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Abstract	
  
We report our system and experiments for the realtime Adhoc task in the 2011 MicroBlog track. 
Our goal is to develop effective technique to retrieve relevant tweets that have been posted 
recently. In particular, we propose a time-­sensitive term weighting strategy that can favor tweets 
in hot-­discussed time and a document length related weighting method that can favor long tweets 
which are more likely to be interesting. Query expansion technique is also used to further 
improve the retrieval performance.  

1 Introduction:	
  
 
In this year's realtime Adhoc task, Tweets2011 corpus is used. It contains about 16 millions 
tweets over the period from Jan. 24th, 2011 to Feb. 8th, 2011. Every topic contains not only a query 
but also the time when the query is submitted. Retrieval Systems are required to return tweets 
that are posted before the query was submitted, and the tweets need to be sorted based on the 
post time.  
 
The problem set up and the characteristics of tweets make it necessary to consider the following 
three components: relevance, interestingness and the recency. Intuitively, relevant tweets should 
satisfy the following three properties. (1) tweets containing more query terms are more likely to 
be relevant. (2) tweets containing query terms with higher IDF values are more likely to be 
relevant. (3) tweets appearing in hot-­discussed time period are more likely to be relevant and 
interesting. The first two properties are similar to traditional TF-­IDF method and they lead to 
our baseline directly. The third property is a unique feature of microblog search and it leads to 
our time-­sensitive weighting approach. Moreover, we also propose a document length-­based 
weighting strategy to favor long tweets that contain more important content. Finally, we explore 
a query expansion method based on Web search results to better infer user intention.  
 
The rest of the paper is organized as follows. We first explained the pre-­processing procedure in 
Section 2, and then describe our methods as well as the submitted runs in Section 3. Experiment 
results are showed in Section 4 and we conclude in Section 5. 
 

2 Preprocessing	
  and	
  Index	
  Building	
  
Document Downloading 

We used “official twitter-­corpus-­tools corpus downloader” to download tweets with html output 
form. We totally crawl 15052875 available tweets (13938553 with response code 200 and 1114322 
with response code 302). 



 
Preprocessing 

Twitter is widely used all over the world and a large number of twitters are written in or include 
non-­English characters, e.g. Chinese, Japanese, French and Arabic. Filtering out such non-­
English tweets will help us improve the retrieval performance and increase retrieval speed. 

Most non-­English text will apply characters which ASCII code is greater than 127 (128-­255), e.g. 
Chinese, Japanese, Korean and Arabic. Thus simply removing tweets with characters which 
ASCII code over 127 will help filtering out non-­English content. We apply this strategy and 
successfully remove most of non-­English tweets from the database. However this strategy cannot 
guarantee all non-­English content removed and it may mistakenly delete a few English tweets 
with special expression characters. 

Another choice may be applying some comprehensive English dictionary to remove tweets with 
term not in the term list. However, regarding that micro blog is casual and informal, it will be a 
difficult task to category widely appeared misspelled terms from non-­English characters. And 
more important, applying dictionary will against the constraint “not to use external resource”. 

Index Building 

We built the index with the Lemur toolkit from UMass. Porter stammer is applied and none stop 
words are removed. Tweets are treated as documents and they are sorted by their post time from 
old to new. 

3 Method	
  
Overview 

Microblog search is a special kind of text search. It has some similarity with traditional text 
search, but it also has some features that are different from normal text search. For example: a 
tweet often contains at most 140 characters and it mostly only contains one aspect. As a 
consequence, traditional text-­search method may not be the best choice for microblog search. 
Specifically, term frequency and document length normalization are important term weighting 
strategies in traditional retrieval models. However, they may not be very useful for microblog 
search because tweets are usually very short and contain only one aspect. On the other hand, IDF 
should still contribute to filter out non-­sense terms. Based on this analysis, we simply design the 
following retrieval function: 

= ( ) 

where W(t) is the time-­sensitive term weighting of term t. 

 



Time-­sensitive term weighting 

Query term weight is also important in tweets search since tweets are also constituted with 
common non-­sense terms and rare but important terms.  Traditional methods calculate term 
weights by their occur frequency in documents which is widely known as inverse document 
frequency (IDF). However in our opinion, microBlog search is a dynamic rather than a static 
process. Thus term weight is determined by not only the background language model (IDF), but 
also tweet post time. In our assumption, terms occur in their popular discussed time should 
receive higher term weight than those in rare-­discussed period. Take query “Kubica crash” as an 
example: term “Kubica”, “crash” around Feb.6 when they are hot-­discussed should receive higher 
term weight than “Kubica”, “crash” which appear in other time.  

