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Abstract. This paper describes our entry into the TREC 2011 Microblog track. We submitted two runs 
in this year’s track, both in real-time fashion and without any external resources. The runs were 
generated through a three-step procedure, including scoring, threshold selection and re-ranking. The 
evaluation results of our submitted runs significantly outperform the disjunctive baseline run. We 
conducted additional runs to show our score decay and threshold selection strategies to be exceptionally 
effective. 

1 Introduction 

This paper describes our participation in the TREC 2011 Microblog track. We submitted two runs, 
hitWIt and hitWId, that all operated in a strict real-time fashion, and had no external resources 
involved, even for the web pages linked by URLs in the tweet’s text. 

We satisfied the real-time search constraints by dynamically indexing the tweets. For a specific 
query, the retrieval process was performed based on the repository that only indexed the tweets whose 
creation times were earlier than the query’s timestamp, therefore the words’ statistics like IDF were 
calculated without any future evidences. 

We deployed a three-step method to meet this year’s Microblog search requirement that the 
retrieved results should be ranked reverse-chronologically. Firstly, we gave each tweet a score 
according to its relevance to the assumed query. The run hitWIt was scored with solely language 
modeling approach [1], and the run hitWId with the case of score decay [2] considered additionally. 
This is the only difference between these two runs. In the second step, we calculated a score threshold 
for each query based on the score distribution of relevant and non-relevant tweets retrieved in the 
previous step, by modeling the relevant tweets’ scores as the Gaussian distribution and the non-
relevant tweets’ scores as the Exponential distribution. Finally, the retrieved tweets with scores higher 
than the threshold were re-ranked according to their timestamp and returned. 

Our submitted runs both outperform the disjunctive baseline run with statistically significant 
improvements. We presented extra experimental results to demonstrate the effectiveness of our score 
decay and threshold selection method. The runs with score decay factor perform better than the runs 
without it if the appropriate value of decay parameter is chosen, and the runs with adaptive threshold 
selection algorithm beat the runs with threshold fixed manually. 

The next section describes the methods we employed to generate our submissions in detail. Section 
3 describes the experimental methodology and results. Finally, section 4 gives conclusion and outlook 
of future work. 

2 Method 

We used a three-step process to generate our results. At first, we used a scoring function to give each 
tweet a relevance score with respect to one specific query. Secondly, we selected a threshold score for 
each query according to the distribution of the relevant and non-relevant tweets retrieved. Finally, the 
tweets with score higher than the threshold were re-ranked reverse chronologically according to their 
creation time. 

Section 2.1 describes the scoring function we used to score a tweet-query pair, and section 2.2 
describes the approach how the re-ranking threshold was determined. Other procedures like dynamic 
indexing and re-ranking are straightforward thus unnecessary to be represented. 
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2.1 Tweet Scoring  

Our two submissions differ only in the scoring process. The run hitWIt used the basic language 
modeling scoring function, and the run hitWId taken the score decay circumstance into consideration. 
We will describe these two scoring functions in detail in this section. 

Basic Score. 
Our basic scoring function adopted Indri’s [3] language modeling approach. In this approach, 
documents (or tweets) are scored by the likelihood the query was generated by the document’s model. 
Specifically, documents are modeled by multiple-Bernoulli distribution [4] with Dirichlet prior as the 
Bayesian smoothing approach [5]. 

Given a tweet 𝑇𝑇 and a query 𝑄𝑄, the probability that the query was generated by the tweet’s model is 
calculated as follows, according to Indri’s retrieval model 
 

P(Q|T) = ��
tfr,T + μP(r|C)

|T| + μ
r∈Q

|Q|
 (1)  

Where 𝑡𝑡𝑡𝑡𝑟𝑟 ,𝑇𝑇  is the term frequency of query’s term 𝑟𝑟  in tweet 𝑇𝑇 , and 𝜇𝜇  is the tunable smoothing 
parameter. 

The collection frequency of a term is calculated as 𝑃𝑃(𝑟𝑟|𝐶𝐶) = 𝑐𝑐𝑐𝑐𝑟𝑟 |𝐶𝐶|⁄ , and it is independent of the 
query. 

We also employed pseudo relevance feedback [13], which has been shown to be an effective 
strategy to improve the performance of retrieval systems. PRF assumes the top fbDocs documents in 
the original ranked list to be relevant to the query, and then uses these documents to select some 
meaningful terms to expand the original query. Finally, the result retrieved by the expanded query 
would be better than the previous one. For simplicity, we just adopted Indri’s Relevance Model [6] for 
expansion term selection. In this model, all terms in the feedback documents are ranked according to 
the probability 𝑃𝑃(𝑟𝑟|𝐼𝐼), which means how likely the term 𝑟𝑟 would be generated from the query 𝑄𝑄. Then 
the top ranked fbTerms terms will be selected to expand the original query. 
 

P(r|Q) =
∑ P(r|T)P(Q|T)P(T)D

P(Q)
 (2)  

Score decay. 
Considering tweet’s real time characteristic, the longer the time after its creation, the less importance it 
should have. We added a decay factor with half-life ℎ to each score calculated, the half-life means for 
how long time the score will be decayed with only one half of the initial score left. The decay factor 
was modeled exponentially. 
 

