)
UWaterlooMDS-UWMDSqlec4t50 357.2 (107.0)
UWaterlooMDS-rg4 281.6 (116.6)
UWaterlooMDS-rg3 275 (107.9)
hltcoe-EXTERNAL 184.4 (77.8)
hltcoe-Baseline 183.9 (90.0)
hltcoe-BasePred 167.7 (75.5)
uogTr-uogTrEMMQ2 147.6 (34.7)
uogTr-uogTrNMM 140 (35.2)
PRIS-cluster1 100.9 (17.9)
PRIS-cluster4 100.7 (17.7)
uogTr-uogTrNMTm3FMM4 96.4 (29.2)
uogTr-uogTrNMTm1MM3 89.3 (29.9)
PRIS-cluster2 89 (17.3)
uogTr-uogTrNSQ1 80.7 (16.0)
hltcoe-TuneBasePred2* 74.8 (57.3)
wim GY 2013-SUS1 73.1 (15.5)
UWaterlooMDS-NormEgrep 65.3 (21.3)
ICTNET-run1 56.9 (24.9)
ICTNET-run2 55.3 (24.5)
hltcoe-TuneExternal2* 49.7 (46.8)
PRIS-cluster3 38.2 (11.7)
PRIS-cluster5 21.8 (2.6)
UWaterlooMDS-CosineEgrep 11.9 (7.5)
BJUT-Q0* 0 (0.0)
ALL 145.5 (136.5)

Table 1: µ and σ(in parens) of number of updates sampled for each run over all
topics. *run not pooled.

This discrepancy is partly a result of the varying number of updates pro-
vided by a group, as can be seen in Table 1. The groups with higher gain
have fewer updates and those with higher comprehensiveness have more up-
dates. This shows that the task is achievable from both standpoints, but that
improvements can come from attempting to rationalize these two needs or at
least by prioritizing them based on user intent.

These average scores are somewhat less indicative of the discriminative power
of the measures as there was a fairly large amount of variance between queries.
However, these averages are consistent with the performance across the queries
and are therefore useful as overall measures of run performance. Additionally,
it should be noted that the mean number of runs per update was 3.5.

Unfortunately, the submission for one group, BJUT, was in an inconsistent

12

RunID E[Gain] E[Latency Gain] Comprehensiveness Latency Comp.
PRIS-cluster5 0.149 (0.101) 0.136 (0.090) 0.099 (0.099) 0.126 (0.164)
ICTNET-run2 0.102 (0.045) 0.127 (0.075) 0.192 (0.105) 0.251 (0.169)
ICTNET-run1 0.101 (0.045) 0.125 (0.075) 0.194 (0.103) 0.253 (0.169)
hltcoe-TuneExternal2* 0.109 (0.091) 0.117 (0.073) 0.162 (0.127) 0.203 (0.156)
hltcoe-TuneBasePred2* 0.093 (0.079) 0.114 (0.117) 0.180 (0.117) 0.244 (0.188)
PRIS-cluster3 0.103 (0.084) 0.103 (0.050) 0.131 (0.138) 0.176 (0.203)
PRIS-cluster2 0.071 (0.039) 0.074 (0.031) 0.204 (0.146) 0.260 (0.217)
uogTr-uogTrNMTm1MM3 0.077 (0.036) 0.069 (0.053) 0.201 (0.129) 0.216 (0.203)
PRIS-cluster4 0.065 (0.034) 0.067 (0.026) 0.224 (0.178) 0.288 (0.262)
PRIS-cluster1 0.065 (0.034) 0.067 (0.026) 0.224 (0.178) 0.292 (0.270)
hltcoe-BasePred 0.053 (0.041) 0.067 (0.057) 0.281 (0.186) 0.368 (0.272)
hltcoe-Baseline 0.049 (0.032) 0.063 (0.046) 0.291 (0.178) 0.381 (0.261)
uogTr-uogTrNSQ1 0.069 (0.031) 0.060 (0.031) 0.174 (0.123) 0.184 (0.171)
ALL– 0.055 (0.057) 0.058 (0.061) 0.231 (0.194) 0.288 (0.288)
hltcoe-EXTERNAL 0.047 (0.023) 0.054 (0.027) 0.318 (0.186) 0.413 (0.291)
uogTr-uogTrNMTm3FMM4 0.062 (0.030) 0.049 (0.028) 0.183 (0.120) 0.170 (0.143)
uogTr-uogTrNMM 0.057 (0.031) 0.045 (0.023) 0.244 (0.155) 0.254 (0.231)
uogTr-uogTrEMMQ2 0.050 (0.023) 0.040 (0.024) 0.241 (0.179) 0.259 (0.254)
wim GY 2013-SUS1 0.037 (0.019) 0.036 (0.029) 0.128 (0.107) 0.148 (0.149)
UWaterlooMDS-rg4 0.025 (0.020) 0.028 (0.019) 0.386 (0.202) 0.516 (0.339)
UWaterlooMDS-rg3 0.024 (0.017) 0.026 (0.015) 0.384 (0.185) 0.506 (0.323)
UWaterlooMDS-rg2 0.021 (0.019) 0.022 (0.018) 0.441 (0.198) 0.562 (0.349)
UWaterlooMDS-rg1 0.020 (0.016) 0.021 (0.016) 0.445 (0.191) 0.571 (0.358)
UWaterlooMDS-UWMDSqlec4t50 0.016 (0.013) 0.018 (0.016) 0.423 (0.175) 0.530 (0.325)
UWaterlooMDS-UWMDSqlec2t25 0.016 (0.014) 0.017 (0.016) 0.433 (0.170) 0.537 (0.322)
UWaterlooMDS-CosineEgrep 0.007 (0.009) 0.010 (0.015) 0.013 (0.017) 0.018 (0.027)
UWaterlooMDS-NormEgrep 0.001 (0.002) 0.001 (0.002) 0.050 (0.076) 0.061 (0.117)
BJUT-Q0* 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

Table 2: µ and σ of primary task metrics over all queries, sorted by Expected
Latency Gain. *run not pooled.

13

location deaths injuries financial impact
(109)

baseline 20038.0 195.111 473.222 13.3539
PRIS-PRISTS1 18101.8 37880.4 64886.5 9.5251
PRIS-PRISTS2 11864.1 88666.5 106099 25.1175
PRIS-PRISTS3 11796.3 88666.5 106375 42.5367
BJUT-Q1 20038.0 138.1 473.222 13.3539
ICTNET-ValueTask 20038.0 188.495 390.985 13.3539
wim GY 2013-VT1 14483.6 2726.06 410.092 13.3539
wim GY 2013-VT2 4660.76 2396.12 410.531 13.3539

Table 3: Value Tracking Expected Error by Attribute. The baseline run predicts
‘0’ for all non-location attributes and achieves a maximum location distance of
20038 km.

format, and as such was not pooled. Therefore even with a fixed submission, the
submission was less likely to match the sampled updates, and in fact matched
none of them. Another group, hltcoe, submitted fixed versions of their runs
shortly after the deadline, but their initial submission was included in the pool.

5.2 Value Tracking

We present results for value tracking in Table 3. No system consistently per-
formed strongly across attributes and several runs focused on individual at-
tributes, omitting predictions for others. In order to provide a reference, Table
3 also includes the performance for a run which outputs ‘0’ for non-location
attributes. This allows us to detect runs which ignored an attribute and, for
those that did not, whether the system was effective. In the cases where runs
underperformed the baseline, this was often due to egregious extraction error
(e.g. predicting tens of thousands of injuries instead of hundreds). Even when
relatively accurate predictions were made, the expected error metric is sensitive
to outliers such as these.

14