To implement such idea, for each query term in each tweet, beside calculate its IDF in the whole 
collection, we also calculate its IDFs in three window sizes: 6 hours, 1 day and 3.5 days. For 
example, to get the term weight of a tweet posted at 12:00pm on Feb. 6. We will calculate IDFs 
based on tweets posted “9:00am – 3:00pm Feb. 6”, “12:00am Feb.6 – 12:00am Feb.7” and “6:00pm 
Feb.4 – 6:00am Feb. 8”. 

Then we design the following term weight function: 

( , ) = log ( ( ) + 1
( , ) ) 

 In which docN(w) is total number of documents in time window w while DF is number of 
documents contain term t in time window w. 
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To simplify the computational process, we choose window size by documents number rather than 
accurate time with negligible difference. (1/4 docN as 3.5 days, 1/16 docN as 1 day, 1/64 docN as 6 
hours given the whole collection across two weeks) 

Document length 

Since micro blog may contain much spam or senseless information, filtering out these spam 
tweets may help us improve both the interestingness and relevant of our results. In our 
assumption, such spam tweets are more likely to be short and contain many low IDF terms. 
Hence we design the following document length favor strategy to favor long tweets with high IDF 
terms. 

= + ( ) 

In experiments, we set = 0.5. 

 



Pseudo Feedback and query expansion with external search results 

Query term match alone is not enough and in order to further improve system performance, 
latent information should be applied to expanse original queries.We designed two methods to dig 
out such latent information from two different sources: internal and external.  

For internal source, pseudo feedback is applied: we chose all the terms of top 10 tweets as 
candidate and sum their TF-­IDF scores in the top 10 tweets. Then 30 candidate terms with 
highest scores are chosen to expanse the original query with normalized weight calculated by 
their scores.  

For external source, top search results from Yahoo are used and the expansion process is similar 
to the pseudo feedback we mentioned before. 

4 Experiment	
  and	
  Results	
  
Based on the methods we mentioned before, we submit the following 4 runs: 
UDMicroIDF: only apply time-­sensitive IDF on baseline 
UDMicroIDFD: add document length favor strategy to UDMicroIDF 
UDMicroComb1: apply pseudo feedback to UDMicroIDFD 
UDMicroComb2: external resource query expansion based on UDMicroIDFD 
 
To make a compare, we also do the following unofficial runs: 
Static-­IDF: apply static IDF rather time-­sensitive IDF strategy 
Comb1-­no-­length: apply pseudo feedback to UDMicroIDF without considering document length 
Comb2-­no-­length: external resource query expansion based on UDMicroIDF without considering 
document length. 
 
The results are shown at following table: 
Runs MAP r-­precision 
UDMicroIDF 0.1857 0.2365 
UDMicroIDFD 0.1532 0.2059 
UDMicroComb1 0.1581 0.2027 
UDMicroComb2 0.1700 0.2206 
Static-­IDF 0.1592 0.2075 
Comb1-­no-­length 0.1738 0.2208 
Comb2-­no-­length 0.2030 0.2206 
 
Runs MAP r-­precision 
UDMicroIDF 0.2280 0.2521 
UDMicroIDFD 0.1697 0.2051 
UDMicroComb1 0.1700 0.1939 
UDMicroComb2 0.1868 0.2173 
Static-­IDF 0.1726 0.1951 
Comb1-­no-­length 0.2052 0.2216 



Comb2-­no-­length 0.2162 0.2173 

5 Discussion	
  and	
  Conclusion:	
  

Comparing UDMicroIDF with Static-­IDF, we notice a significant improvement on both MAP and 
r-­precise scores. It shows that our time-­sensitive strategy can help us improve the system 
performance for most queries especially some time-­sensitive queries. For example, for query 
MB011 “Kubica crash” which is very time sensitive, the MAP score of our time-­sensitive system is 
0.77 comparing to 0.28 of static-­IDF. It will be very interesting to do more research about the 
time-­sensitive approach and other application of it. 

Document-­length-­favor seems not to be a good strategy in this year’s micro blog track and it hurts 
the performance a lot. Our unofficial runs “Comb1-­no-­length” and “Comb2-­no-­length” show some 
significant improvement to runs “UDMicroComb1” and “UDMicroComb2” which apply document-­
length-­favor. The strategy seems too aggressive, but it should be interesting to discuss its usage 
in other collections. 

Pseudo Feedback and external source query expansion help us dig out some latent information 
from original query. For example, both “UDMicroComb1” and “UDMicroComb2” show a good 
improvement (0.31, 0.26vs0.14) for query MB002 “2022 FIFA soccer”, because they dig out the 
important latent information “Qatar”. However the query expansion of both methods are not 
always safe, they may hurt the performance for some queries. We would do more research to 
improve their stability. 
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