
IBM at TREC 2012: Microblog Track

Myle Ott,∗ Vittorio Castelli, Hema Raghavan, Radu Florian
IBM T.J Watson Research Center, Yorktown Heights, NY 10598

myleott@cs.cornell.edu, {vittorio,hraghav,raduf}@us.ibm.com

Abstract

This paper describes IBM Research’s ap-
proach to the real-time ad-hoc retrieval
task of the TREC 2012 Microblog Track.
As this was our first time participating in
the Microblog Track, our primary goal was
to build a strong baseline system on which
to later improve.

In particular, our system implements a
Learning-to-Rank framework on top of
a full-dependence Markov Random Field
(MRF) retrieval model (Metzler and Croft,
2005). We chose LambdaMART (Gan-
jisaffar et al., 2011) as our Learning-to-
Rank learner, and trained it using over 50
features, including tweet, query and user-
specific features. Our cross-validation re-
sults on the 2011 Track queries show that
our system performs comparably to the
top-performing systems in the TREC 2011
Microblog Track.

1 Introduction

Microblogs, such as those found on Twitter, are
an increasingly popular medium for online con-
tent sharing. However, microblogs can pose nu-
merous challenges to standard search and Infor-
mation Retrieval (IR) techniques, largely due to
the short and informal nature of their contents.
Accordingly, there is a growing need for IR sys-
tems that can address the unique challenges as-
sociated with searching microblog collections.

∗Work done while the author was a summer intern
at IBM Research.

Unfortunately, restrictions on sharing of mi-
croblog data has made it challenging to evaluate
or compare the performance of IR systems on
microblogs. This changed in 2011 with the in-
troduction of the TREC Microblog Track, where
researchers were allowed to crawl and evalu-
ate their systems on a shared microblog corpus,
Tweets11, containing nearly 16 million tweets.

The Microblog Track has been continued for
TREC 2012, and in the following sections we will
describe our efforts to build a strong baseline
retrieval system for this year’s real-time ad-hoc
retrieval task. Note that while this year’s Track
also includes a new real-time filtering pilot task,
since this was our first year participating in the
Track, we chose to focus our efforts exclusively
on the ad-hoc retrieval task.

The rest of this paper is organized as follows.
First, in Section 2, we describe our process for
collecting and preprocessing the data. Then, we
describe our ad-hoc retrieval approach in Sec-
tion 3. Finally, in Section 4, we present and
discuss our results.

2 Data

In this section, we describe our handling of the
various data utilized by our system.

2.1 Tweets

For TREC 2012, the organizers chose to use
the same Tweets11 corpus used for TREC 2011.
This corpus originally contained a random sam-
ple of approximately 16 million tweets from a
two week time period spanning January 24, 2011

Table 1: Corpus statistics.

Number of tweets: 14.1m
Vocabulary size: 812k
Unique hashtags: 220k

English tweets: 62%
Retweets: 10%
Replies: 20%

Compressed size: 7GB

to February 8th, 2011. The corpus was made to
be as realistic as possible, and therefore no spam
removal was performed prior to release.

The dataset was then distributed to partici-
pants in one of two ways. For those participants
with greater access to the Twitter API, the cor-
pus could be downloaded in the original (and
richer) JSON format. For most participants,
however, a more basic version of the corpus was
obtained by crawling Twitter and extracting the
tweets from the HTML. This was made possible
through use of a custom crawler released by the
TREC organizers last year.1

Unfortunately, changes to Twitter’s HTML
in early 2012 broke the original crawler, forc-
ing teams that joined the Microblog Track in
2012 to first fix the crawler. Fortunately, the
changes to Twitter’s HTML included embedding
the richer JSON tweet representation into each
page’s HTML, making it possible for all teams
to download the JSON version of the corpus.2

In addition to providing richer meta-data for
each tweet, extracting the embedded JSON re-
duced the size of each block of 10,000 tweets
from over 150MB to less than 5MB. More de-
tailed corpus statistics appear in Table 1.

2.2 Queries

For the 2011 task, the TREC organizers cre-
ated 50 topics (queries), representing realistic
information needs that people might have on

1Available here: https://github.com/lintool/

twitter-corpus-tools.
2Code to extract the embedded JSON was first

made available by spacelis here: https://github.com/
spacelis/twitter-corpus-tools; this code was later
improved by our team and made available here: https:

//github.com/myleott/twitter-corpus-tools.

Twitter. To evaluate how well the partici-
pating systems did at returning relevant re-
sults for these queries, TREC pooled the result
sets and had human judges assess tweet rele-
vance. This assessment was done on a four-
point scale, where −2 indicates spam, 0 indicates
not-relevant, 1 indicates relevant, and 2 in-
dicates highly-relevant.

For the 2012 task, a new set of 60 topics
(queries) were chosen, allowing participants to
use the 2011 queries and relevance judgments to
improve their systems. In particular, we chose to
use the relevance judgments to train a Learning-
to-Rank system, which we describe further in
Section 3.

