
PRIS at TREC 2011 Medical Record Track

Jiayue Zhang, Xueneng Lin, Yang Zou, Shuai Zhu, Jing Xiao,

 Weiran Xu, Guang Chen, Jun Guo

School of Information and Communication Engineering,

Beijing University of Posts and Telecommunications

jyz0706@gmail.com

Abstract

Our method to accomplish the Medical Record Track is described in this paper. For ad

hoc retrieval, Indri and Xapian are used for indexing, searching, and initial query

expansion. The main query expansion is achieved using LSI. The evaluation results

show the performance of our system is above the average.

1. Introduction

The goal of the Medical Records track is to foster research on providing

content-based access to the free-text fields of electronic medical records. This year the

task is to retrieve reports from the given test document collection, which is a set of

de-identified medical records made available for research use through a university lab.

The retrieval task for the track is an ad hoc search task as might be used to identify

cohorts for comparative effectiveness research. The topics given specify a particular

disease/condition set and a particular treatment/intervention set, and participants

should return a list of visits ranked by decreasing likelihood that the visit satisfies the

specification. To accomplish the task, Indri and Xapian are used for index building

and query searching first, and query expansion is achieved by Indri, Xapian and LSI.

The remainder of the paper is organized as follows. Section 2 introduces the

procedure of ad hoc search with Indri, and section 3 with Xapian. Section 4 describes

the query expansion algorithm using LSI, and the evaluation results are given in

section 5.

2. Ad hoc Retrieval with Indri

According to the feature of documents and the task’s request, we build a system to

do the retrieval jobs, which includes preprocessing, building index, term expansion,

retrieving and ranking.

2.1 Preprocessing

The test document collection is more than one hundred thousand electronic medical

reports. Each report has some “<tag>”, but “visitid” is not contained. However, the

task uses the “visited” (each report associating a “visitid”, while most “visited”

having more than one report) as the response unit. That is, our retrieval system must

return visitreports_visited’s. Since a simple ASCII table called the Report-to-Visit

Mapping Key that specifies which reports belong to the same visit is provided, the

preprocessing system add the tag “visitid” to each medical report. In order to do that,

the set of reports is traversed to get each “check_sum”, then a table called the

Check_sum to ReportID is built. Finally, we add the tag “visitid” to each report

according to the two tables mentioned above.

As the retrieval task contains the request of ages’ distinguish, while the reports

don’t have the tag “age”, we use regular expression to extract patients’ age

information from each report. This tag will be used when building index. There is

some useless information about patients’ personal detail in the last part of each report,

so we also use regular expression to get and delete them.

2.2 Index building

The indri query language provides a executive program called “buildindex.exe” to

build index for given documents. So we use it to do the index building job for all of

the test reports. Since the field “report_text” contains each report’ main information

such as secondary diagnoses, surgical procedure, hospital course and so on, while

“chief_complaint” contains the sort of the patient’s illness, additionally age is limited

in the query condition, we build index for the context of the tag “age”. Besides, the

result is asked to be returned by “visitid”, so an index is also built for the context of

“visitid”. As a result, fields that need to be built index on include “checksum”,

“chief_complaint”, “report_text”, “age”, “visitid”.

As to the ranking part, tag “age” and “visitid” is needed, and context of the two tags

will be returned, so we add “metadata” for them.

2.3 Term expansion

The Indri provides the function of extracting term expansion from the returned

documents. Figure 1 depicts the general procedure of our approach.

Figure 1. Procedure of extract term expansion

2.4 Designing search sentences

35 topics are given and they specify a particular disease or condition set and a

particular treatment or intervention set. We extract the key words from each sentences,

then form the search sentences by connecting key words on the regular “and”, “or”,

“not”. We design one search sentence for each topic and put them into a text file.

The search system runs two times:

(1) The first time is to extract term expansion for each topic. So this time we connect

Initialize the
query envirnment

Load the index

Read the query
sentence, and use
the term expansion
handle for query

Use regular
expression to
extract term
expansion and
its correlation

Ranking the
expanded term by
correlation, and
do some manual

selection

the key words with “or” to form the search sentences.

(2) The second time is to return relative “visitid” and rank them. So we connect key

words with their expanded term with “or”, then connect them with the result in the

first run with “and”. After that we use this search sentences to run the second query.

