
BEST of KAUST at TREC-2011:
Building Effective Search in Twitter

Jinling Jiang,† Lailatul Hidayah,† Tamer Elsayed,‡ Hany Ramadan†

†Computer Science Department, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi
Arabia

‡Microsoft Research Advanced Technology Lab, Cairo, Egypt
{jinling.jiang, lailatul.hidayah}@kaust.edu.sa, telsayed@microsoft.com, hany.ramadan@kaust.edu.sa

ABSTRACT
In our first-ever appearance at TREC, we explore initial
ideas on building an effective search tool over tweet stream
as a participation in this year’s microblog track. Among
those ideas are tweet expansion with short representation of
terms that frequently co-occur with hashtags and URLs, and
re-ranking based on statistics that estimate user popularity
(using replies and mentions), tweet popularity, URL popu-
larity and user topic authority (using simple user profiles).
Initial results show that re-ranking improves the effective-
ness while expansion sometimes harms it. Overall, the sys-
tem built for the task is indeed a great resource for further
extensions and experiments.

1. INTRODUCTION
1 Twitter, an online microblogging service, is acting the

leading role in this emerging form of new media. Within the
140 characters limit, users broadcast what they experience
and think about their daily life and work activities by post-
ing short snippets of text, called tweets [4]. According to
the Twitter blog, fans sent 4,064 tweets in a single second
when this year’s Super Bowl came to its final moments2,
making the highest tweets per second (TPS) ever recorded
for a sporting event. Based on a later report, Twitter users
now send more than 140 million tweets a day3; this shows
the huge popularity Twitter is gaining. People use Twitter
for various reasons, such as serving as information source,
keeping in touch with friends, and seeking information [1].

Searching Twitter is different from searching the Web. As
investigated in [3], many people are interested in searching
more timely and social information on Twitter than on the
Web. Many events are lively broadcasted on Twitter and
searching them is highly desired. People also search for so-
cial information related to other users, e.g., they might want
to know who responded to some certain tweet or to find peo-
ple with similar interests.

Features of Twitter also make the search different. The
most significant feature of Twitter is the 140-character limit,
while general web pages can be much longer. There are also
underlying consequences, for example, tweets have only text
while web pages can have multimedia, and tweets are more
concentrated on their topics. Another feature is that the

1This work was performed while the third author was
at King Abdullah University of Science and Technology
(KAUST) in Thuwal, KSA.
2http://blog.twitter.com/2011/02/superbowl.html
3http://blog.twitter.com/2011/03/happy-birthday-
twitter.html

tweets are posted by authors, called twitterers, who might
be related in the social graph by the “following” relation-
ships. There is no such explicit social information on the
web. Moreover, tweets are static while web pages are not:
tweets do not change after being posted, but web pages can.
These features should affect the design of the search system.

In this paper, we introduce BEST, which stands for“Build-
ing Effective Search in Twitter”. The goal is to build a
real-time ad-hoc search system for the official tweet corpus
provided by TREC (Text REtrieval Conference) 2011 Mi-
croblog Track. The real-time aspect of the search concerns
the requirement that the returned tweets should be both
relevant to the query and recent to the issuing time. For
the required run, no external information outside the offi-
cial tweet corpus may be used. In all of our four submitted
runs we adhered to that condition. Our system is imple-
mented using Hadoop, the open source implementation of
MapReduce distributed programming framework [11].

The rest of this paper is organized as follows. We first
discuss the related work in Section 2. We then present our
system design in Section 3. In Section 4, we conduct a series
of evaluations of our system and finally conclude in Section
5.

2. RELATED WORK
In this section, we discuss the related work from the fol-

lowing aspects. We first discuss some investigations on Twit-
ter that describe the user behavior and features of Twitter,
followed by some current solutions of search in Twitter. We
finally turn to the ranking of the search results, which is an
important component in most search systems.

2.1 Twitter
Twitter has been more and more investigated on as it

gains popularity over the Web. Researchers have asked
“What” in [4, 5], “Why” in [2, 5], and “How” in [2, 3] regard-
ing Twitter. The studies on “What” give a general picture of
Twitter, like the features and constraints, user popularity,
order of magnitude of number of tweets, etc. The studies
on “Why” analyze the reason people use Twitter, classify
the reasons into categories and also show the importance of
Twitter. The studies on “How” reveal the way people use
Twitter, which motivated in part some of the design deci-
sions behind our system.

