
ICTNET at Web Track 2012 Ad-hoc Task
Heyuan Li1, 2, Yuanhai Xue1, 2, Shaohua Guo1, 2, Feng Guan1, 2, Xiaoming Yu1, Yue Liu1, Xueqi Cheng1

1. Institute of Computing Technology, Chinese Academy of Sciences, Beijing, 100190
2. Graduate School of Chinese Academy of Sciences, Beijing, 100190

Abstract
In this paper, we report our experiments at Ad-hoc task, Web Track 2012. In this year, we attempt to
use new web parser with noise elimination. The Conditional Boolean BM25 was used as major ranking
function. We also introduce Learning-To-Rank to combine multiple features together for ranking, but
the performance was poor due to the low quality of training data.
1. Introduction
Ad-hoc task investigates the performance of search over a static set of documents using
previously-unseen topics. The ClueWeb09 Dataset [1] and its derived data were still used this year. The
topic used this year was the same as NTCIR-10, which was shorter and more common than 2011’s
Ad-hoc task. This paper is organized as follows. In Section 2, we discuss the workflow of building
index, including parser, data processing, and building. The retrieval models and Learning-To-Rank are
described in Section 3. In Section 4, we report the evaluation results and discuss the performance this
year. Finally, we conclude our work in Section 5.
2. Building Index
2.1 New web parser with noise elimination
We use the new version of web parser to analysis the web page and extract the text. Many low-quality
web pages in ClueWeb09 were filled with advertising and spam. Last year, we use naïve html parser
that treat full page as content, which would bring in spam and noise [2]. The new parser proposed this
year could remove the noise and spam parts in web page based on DOM characteristic. For example,
many paragraphs (<p>) appear continuous trend to be the pure, non-spam text. On the other hand,
advertisement and navigation usually consist of intensive hypertext references (<a> tag). We apply the
new parser to extract TREC-ID, URL, title, pure content and anchor text.
2.2 Anchor Text
As we discussed last year, search on reverse anchor text could significant improve the retrieval
performance [2]. In year 2011, we use anchor text data by Dang [3] and treat each unique pair of <URL,
anchor text> as individual document. This year, we use the same original data but employ a map/reduce
workflow to merge the anchor text for the same URL. At the map side, we compute the hash value for
URL and collect anchor text with count. For the reduce task, we joint the anchor text to form a bigger
text for the same key (same URL) and repeat it for many times if the count value is bigger than 1. The
reduced text value was seen as a document field for this URL.
2.3 Index Building
This year, we use GolaxyDT2 [5], a real-time distributed search platform. As the data was already
generated, we select the distributed mode instead of real-time mode build to speed up the procedure.
Firstly, we combine all the fields to form a structured XML documents. The document was consist of 6
fields, including TREC-ID, URL, title, pure content, reverse anchor text and spam value [4]. Secondly,
we setup a distributed file system on a 10-servers cluster and copy the structured data to DFS. Then, we
deploy the GolaxyDT2 across the cluster. The master controller distributes the data list to each
GolaxyDT2 index builder and start the building remotely. The whole building process takes 10 hours to
finish.

3. Retrieval Models and LTR
3.1 Conditional Boolean BM25 Model
Okapi BM25 is a widely used probabilistic retrieval model [6], which is designed for non-structure text.
In order to apply this model to structured document with many fields, we combine Boolean model and
BM25 Model this year. Firstly, we search on each field using Boolean operator and BM25 separately.
For the short fields, such as title and reverse anchor text, we apply OR operator before BM25 ranking.
After that, documents that any query words occurs at least once is selected and ranked. For the long
fields, such as content, we perform the similar workflow, but use AND operator instead of OR.
Secondly, we combine different fields’ document together by using AND operator. Documents that
exist in all fields rank list would remain to form the final list. Also, we add all part’s BM25 score
together to obtain the final score and rank by score.
The short field, for instance, AND operator would lead to better accuracy. But for some topic, apply
AND operator may cause very few matched documents. Therefore, we propose a modified model this
year. For each topic, we use AND operator on title field. If the matching documents is less than
threshold, we switch to OR operator. For content field, the operator is always AND. We call this
Conditional Boolean BM25 Model and use it as baseline this year.
3.2 Learning to rank
Learning to rank (LTR) introduces machine learning to retrieval ranking problem. It uses supervised or
semi-supervised learning to automatically construct a ranking model from training data. LTR is an
effective way to combine multiple ranking features together. We choose 11 features and classify them
in three types. The Probabilistic Retrieval Model, which is the BM25 score for title, URL, content,
reverse anchor fields. The Language Model, including query like-hood and KL-divergence model for
title, URL, content and reverse anchor text fields. The content quality feature, such as the spam score
and PageRank for document.
Because the lack of feature values that we proposed, we can’t use public available training data such as
LETOR [8]. Our training data is generated base on the relevance judgment for TREC 2009 and TREC
2010. As a matter of fact, this is a low quality training data, for there are only 98 topics in the dataset
and very few relevance documents for each topic. We use RankBoost [9] algorithm this year. For
training, we use 5-folds cross validation and the output model is used for ranking directly.
3.3 Boost Wikipedia Result
In many commercial search engines, such as Google, the high quality document is boosted to the first
place. This year, we explore the feasibility of boost Wikipedia result. Two indexes are built separately.
The first one is INDEX_WIKI, built for pages in ClueWeb09 under the en.wikipedia.org domain. The
other pages in ClueWeb09 are built in index INDEX_NORMAL. For INDEX_WIKI, we use Boolean
Retrieval Model in URL field. For INDEX_NORMAL, the model described in Section 3.2 is used to
rank the result. The final submission is a combination of the two indexes above. For each query, we
search across INDEX_WIKI and choose the top one document if any matches. Then search across
INDEX_NORMAL and fill the other positions.
4. Results and Discussion
In the first run, ICTNET12ADR1, we use Conditional Boolean BM25 Model described in Section 3.1.
Then the matching Wikipedia result is boosted to the first position as shown in Section 3.3. This run is
the baseline and we use it to validate the effectiveness of other runs.
In the run ICTNET12ADR2, the workflow was nearly the same as ICTNET12ADR1. But we use the
new web page parser described in Section 2.1. We submit this run to investigate the influence of noise