2.5 Searching and ranking

No more than 1000 “visitid” is requested to submit for each topic, so we set the

number of returned document to be 1000. The system run searching according to the

search sentences which have been designed above. Relative medical reports are

returned and then “visitid” is extracted from each of the reports. Since some different

reports have a same visitid, which means this visitid is of high correlation with the

topic, we add the score of the reports of this visitid when calculate the score of each

visitid. Finally, we rank the visitid according to their score.

Figure 2 depicts the procedure of searching and ranking.

 Figure 2. Framework of searching and ranking with Indri

Initialize
search

environment
Load index

Read search
sentences

Extract visitid
from results,
calculate their
score and ages

Check whether
there is age terms
like “adult”in
search sentences

Delete the
visitid which
isn't in the
age limits

Check whether
there is same
visitid in the

result set

Rank the visitid
according their

scores

Add the score
of the same

visitid as the
final score

yes

no

yes

no

3. Ad hoc Retrieval with Xapian

Indexing, initial query expansion and searching are accomplished on the platform

of Xapian.

3.1 Building Index with Xapian

This approach will retrieve related medical reports by searching the test document

collection twice. The first step is to build index for the given 92088 medical reports.

The preprocessing is the same as the Indri approach, which is getting rid of the regular

describe from each reports and keeping only useful message about patients’ sickness.

We use the Xapian toolkit to build index, which is a searching engine based on

probabilistic search model. The default weight is set to be BM25.

The following contents are import when building index with Xapian.

1. “chief_complaint”, is the most import key field. Terms in that tag have a

relatively higher weight.

2. “report_text”, gives main description of a patient, is treated as a normal field,

terms in which have lower weight that the former field.

3. “age” in “report_text” is used as a value of documents when indexing by

Xapian.

3.2 Preprocessing

This part begins with extracting the key content from topics, which can avoid the

noise of useless words. According to the task, we need two kind of information,

including symptom and therapy. For example, from “patients with complicated GERD

who receive endoscopy”, we extract “GERD” and “endoscopy” as key words. Since

the test document collection comes from different medical staffs, who have their own

writing styles, we added some manual procedure as following to improve the callback

of first time search. 1) Add other forms of key words. 2) Expand each abbreviation,

for example, “gastroesophageal reflux disease” for “GERD”.

3.3 Query Expansion

Since medical text is somehow special with a same terminology may have different

forms in medical field, we crawler the introduction “html” of each key word from

WIKI, then extract the most frequent adjectives and nouns as the other description of

the key word. In order to improve the extracting accuracy, we make up of a black list,

which concludes the most frequent but vague words, such as “disease”, “treatment”,

“hospital” and so on. These words don’t give particular description on patient’s

disease, so they will not be treated as expansion terms.

Since each topic describes one kind of symptom or therapy, we connect the key

words extracted from them with “or”, which can make sure the first searching don’t

interference the next. For the same reason, other expansion terms are also connected

with “or”.

3.4 The first searching

We run the searching in the Xapian database with the query sentences designed

above. If a topic gets a return set of more than 500, it’s labeled with “nta” (need to

adjust), while those that get less than 500 returns are labeled with “nte” (need to

expand). Reports returned in this run are of relatively higher accuracy, but if the

number is less than 500, that is “nte” topics, need further expanding. Because not

enough number means that the topics have many synonymies. As to “nta” topics,

we’re also not sure the rank from this searching run is accurate, so the result needs to

be adjusted by query expansion.

4. Query Expansion with LSI

There are a lot of professional words in medical reports, and many of them have the

phenomenon of polysemy and synonymy, which make the traditional approach of

relative term searching based on term co-occurrence not satisfying. So we use LSI

(Latent Semantic Indexing) to detecting the inner relation of professional vocabulary.

4.1 LSI

LSI is an information retrieval method which attempts to capture this hidden

structure using techniques from linear algebra. It maps the terms and documents to a

latent semantic space of low dimension, by which noise in the original vector space is

removed. LSI’s core step is singular value decomposition (SVD), which is an import

method of extracting matrix’s feature. It’s computed as:

TVUA  (1)

Suppose that A is a N*M matrix of terms and documents, then U is an N*N matrix,

Σis an N*M matrix (diagonal matrix, and its diagonal item is the singular value), V
T

is an N*N matrix.