2.2 Searching Twitter
Currently, there have been a number of websites offering



the service of real-time micro-blogging search. Twitter4 it-
self has search service based on the number of re-tweets while
Tweetfind 5 ranks search results according to authority of
authors. Bing6 has also published twitter search service con-
sidering account authority and freshness of the tweets. Users
can always utilize this kind of service to get tweets related to
interesting topic via user-defined query. A recent paper [6]
proposed a tweet index called TI, which indexes the tweets
that are of high chance to appear as a search result while
delaying the indexing of some other tweets. As a trade-off
between the cost of online indexing and the quality of the
search results, this paper manages not to compromise the
latter.

2.3 Ranking
As an important component in search systems, ranking

functions have been discussed extensively in the context of
tweet search design. Here we select some of the ranking
functions to demonstrate the idea. Chen at el. [6] proposed
a new ranking scheme by combining the relationship be-
tween the user and the tweets. The tweets are grouped
into topics and the ranking of the topics are updated dy-
namically. TwitterRank, proposed in [7], suggested a topic-
sensitive influence measure to twitterers. The measure is an
extension of PageRank and takes both the topical similarity
between users and the link structure into account. Duan
et al. [8] proposed a ranking method that involves multiple
features, including the content relevance of a tweet, twit-
terer authority, embedded URL, etc. and learns the best
set of features to use in the rank. Two challenges that are
not encountered in traditional web search are introduced
here: quickly crawling relevant content and ranking docu-
ments with impoverished link and click information. Our
system also puts emphasis on the retrieval of very fresh (up-
to-date) content. Dong et al. [9] advocated a method to use
the micro-blogging data stream to detect fresh URLs and
employ micro-blogging data to compute novel and effective
features for ranking fresh URLs.

3. SYSTEM OVERVIEW
We identify four forms of connections in Twitter. First,

posting a tweet naturally connects it to its twitterer. Second,
re-tweets (i.e., resending/reposting an existing tweet which
is remarked by ”RT”), replies (to an already posted tweet)
and mentions (i.e. directing a tweet to specific twitterer(s)
by using the @ convention) connect tweets with other tweets.
Third, the URLs mentioned in tweets connect the tweets and
the corresponding linked external web pages. Finally, the
“follower graph” (explicitly constructed over the “following”
relationships) connect twitterers.

As a typical information retrieval system, our system con-
sists of preprocessing, indexing, and retrieval components.

3.1 Preprocessing
The preprocessing step is mainly concerned with filtering

out undesired tweets and preparing the desired ones for in-
dexing. We first remove null tweets and non-English ones
(since the task is only concerned with English tweets for
this year). We utilized the Java Text Categorizing Library

4http://search.twitter.com/
5http://www.tweetfind.com
6http://www.bing.com

(JTCL)7 to implement language detection algorithm which
is based on the technique described in Cavnar and Trenkle
[10]. After this step, we get 6,035,601 English tweets. For
detecting spam users, we borrowed the idea from [9] and de-
fined the behaviors of spammers as the following: when one
posted a URL at least n times or if one posted at least m
URLs at least p times each. Experimentally, we set n,m,and
p as 5,3,and 3 respectively and also removed the tweets of all
of the detected spammers. There are 2538 spam users de-
tected in our system this way. The survived tweets are then
tokenized and stemmed. Each token is assigned a type (i.e.,
“retweet”, “mention”, “reply”, “hashtag”, or “other”). Later
in the pipeline we need to calculate some statistics about
URL popularity, tweet popularity, and user popularity, as
explained in Section 3.3, so we built a database to store
needed properties of tweets in this step.

3.2 Indexing
One of the challenges of the task is the tight length limita-

tion of the tweets, which makes them very short and hence
sometimes hard to understand in isolation. To tackle this
problem, we proposed to expand the tweets in three different
ways. The first one involves a tweet property called “hash-
tag”. The hashtag (which is denoted by a # followed by
a tag) is a form of reflecting the topic (or the context) of
the tweet (e.g., #jan25). We aim to expand a tweet that
includes a hashtag by appending a short representation of
the hashtag. To represent a hashtag in terms, we choose the
terms that co-occur with it most frequently. Secondly, we do
the same way of expansion with URLs that are mentioned
in the tweets. We build two indexes that map hashtags and
URLs to their frequently co-occurred terms. Both indexes
are used to expand tweets that include hashtags and/or
URLs by the corresponding expansion terms on the fly at
indexing time. We also build a short profile for each twit-
terer that includes the most frequent terms appear in his/her
tweets. We then build a third index that maps terms that
appear in any of these profiles to their corresponding twit-
terers. Given query terms, we compute authority scores for
twitterers using this index. These three indexes are build in
addition to the conventional inverted index that associates
terms with the tweets in which they occur.