Score(t) = Score0 ∙ e−(t−t0) τ⁄  (3)  

Where 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆0 and 𝑡𝑡𝑜𝑜  are the initial score and time, 𝜏𝜏 is a model parameter related to half time ℎ as 
equation 4 
 

h = τ ∙ ln2 (4)  

2.2 Threshold Selection. 

After giving each tweet a score, the second step is aimed at picking out those most relevant tweets 
whose scores are above a meticulously calculated threshold. We will describe our techniques used for 



threshold adaptation in this section. 
In adaptive filtering systems, the method of score distribution for dissemination threshold selection 

has shown exceptional effectiveness [2, 10]. This method assumed a Gaussian distribution for the 
scores of relevant documents and an exponential distribution for the scores of non-relevant documents. 
Figure 1 illustrates how the Gaussian distribution fits relevant documents’ scores of Topic 24 in this 
year’s track, and figure 2 illustrates the non-relevant documents’ case. 

 
Fig. 1. Density of relevant document scores   Fig. 2. Density of non-relevant document scores 

We can’t estimate the parameters of these two distributions directly because unlike adaptive filtering, 
we have no relevance judgments when generating the result of Microblog search. There is a solution 
for this problem in [7] in the context of distributed retrieval. The Gaussian-Exponential score density 
model without relevance judgments can considered as mixture model and resolved by standard 
Expectation Maximization (EM) [8] algorithm. 

Equation 5 and 6 give the distribution densities of relevant and non-relevant documents’ scores. 
Where 𝑥𝑥 is the document’s score and 𝑅𝑅 is the judgment of the document’s relevance to the query. 
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1

√2πσ
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2σ2  (5)  

 
P(x|R = 0) = λe−λx  (6)  

Then the E-step and M-step of the EM algorithm could be described as follows 
E-step: 

 

P(R = 1|xi) =
P(R = 1)P(xi|R = 1)

∑ P(R = r)P(xi|R = r)1
r=0

 (7)  

 
P(R = 0|xi) =
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M-step: 
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|x|
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We can get the posterior probability 𝑃𝑃(𝑅𝑅 = 𝑟𝑟|𝑥𝑥𝑖𝑖) for each document’s score when the parameters of 
the mixture model have been estimated. Intuitively speaking, the relevant documents tend to have a 
score with posterior probability 𝑃𝑃(𝑅𝑅 = 1|𝑥𝑥𝑖𝑖) > 𝑃𝑃(𝑅𝑅 = 0|𝑥𝑥𝑖𝑖), together with equations above and a 
series of mathematic derivation, we could get 𝑥𝑥𝑖𝑖 > 𝜃𝜃 where 
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a
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Recent work shows that Gamma distribution would be a more proper fit of the non-relevant 
documents’ scores [9]. However, there is no closed form solution for parameter estimation of Gamma 
distribution so numerical method is needed. We kept Exponential distribution for simplicity. 

3 Experiments 

In this section, we briefly describe the experimental environment we used to produce our submissions 
at first, and then we presented the evaluation results of our submitted runs. Finally, we will discuss 
more about our methods and results by conducting more experimental runs. 

3.1 Experimental Setup 

Data. 
We downloaded about 1.16 million tweets but the number of tweets used for indexing was only about 
6 million. Those types of tweets considered as noise and thus filtered are described below. 
 The null tweets are tweets without any content, and will be judged as non-relevant. 
 The tweets downloaded with a redirected HTTP code 302 are considered as retweets and 



removed as they would be judged as non-relevant. 
 There is another type of retweet with sign “RT” in their contents. Although the description 

before “RT” is considered as the tweet’s novel information, it is so little that we consider them 
as noise. 

 This year’s track is focused on English, so all the non-English tweets are judged as noise. 
Table 1 gives the number of each type of noise. Note that the number of each type of noise was 
calculated after the previous type of noise was filtered. For example, the number of 302-Retweets was 
calculated in the residual collection after the Null Tweets were removed. 

Table 1. Number of different type of tweets 

#Total 
Tweets 

#Null 
Tweets 

#302-
Retweets 

#RT-
Retweets 

#Non-English 
Tweets 

#Indexed 
Tweets 

16,141,812 1,204,053 1,068,257 1,528,385 6,368,274 5,952,843 
 
We did a quick and dirty preprocessing to the collection after the noisy tweets were removed, 
including stem and stopword removing. 

Evaluation Measure. 
The standard measure in this year’s track is the precision of the top 30 results for each query, i.e. 
P@30. We also provided Mean Average Precision (MAP) and R-Precision for comparison. 

Constraints. 
We didn’t use any future or external resources in our experiments, even for the web pages linked by 
the URLs in the tweets’ content. 

All of our experiments satisfied the strict real-time search conditions. Tweets were dynamically 
indexed so all the retrieved tweets were guaranteed to be created before the incoming of the query, and 
the words’ statistics like IDF were calculated without any future evidence. 