Under normal situation, the total of the first 10%, even 1% singular value of Σ

makes up of 99% of all the singular value. That is, we can use the first R of them to

describe the A. So, a low rank matrix of A is built to approximate Ar by SVD:

T

nrrrrmnm VUA **** 
 (2)

Um*r is SVD term matrix，V
T

r*n

is SVD document matrix，we use Um*r in this task。

The input for LSI is the returned reports from the first time of searching. The

procedure of LSI is as follows:

1. Build the TF-IDF matrix

2. singular value decomposition

3. make use of the matrix from the second step to extract the relative terms for

key words

The preprocessing is the same as building index with Xapian. After that we use

“genia tagger” to do the pos tagging. Only these tagged to be noun is used to build the

TF-IDF matrix.

The GNU Scientific Library, which provides the function of random number,

integral computing, and matrix decomposition and so on, is used to do the singular

value decomposition. In the result of singular value decomposition, we choose the

first 100 to approximate the original term document.

The dealt SVD term matrix Um*r is used to compute the expansion of a key word.

Each row of Um*r is the description of one term in a low dimension space. For

example, we find the row of “GERD”, and then compute its cosine value with every

other row. By ranking the result, we get the first two as the relative terms, as to this

task, they are “regurgitation” and “dysphagia”. Finally, the expansion terms from LSI

is connected to the original query sentence with “or”.

4.2 The second searching

Since further expansion terms are obtained from above, we simply use them to

search the Xapian database. Now that we have two results from two searching runs, a

weight score is needed to find out a final result. It goes as follows:

nta： score(d) = s1*0.7 + s2 * 0.3

nte： score(d) = s1*0.5 + s2 * 0.5 s1 > 0 (3)

nte： score(d) = s1*0.5 + s2 * 1 s1 = 0

“nta” is based on the regular of fine adjustment, which gives more weight to the

result from first searching, because it get enough returns from first time ,so the

accuracy is relatively higher. “nte” is based on the regular of supplement, which

average the result of two searching runs. If a report returned by second searching is

not appeared in the first time, s1is set to be 0, while s2 set to be 1.

The whole procedure is shown in Figure 1.

Indexing by
Xapian

Medical
Record Set

Topic

Query
Expansion by

Wiki

Preliminary
Set

Query Expansion
by LSI

complementary
Set

Preprocess
Extract Key

Word

Final Result
Set

Database

 Figure 3. Framework of searching and ranking with Xapian

5. Evaluation Results

The results of our system, the median and the best by three measurements are listed

in table 1. The numbers of topics whose score are higher than the median are shown

in table 2. From the evaluation results in table 1 and 2, a conclusion can be reached

that our results are between median and best in bpref and P@10, but in R-prec, our

result is lower than median. In general, the performance of our system is above the

average.

 bpref R-prec P@10

pris 0.474 0.3422 0.5471

Median 0.308718 0.411529 0.476471

Best 0.609471 0.760738 0.876471

Table 1. Evaluation Results

 bpref R-prec P@10

>Median 22 17 17

=Median 3 8 9

<Median 9 9 8

 Table 2. Relation between our system results and Median

References

[1] F. Farfan, V. Jrostodos, A. Ranganathan, M. Weiner, MD. XOntoRank: Ontology-Aware

Search of Electronic Medical Records.

[2] Thomas Hofmann. Probabilistic Latent Semantic Indexing. In Proceedings of the

Twenty-Second Annual International SIGIR Conference on Research and Development in

Information Retrieval (SIGIR-99), 1999.

[3] Blei, David M, Andrew Y, Jordan, Michael I. Latent Dirichlet allocation. Journal of

Machine Learning Research, 2003.3.

[4] Deerwester, Dumais, S. T., Landauer, T. K., Furnas, G. W. and Harshman, R. A. Indexing

by latent semantic analysis." Journal of the Society for Information Science, 41(6), 391-407.

[5] Chen, C., Stoffel, N., Post, N., Basu, C., Bassu, D. and Behrens, C. Telcordia LSI Engine:

Implementation and Scalability Issues. In Proceedings of the 11th Int. Workshop on Research

Issues in Data Engineering (RIDE 2001): Document Management for Data Intensive Business

and Scientific Applications, Heidelberg, Germany, Apr. 1-2, 2001.

[6] Dumais, S. T. "Using LSI for Information Retrieval, Information Filtering, and Other

Things". Talk at Cognitive Technology Workshop, April 4-5, 1997.

[7] http://www.lemurproject.org/lemur/IndriQueryLanguage.php

[8] http://www.xapian.org

[9] http://www.lemurproject.org/lemur/indexing.php#IndriBuildIndex

[10] http://ciir.cs.umass.edu/~metzler/indriretmodel.html