3.3 Ranking and Retrieval
Given a query, we rank tweets in two steps. The first one

(called primary ranking) reflects both the content similarity
(using traditional retrieval models) and tweet recency (com-
puted relative to the timestamp of the query). For the con-
tent similarity, we choose IDF instead of TF-IDF since term
frequency may give out a misleading effect given the short
length of the tweets. For the tweet recency, we only pick up
the 10000 most recent tweets before the query timestamp.
At the end of this stage, we get 100 most similar tweets.
The second step re-ranks the top tweets resulted from the
first stage using a list of computed statistics that has been
made possible by querying a database. The computed fea-
tures are: user popularity, URL popularity, tweet popularity,
and user authoritative score. User popularity was initially
supposed to reflect the popularity of the user using the fol-
lower graph (either by computing PageRank-like score for
each twitterer, or simply as the number of followers). Un-
fortunately, the “following” relationships are not included in

7http://textcat.sourceforge.net



 

Clean tweets 

Figure 1: System Pipeline 

Tweets 

Pre-process 

2nd Query Evaluation (Rerank) 

Hashtag Expansion Database tables 

insertion 

Final Ranked List 

Spam User Detection 

Spam Tweets Filtering 

URL expansion Term to 

Authoritative User 

Mapping 

Term-User 

Mapping 

Collect Statistics 

Indexing 

Index 

1st Query Evaluation 

(content similarity) 

Ranked List 

Query 

Figure 1: System pipeline showing an overview of the main blocks



the given collection of tweets, thus we decided to estimate it
based on the number of replies to the user, number of users
mentioning him/her, and number of users who retweeted any
of his/her tweets. URL popularity is defined as a frequency
of a URL appearance in the collection. The tweet popular-
ity is defined as the frequency of retweeting it. Finally, user
authoritative score is computed over the frequency of terms
appearing in the user profiles. The final score is computed as
a weighted sum over these scores. At the end of this stage,
we get 50 tweets with the highest score at the re-ranking
stage. The final step is to sort these 50 tweets by timestamp
in descending order according to TREC requirement. The
entire processing pipeline is illustrated in Figure 1.

4. EXPERIMENTAL EVALUATION
We conducted several experiments on our implementation

of the BEST system. We focus here on the experiments re-
lated to the design of our tweet expansion and re-ranking
feature. Both parts have several capabilities that we can en-
able and disable for our experiments and several parameters
that were experimentally tuned. The results of the experi-
ments are interesting because they helped us identify which
of the features we considered were effective. The evaluation
measure used in all of the following experiments is average
precision at 30.

As we described earlier, we expand tweets with short term
representation of hashtags and URLs with the goal of en-
riching the tweet content with terms that can describe the
hashtag and URLs more verbosely. Re-ranking uses a com-
bination of 5 features, as follows:

• content similarity

• user authority

• user popularity

• tweet popularity

• URL popularity

Our system combines these factors to recompute tweet
scores after performing primary ranking, which considers
only content similarity and recency.

The four combinations of enabling/disabling tweet expan-
sion and re-ranking represent our four official submitted
runs. Table 1 reports average precision at 30 (considering
all relevant tweets) for each combination, while Table 2 only
incorporates high relevant tweets.

Table 1: All-relevant evaluation (official runs)

With Expansion W/O Expansion
With Rerank 0.3354 0.3456

Without Rerank 0.3224 0.3347

Table 1 and Table 2 indicate that the re-ranking clearly
improves the effectiveness, while expansion actually was harm-
ful. Further analysis shows that expansion do enrich the
content of a tweet, but this enrichment could be misleading.

Table 3 shows the evaluation results by tweet reranking
score instead of timestamp in descending order. It shows
that there is a slight improvement over the the previous

Table 2: High-relevant evaluation (official runs)

With Expansion W/O Expansion
With Rerank 0.1202 0.1273

Without Rerank 0.1111 0.1162

Table 3: All-relevant by-score evaluation (official
runs)

With Expansion W/O Expansion
With Rerank 0.3463 0.3571

Without Rerank 0.3224 0.3347

results which further strengths our observation that the re-
ranking mechanism is effective.

After submitting the official runs, we did some modifica-
tions and fixed some bugs in our system and introduced five
more additional “unofficial” runs:

1. Using only content similarity without spam user filter-
ing, hashtag expansion, URL expansion and re-ranking

2. With spam user filtering but without any expansion
and re-ranking

3. With hashtag expansion but without spam user filter-
ing, URL expansion and re-ranking

4. With URL expansion but without spam user filtering,
hashtag expansion and re-ranking

5. With re-ranking but without spam user filtering and
any expansion.

Table 4 reports average precision at 30 (considering all rele-
vant tweets) for these five runs while Table 5 only incorpo-
rates high relevant tweets.