2.3 Pre-processing

Once we completed downloading the corpus, we
applied several pre-processing steps to the data,
described here:

1. Removal of non-English tweets: The
TREC evaluation guidelines define non-
English tweets as de facto irrelevant.
Therefore, we ran language identification on
each tweet,3 and deleted from our collection
all tweets that were assigned a 0-probability
of being English.

2. Removal of retweets: The TREC eval-
uation guidelines also define all retweets
as de facto irrelevant. Therefore, per the
Twitter Field Guide,4 we deleted from
our collection all tweets that contained
retweeted status in the status portion in
their JSON. Among the remaining tweets,
we additionally deleted any text that fol-
lowed an RT token (as well as the RT token
itself), since such text typically corresponds
to quoted (retweeted) material.

3. Conversion to ASCII: Many tweets con-
tain unusual or non-standard characters,
which can be problematic for down-stream

3We used Nakatani Shuyo’s Twitter-specific language
ID code, available here: https://github.com/shuyo/

ldig.
4https://dev.twitter.com/docs/

platform-objects

processing. To address these issues, we
used a combination of BeautifulSoup5 and
Unidecode6 to convert and transliterate all
tweets to ASCII.

4. Tokenization: Next, we tokenized each
tweet using a Twitter-specific tokenizer,
tweetmotif 7, which properly handles most
@-mentions, URLs and emoticons. Note
that we modified the tokenizer to addition-
ally recognize the heart (<3) emoticon.

5. Removal of empty tweets: After com-
pleting all of the other pre-processing, we
deleted any empty tweets.

2.4 Indexing

After pre-processing, we used the Indri search
engine 8 (Metzler and Croft, 2004) to index our
corpus for fast retrieval. However, since each
query has a query time associated with it, and
systems are not permitted to return tweets that
are broadcast after that time, we additionally
chose to build one index per query instead of a
single, large index.

Each query index contained all and only those
tweets broadcast between the query tweet time
and the chronologically previous query’s tweet
time. The first index contained all tweets from
the beginning of the corpus until the first query’s
tweet time. Additionally, we utilized Indri’s
built-in Porter stemmer at index time, in order
to increase the engine’s recall.

3 Experimental Setup

Given an information need, q, issued at a spe-
cific time, t, the TREC 2012 real-time ad-hoc
retrieval task is to return an ordered list of
10, 000 tweets, ordered according to two factors:
(a) relevance of the tweet to the query q; and
(b) chronological closeness (recentness) of the
tweet’s broadcast time to the query time t. In
particular, tweets that are more relevant to q
and more recent w.r.t. t should be ordered higher

5http://www.crummy.com/software/

BeautifulSoup/
6http://pypi.python.org/pypi/Unidecode
7https://github.com/brendano/tweetmotif
8http://www.lemurproject.org/indri/

in the list than tweets that are less relevant and
less recent. The balance between relevance and
recency is captured in the task evaluation, which
includes thresholding the returned results and
re-sorting the remaining results (reverse chrono-
logically) before computing each metric. The
metrics for this year’s task are: P@30, MAP
and AUC (ROC).

Since this was our first year participating in
the Microblog Track, we largely ignored these
task-specific considerations, and instead focused
on building a strong baseline retrieval system
on which to later improve. To this end, we im-
plemented a standard Learning-to-Rank frame-
work. In particular, for each query, q, issued
at time, t, we retrieved a result set using the
following process:

1. Retrieve a large, high-recall result set,
baseline, using the Indri search en-
gine9 (Metzler and Croft, 2004), which was
a popular choice at TREC 2011. In partic-
ular, following Metzler and Cai (2011), we
utilize the full-dependence variant of Indri’s
MRF retrieval model (Metzler and Croft,
2005) to retrieve 20,000 results for each
query, and additionally use Indri’s built-in
Porter stemming to increase recall.

2. If q is a training query, i.e., a 2011 query,
train a ranking model using the query, the
baseline result set and associated TREC
2011 judgments, and all chronologically
previous training data. We use Lamb-
daMART10 (Ganjisaffar et al., 2011) to
train our ranking models, and tune param-
eters as outlined in Section 3.2.

3. If q is a test query, i.e., a 2012 query, use
the chronologically previous ranking model
to re-rank the baseline result set, and out-
put the top k re-ranked results. Follow-
ing the TREC evaluation guidelines, we set
k = 10, 000. Note that the final output
ranking is actually interpolated with the
original baseline ranking, as outlined in
Section 3.2.

9http://www.lemurproject.org/indri/
10http://code.google.com/p/jforests/

ends in hashtag ends in URL
en prob has coord

has exclamation has happy emoticon
has heart emoticon has other emoticon

has question has RT
has sad emoticon has tongue emoticon

has wink emoticon is reply
num hashtags num mentions

num URLs num URLs RE
tweet length FUTURE num retweets

local day is {mon,tues,wed,thurs,fri,sat,sun}
local time is {morning,afternoon,evening,night}

Figure 1: Tweet features.

