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Abstract 

Our method to accomplish the Medical Record Track is described in this paper. For ad 

hoc retrieval, Indri and Xapian are used for indexing, searching, and initial query 

expansion. The main query expansion is achieved using LSI. The evaluation results 

show the performance of our system is above the average. 

1. Introduction 

The goal of the Medical Records track is to foster research on providing 

content-based access to the free-text fields of electronic medical records. This year the 

task is to retrieve reports from the given test document collection, which is a set of 

de-identified medical records made available for research use through a university lab. 

The retrieval task for the track is an ad hoc search task as might be used to identify 

cohorts for comparative effectiveness research. The topics given specify a particular 

disease/condition set and a particular treatment/intervention set, and participants 

should return a list of visits ranked by decreasing likelihood that the visit satisfies the 

specification. To accomplish the task, Indri and Xapian are used for index building 

and query searching first, and query expansion is achieved by Indri, Xapian and LSI. 

The remainder of the paper is organized as follows. Section 2 introduces the 

procedure of ad hoc search with Indri, and section 3 with Xapian. Section 4 describes 

the query expansion algorithm using LSI, and the evaluation results are given in 

section 5. 

2. Ad hoc Retrieval with Indri 

According to the feature of documents and the task’s request, we build a system to 

do the retrieval jobs, which includes preprocessing, building index, term expansion, 

retrieving and ranking. 

2.1 Preprocessing  

The test document collection is more than one hundred thousand electronic medical 

reports. Each report has some “<tag>”, but “visitid” is not contained. However, the 

task uses the “visited” (each report associating a “visitid”, while most “visited” 

having more than one report) as the response unit. That is, our retrieval system must 

return visitreports_visited’s. Since a simple ASCII table called the Report-to-Visit 

Mapping Key that specifies which reports belong to the same visit is provided, the 

preprocessing system add the tag “visitid” to each medical report. In order to do that, 

the set of reports is traversed to get each “check_sum”, then a table called the 

Check_sum to ReportID is built. Finally, we add the tag “visitid” to each report 



according to the two tables mentioned above. 

As the retrieval task contains the request of ages’ distinguish, while the reports 

don’t have the tag “age”, we use regular expression to extract patients’ age 

information from each report. This tag will be used when building index. There is 

some useless information about patients’ personal detail in the last part of each report, 

so we also use regular expression to get and delete them. 

2.2 Index building 

The indri query language provides a executive program called “buildindex.exe” to 

build index for given documents. So we use it to do the index building job for all of 

the test reports. Since the field “report_text” contains each report’ main information 

such as secondary diagnoses, surgical procedure, hospital course and so on, while 

“chief_complaint” contains the sort of the patient’s illness, additionally age is limited 

in the query condition, we build index for the context of the tag “age”. Besides, the 

result is asked to be returned by “visitid”, so an index is also built for the context of 

“visitid”. As a result, fields that need to be built index on include “checksum”, 

“chief_complaint”, “report_text”, “age”, “visitid”.  

As to the ranking part, tag “age” and “visitid” is needed, and context of the two tags 

will be returned, so we add “metadata” for them. 

2.3 Term expansion 

The Indri provides the function of extracting term expansion from the returned 

documents. Figure 1 depicts the general procedure of our approach. 

 

Figure 1. Procedure of extract term expansion 
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the key words with “or” to form the search sentences. 

(2) The second time is to return relative “visitid” and rank them. So we connect key 

words with their expanded term with “or”, then connect them with the result in the 

first run with “and”. After that we use this search sentences to run the second query. 

2.5 Searching and ranking 

No more than 1000 “visitid” is requested to submit for each topic, so we set the 

number of returned document to be 1000. The system run searching according to the 

search sentences which have been designed above. Relative medical reports are 

returned and then “visitid” is extracted from each of the reports. Since some different 

reports have a same visitid, which means this visitid is of high correlation with the 

topic, we add the score of the reports of this visitid when calculate the score of each 

visitid. Finally, we rank the visitid according to their score. 

Figure 2 depicts the procedure of searching and ranking. 

 

    Figure 2. Framework of searching and ranking with Indri 
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3. Ad hoc Retrieval with Xapian 

Indexing, initial query expansion and searching are accomplished on the platform 

of Xapian. 

3.1 Building Index with Xapian 

This approach will retrieve related medical reports by searching the test document 

collection twice. The first step is to build index for the given 92088 medical reports. 

The preprocessing is the same as the Indri approach, which is getting rid of the regular 

describe from each reports and keeping only useful message about patients’ sickness. 

We use the Xapian toolkit to build index, which is a searching engine based on 

probabilistic search model. The default weight is set to be BM25. 

The following contents are import when building index with Xapian.  

1. “chief_complaint”, is the most import key field. Terms in that tag have a 

relatively higher weight. 

2. “report_text”, gives main description of a patient, is treated as a normal field, 

terms in which have lower weight that the former field. 

3. “age” in “report_text” is used as a value of documents when indexing by 

Xapian. 

3.2 Preprocessing 

This part begins with extracting the key content from topics, which can avoid the 

noise of useless words. According to the task, we need two kind of information, 

including symptom and therapy. For example, from “patients with complicated GERD 

who receive endoscopy”, we extract “GERD” and “endoscopy” as key words. Since 

the test document collection comes from different medical staffs, who have their own 

writing styles, we added some manual procedure as following to improve the callback 

of first time search. 1) Add other forms of key words. 2) Expand each abbreviation, 

for example, “gastroesophageal reflux disease” for “GERD”. 