elimination for Ad-hoc task.
The last run, ICTNET12ADR3, was generated by Learning-to-rank, as described in Section 3.2. Many
features are combined together and a ranking model is automatic generated to form the final result.
This is our first attempts that introduce Learning-to-rank for Ad-hoc task recent years.

Run Rel. Docs. ERR@20 nDCG@20 P@10 P@20 MAP

ICTNET12ADR1 1398 0.2075 0.1162 0.2860 0.2610 0.0908
ICTNET12ADR2 1337 0.2149 0.1101 0.2680 0.2570 0.0783
ICTNET12ADR3 1210 0.1983 0.0934 0.2280 0.2060 0.0612

Table 1: Result of ad‐hoc task, TREC 2012
Table 1 summarizes the performance of our ad-hoc submission this year. As shown in the chart, the first
run is best on NDCG, P@5, P@20 and MAP, which is against our prediction. The second run with new
parser performance best on ERR@20 but not good at other metrics, which means the noise elimination
may optimize top result quality but reduce the recall rate. The third run, which uses Learning-to-rank,
performs worst this year. As we point out in Section 3.2, the training data used was generated from
relevance judgments in year 2009 and 2010, which is of low quality. We’ll try to use other training data
and continue to explore effective approach to use learning to rank in Ad-hoc task next year.
5. Conclusion
In this paper, we described our experiment in Ad-hoc task. This year, we use new parser to eliminate
the noise in web pages. It’s good at optimize top result documents, but may lower the recall. Also, we
introduce Conditional Boolean BM25 model to rank the result. To improve the quality of top ranks, we
boost the matching Wikipedia page, which play a positive role in the submission compared with last
year. Last, we use Learning-to-rank, combining multiple features together to form a rank model, but it
performs badly due to the low quality of training data.
6. Acknowledgements
We would like to thank all organizers and assessors of TREC and NIST. This work is sponsored by
NSF of China Grants No. 60933005, No. 61100083 and No.61173064, and by 242 Program of China
Grants No.2011F65.
References
[1] Carnegie Mellon University. The ClueWeb09 Dataset [EB.OL].
http://boston.lti.cs.cmu.edu/clueweb09. 2009.

[2] Heyuan Li, Yuanhai Xue, Xu Chen, etc. ICTNET at Web Track 2011 Ad-hoc Task. Proceedings of
the Twentieth Text REtrieval Conference (TREC 2010) [C], Gaithersburg, Maryland, 2010.
[3] Dang, Croft. Anchor Text Query Log for ClueWeb09 [EB/OL].
http://lemurproject.org/clueweb09/anchortext-querylog/. 2010.
[4] Cormack. Waterloo Spam Rankings for the ClueWeb09 Dataset.Waterloo Spam Rankings [EB/OL].
http://plg.uwaterloo.ca/~gvcormac/clueweb09spam/. 2010.
[5] Golaxy. Golaxy DTSearch 2 [EB/OL]. http://www.golaxy.cn/. 2012.
[6] S E Robertson, S Walkery. OKAPI at TREC8[C]. Proceedings of the Eighth Text REtrieval
Conference (TREC 1999). Gaithersburg, MD, USA. 1999.
[7] Wikipedia. Learning to rank. http://en.wikipedia.org/wiki/Learning_to_rank [EB/OL]. 2012.
[8] Tao Qin, Tie‐Yan Liu. LETOR: Learning to Rank for Information Retrieval [EB/OL].
http://research.microsoft.com/en‐us/um/beijing/projects/letor/. 2012.
[9] Yoav Freund, Raj Iyer, Robert E. Schapire, Yoram Singer. An efficient boosting algorithm for
combining preferences [J]. The Journal of Machine Learning Research. 2003.