Indri rank time bw tweet and query

{cosine,dot product,hellinger} sim to query

{jensen shannon,kullback leibler} sim to query

cosine sim to query less stopwords

dot product sim to query less stopwords

hellinger sim to query less stopwords

jensen shannon sim to query less stopwords

kullback leibler sim to query less stopwords

Figure 2: Query features.

user default profile user default profile image
user geo enabled user has description

user has URL user is translator
user is verified user lang is en

time bw account creation and query

time bw account creation and tweet

FUTURE user num favorites

FUTURE user num followers

FUTURE user num friends

FUTURE user num statuses

FUTURE user num lists

Figure 3: User features.

3.1 Features

We trained our ranking models using three kinds
of features, given in Figures 1, 2, and 3. Note
that features prefixed by “FUTURE ” rely on
“future” information and are therefore excluded,
per the task guidelines, except where indicated
otherwise.

3.2 Cross-validation

Parameters for LambdaMART were tuned based
on cross-validation experiments on the TREC
2011 queries and relevance judgments. However,
in order to abide by the real-time constraint, our

cross-validation procedure was performed in an
online manner. In particular, for each 2012 test
query, q2012, issued at time t2012, we tuned the
parameters of a new ranking model by 5-fold
cross-validation using all 2011 queries that had
issue times prior to t2012.

One complication of this procedure is that the
learned ranking models were often built using
very little training data, e.g., if q2012 was issued
early in the corpus timeline. To address this
problem, we introduced a function, chosen in an
ad-hoc manner and without tuning, to weight
and interpolate the LambdaMART ranking and
the original Indri ranking:

weight(LTR) = 0.8 ∗
(

1− exp

(
2− |Qtrain|

20

))
weight(Indri) = 1− weight(LTR),

where |Qtrain| corresponds to the number of
queries used for training the model. This func-
tion has the effect of down-weighting the Lamb-
daMART ranking when the model is trained on
only a few queries, and up-weighting its ranking
when the model is trained on many queries.

4 Results and Discussion

Our team submitted three runs for evaluation,
the results of which are given in Table 2. The
details of these three systems are given below:

• IBMBaseline: The exact ranking as given
by Indri, up to rank 10,000.

• IBMLTR: The interpolated Lamb-
daMART and Indri ranking, as described
in Section 3, using only those features not
prefixed with “FUTURE ” in Figures 1, 2,
and 3, i.e., only those features that do not
constitute “future information” according
to the task guidelines.

• IBMLTRFuture: The same as
IBMLTR, but additionally includes
features prefixed with “FUTURE ” in
Figures 1, 2, and 3.

The results suggest that Learning-to-Rank
(LTR) does improve performance over the base-
line retrieval model given by Indri. Indeed, the

Table 2: Results. Bold entries in each row correspond to best performing run. “Relevant” and “Highly
Relevant” refer to the relevance cutoff used for evaluation.

Metric IBMBaseline IBMLTR IBMLTRFuture

P@30 (Relevant) 0.3808 0.4136 0.4090
P@30 (Highly Relevant) 0.2028 0.2237 0.2254

MAP (Relevant) 0.2620 0.2630 0.2731
MAP (Highly Relevant) 0.1968 0.1932 0.2018

LTR runs outperform the Indri baseline in all
but one case (MAP, Highly Relevant, LTR w/o
future features). We also observe that the “fu-
ture” features are very helpful and improve LTR
performance in all but one case (P@30, Rele-
vant). We suspect that this is primarily due
to the inclusion of the features num retweets

and user num followers, though this should be
explored further in future work through a fea-
ture ablation study. Future work may addition-
ally include features that address the vocabulary
mismatch problem, potentially using topic mod-
els, as discussed in Ramage et al. (2010).

References

Yasser Ganjisaffar, Rich Caruana, and Cristina
Lopes. 2011. Bagging gradient-boosted trees for
high precision, low variance ranking models. In
Proceedings of the 34th international ACM SIGIR
conference on Research and development in Infor-
mation, SIGIR ’11, pages 85–94, New York, NY,
USA. ACM.

D. Metzler and C. Cai. 2011. Usc/isi at trec 2011:
Microblog track. In Proceedings of the Text RE-
trieval Conference (TREC 2011).

D. Metzler and W.B. Croft. 2004. Combining the
language model and inference network approaches
to retrieval. Information processing & manage-
ment, 40(5):735–750.

D. Metzler and W.B. Croft. 2005. A markov random
field model for term dependencies. In Proceedings
of the 28th annual international ACM SIGIR con-
ference on Research and development in informa-
tion retrieval, pages 472–479. ACM.

D. Ramage, S. Dumais, and D. Liebling. 2010. Char-
acterizing microblogs with topic models. In Inter-
national AAAI Conference on Weblogs and Social
Media, volume 5, pages 130–137.