3.3 Query Expansion 

Since medical text is somehow special with a same terminology may have different 

forms in medical field, we crawler the introduction “html” of each key word from 

WIKI, then extract the most frequent adjectives and nouns as the other description of 

the key word. In order to improve the extracting accuracy, we make up of a black list, 

which concludes the most frequent but vague words, such as “disease”, “treatment”, 

“hospital” and so on. These words don’t give particular description on patient’s 

disease, so they will not be treated as expansion terms. 

Since each topic describes one kind of symptom or therapy, we connect the key 

words extracted from them with “or”, which can make sure the first searching don’t 

interference the next. For the same reason, other expansion terms are also connected 

with “or”. 

3.4 The first searching 

We run the searching in the Xapian database with the query sentences designed 

above. If a topic gets a return set of more than 500, it’s labeled with “nta” (need to 



adjust), while those that get less than 500 returns are labeled with “nte” (need to 

expand). Reports returned in this run are of relatively higher accuracy, but if the 

number is less than 500, that is “nte” topics, need further expanding. Because not 

enough number means that the topics have many synonymies. As to “nta” topics, 

we’re also not sure the rank from this searching run is accurate, so the result needs to 

be adjusted by query expansion. 

4. Query Expansion with LSI 

There are a lot of professional words in medical reports, and many of them have the 

phenomenon of polysemy and synonymy, which make the traditional approach of 

relative term searching based on term co-occurrence not satisfying. So we use LSI 

(Latent Semantic Indexing) to detecting the inner relation of professional vocabulary. 

4.1 LSI 

LSI is an information retrieval method which attempts to capture this hidden 

structure using techniques from linear algebra. It maps the terms and documents to a 

latent semantic space of low dimension, by which noise in the original vector space is 

removed. LSI’s core step is singular value decomposition (SVD), which is an import 

method of extracting matrix’s feature. It’s computed as: 

TVUA                       (1) 

Suppose that A is a N*M matrix of terms and documents, then U is an N*N matrix, 

Σis an N*M matrix (diagonal matrix, and its diagonal item is the singular value), V
T
 

is an N*N matrix. 

Under normal situation, the total of the first 10%, even 1% singular value of Σ 

makes up of 99% of all the singular value. That is, we can use the first R of them to 

describe the A. So, a low rank matrix of A is built to approximate Ar by SVD: 

T

nrrrrmnm VUA **** 
               (2) 

Um*r is SVD term matrix，V
T

r*n
  

is SVD document matrix，we use Um*r in this task。 

The input for LSI is the returned reports from the first time of searching. The 

procedure of LSI is as follows: 

1. Build the TF-IDF matrix 

2. singular value decomposition 

3. make use of the matrix from the second step to extract the relative terms for 

key words 

The preprocessing is the same as building index with Xapian. After that we use 

“genia tagger” to do the pos tagging. Only these tagged to be noun is used to build the 

TF-IDF matrix.  

The GNU Scientific Library, which provides the function of random number, 

integral computing, and matrix decomposition and so on, is used to do the singular 

value decomposition. In the result of singular value decomposition, we choose the 

first 100 to approximate the original term document.  

The dealt SVD term matrix Um*r is used to compute the expansion of a key word. 

Each row of Um*r is the description of one term in a low dimension space. For 



example, we find the row of “GERD”, and then compute its cosine value with every 

other row. By ranking the result, we get the first two as the relative terms, as to this 

task, they are “regurgitation” and “dysphagia”. Finally, the expansion terms from LSI 

is connected to the original query sentence with “or”. 

4.2 The second searching 

Since further expansion terms are obtained from above, we simply use them to 

search the Xapian database. Now that we have two results from two searching runs, a 

weight score is needed to find out a final result. It goes as follows: 

nta： score(d) = s1*0.7 + s2 * 0.3 

nte： score(d) = s1*0.5 + s2 * 0.5    s1 > 0               (3) 

nte： score(d) = s1*0.5 + s2 * 1      s1 = 0            

“nta” is based on the regular of fine adjustment, which gives more weight to the 

result from first searching, because it get enough returns from first time ,so the 

accuracy is relatively higher. “nte” is based on the regular of supplement, which 

average the result of two searching runs. If a report returned by second searching is 

not appeared in the first time, s1is set to be 0, while s2 set to be 1. 

The whole procedure is shown in Figure 1. 
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            Figure 3. Framework of searching and ranking with Xapian 

5. Evaluation Results 

The results of our system, the median and the best by three measurements are listed 



in table 1. The numbers of topics whose score are higher than the median are shown 

in table 2. From the evaluation results in table 1 and 2, a conclusion can be reached 

that our results are between median and best in bpref and P@10, but in R-prec, our 

result is lower than median. In general, the performance of our system is above the 

average. 

 

   bpref R-prec P@10 

pris 0.474 0.3422 0.5471 

Median 0.308718 0.411529 0.476471 

Best 0.609471 0.760738 0.876471 

Table 1. Evaluation Results 

 

 bpref R-prec P@10 

>Median 22 17 17 

=Median 3 8 9 

<Median 9 9 8 

            Table 2. Relation between our system results and Median 
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