Table 4: all-relevant evaluation (unofficial runs)
Without any feature 0.3707483
With Spam User Filtering 0.3707483
With Hashtag Expansion 0.3537415
With URL Expansion 0.37142858
With re-ranking 0.39455783

The scores above clearly indicate that the unofficial runs
outperform the official ones after the modifications and bug
fixes. We also notice that spam user

ltering does not harm the precision at all, hashtag expan-
sion was harmful, and URL expansion actually improves the
results a bit. In our official submitted runs, we did not sepa-
rate these two expansions so that we cannot tell which one is
deleterious. Finally, as our official runs, the re-ranking fea-
ture effectively improves the system performance in Table
4. Surprisingly, there is a slight drop in precision comparing
re-ranking run with the run without any feature according
to Table 5; we need to do more investigation into that since
Table 4 shows re-ranking feature effectively improves the
precision.



Table 5: High-relevant evaluation (unofficial runs)
Without any feature 0.14343435
With Spam User Filtering 0.14343435
With Hashtag Expansion 0.13434343
With URL Expansion 0.14444445
With re-ranking 0.14141414

5. CONCLUSION
In this work, we present a first implementation of a search

system based on Hadoop simulating real-time search in tweet
stream. The main features we tried in that implementation
include spam user detection, hashtag and URL expansion,
estimation of user popularity and topic authority, and re-
ranking. According to our initial experimental results and
analysis, we found the spam user detection and re-ranking
the most useful features that clearly improve efficiency and
effectiveness respectively. However, we noticed that expan-
sion techniques (in the simple forms we attempted) were not
that beneficial and even sometimes harm the performance.
We leave exploring more sophisticated ways of expansion
and performing more experiments on leveraging combina-
tion of features to future work.

6. REFERENCES
[1] Akshay Java, Xiaodan Song, Tim Finin, Belle Tseng,

2007, Why we twitter: understanding microblogging
usage and communities. In Proceedings of the 9th
WebKDD and 1st SNA-KDD 2007 workshop on Web
mining and social network analysis.
(WebKDD/SNA-KDD ’07). ACM, New York, NY,
USA, 56-65.

[2] Zhao, D. and Rosson, M.How and why people Twitter:
the role that micro-blogging plays in informal
communication at work. In Proceedings of the ACM
2009 international conference on supporting group
work (GROUP ’09). ACM, New York, NY, USA,
243-252

[3] Jaime Teevan, Daniel Ramage, and Merredith Ringel
Morris. 2011. TwitterSearch: a comparison of
microblog search and web search. In Proceedings of the
fourth ACM international conference on Web search
and data mining (WSDM ’11). ACM, New York, NY,
USA, 35-44.

[4] McFedries, P. 2007. Technically speaking: All
a-twitter. IEEE Spectrum, 44(10), 84.

[5] Haewoon Kwak, Changhyun Lee, Hosung Park, and
Sue Moon. 2010. What is Twitter, a social network or
a news media?. In Proceedings of the 19th
international conference on World wide web (WWW
’10). ACM, New York, NY, USA, 591-600.

[6] Chun Chen, Feng Li, Beng Chin Ooi and Sai Wu.
2011. TI: An Efficient Indexing Mechanism for
Real-Time Search on Tweets. In Proceedings of the
2011 international conference on Management of data
(2011), pp. 649-660.

[7] Jianshu Weng, Ee-Peng Lim, Jing Jiang, and Qi He.
2010.TwitterRank: finding topic-sensitive influential
twitterers. In Proceedings of the third ACM
international conference on Web search and data

mining (WSDM ’10). ACM, New York, NY, USA,
261-270.

[8] Yajuan Duan, Long Jiang, Tao Qin, Ming Zhou, and
Heung-Yeung Shum. 2010.An empirical study on
learning to rank of tweets. In Proceedings of the 23rd
International Conference on Computational
Linguistics (COLING ’10). Association for
Computational Linguistics, Stroudsburg, PA, USA,
295-303.

[9] Anlei Dong, Ruiqiang Zhang, Pranam Kolari, Jing
Bai, Fernando Diaz, Yi Chang, Zhaohui Zheng, and
Hongyuan Zha. 2010.Time is of the essence: improving
recency ranking using Twitter data. In Proceedings of
the 19th international conference on World wide web
(WWW ’10). ACM, New York, NY, USA, 331-340.

[10] William B. Cavnar and John M. Trenkle.
1994.N-Gram-Based Text Categorization.

[11] Tom White. 2009. Hadoop: The Definitive Guide (1st
ed.). O’Reilly Media, Inc.

[12] Jeffrey Dean and Sanjay Ghemawat. 2004.
MapReduce: simplified data processing on large
clusters. In Proceedings of the 6th conference on
Symposium on Opearting Systems Design &
Implementation - Volume 6 (OSDI’04), Vol. 6.
USENIX Association, Berkeley, CA, USA, 10-10.