3.2 Results and discussion 

We submitted two runs in this year’s track. These two runs only differed in the scoring step, with one 
run (hitWIt) used the basic language model scoring function and the other run (hitWId) had the score 
decay factor incorporated. 

We retrieved at most 2,000 tweets for each query in the scoring step, and then the EM algorithm 
was executed with the scores of these tweets in order to determine the re-ranking threshold. We will 
discuss more about the effectiveness of the threshold automatically selected later. 

The number of pseudo feedback documents fbDocs was 20, number of terms selected from the 
feedback documents for query expansion fbTerms was 10. The smoothing parameter 𝜇𝜇 in language 
model was 20. The parameter 𝜏𝜏 in the score decay model was 7 days. 

Table 2 gives the evaluation results of our submissions compared with the disjunctive baseline run 
provided on the track’s page1. 

Table 2. Result of submitted runs and the disjunctive baseline run 

Measure All Relevance Judgments High Relevance Judgments 
Run P@30 MAP R-Precision P@30 MAP R-Precision 
hitWIt 0.3973 0.3189 0.3777 0.1354 0.2405 0.2551 
hitWId 0.3340 0.2727 0.3395 0.1263 0.2259 0.2392 
Baseline 0.0986 0.1411 0.1486 0.0384 0.1616 0.1419 

 

                                                             
1 http://trec.nist.gov/act_part/tracks.new11.html 



Both of our submitted runs have statistical significant improvements over the disjunctive baseline run. 
But unexpectedly, our run with score decay factor performs worse than the run without it. 

We considered the reason of the inferior result of hitWId as an inappropriate selection of decay 
parameter 𝜏𝜏  and conducted more runs to justify the effect of score decay factor. We kept other 
parameters constant and obtained several results based on different values of 𝜏𝜏. 

From figure 3 we can easily find out that our choice of 𝜏𝜏 in the run hitWId was far away from the 
optimal value. The performance of runs with score decay are able to outperform or at least equal to the 
run without score decay (hitWIt) when 𝜏𝜏 is greater than 40 days. The optimal performance is achieved 
when 𝜏𝜏 is equal to 90 days (the run BestDecay), and it outperforms the run hitWIt, as shown in table 3. 

We will also investigate the effectiveness of our threshold selection method deeper. We conducted 
runs with threshold fixed manually that gives exact 𝑡𝑡 documents for each query, i.e. we use a top-t 
manner threshold. We compare the performances of these runs with the automatically selected 
threshold run hitWId. 

The comparison result is show in figure 4. The run with adaptive threshold selection method 
constantly outperforms other runs in both MAP and R-Precisio. Obviously, the maximal value of 
P@30 is achieved when 𝑡𝑡 is set as 30, but the other two measurements (MAP and R-Precision) are not 
optimal in this situation.  

The average number of documents returned for each query of hitWIt is 95. But the performance of 
the run Fixedt95 with a fixed number of 95 documents returned for each query is apparently worse 
than hitWIt, as shown in table 3. It means that when the same number of documents for the query set 
is returned, the result generated with adaptive threshold selection algorithm is significantly better than 
the one with threshold set as a fixed value for all queries. 

Table 3. Comparison with runs of best decay paramter τ = 90 and fixed threshold 𝐭𝐭 = 95 

Measure All Relevance Judgments 
Run P@30 MAP R-Precision 
BestDecay 0.3993 0.3194 0.3783 
hitWIt 0.3973 0.3189 0.3777 
Fixedt95 0.3429 0.2878 0.3538 

 
Fig. 3. Comparison with different decay parameter  Fig.4. Comparison with fixed threshold 

4 Conclusion and Outlook 

We described our participation in TREC 2011 Microblog track. We submitted two runs both generated 
through a three-step procedure including scoring, threshold selection and re-ranking. These two runs 
differed only in the first step that documents in one run were scored by the basic language modeling 



approach, and the other incorporated a score decay factor. We computed a re-ranking threshold for 
each query with the documents scored in the first step, through the score distribution method. It 
models the relevant documents’ scores as Gaussian distribution and the non-relevant documents’ 
scores as Exponential distribution, and then the threshold is calculated as the intersection of the curves 
of these two distributions. Finally, we re-rank the documents with scores higher than the threshold 
reverse chronologically, as required by this year’s track. 

Both of our submissions greatly outperform the disjunctive baseline run. With a meticulously tuned 
decay parameter, the performance of our run with score decay factor could be better than the basic 
language model run. We also demonstrated the effectiveness of our adaptive threshold selection 
method by comparing our automatically selected threshold run to those runs with threshold set 
manually as an identical value to each query. The comparison result shows that the performance of the 
run with the adaptive threshold selection method is constantly superior in both MAP and R-Precision 
to those runs with manually set threshold. It also demonstrates that the threshold selection method 
significantly outperforms fixing threshold manually in all three measurements when the number of 
documents returned for all queries is the same. 

We also tried a document prior before we submitted our runs. The prior was calculated by the 
information in the collection [11], like the number the tweet was retweeted, the number the tweet was 
replied and the influence of the tweet’s user [11, 12]. But unfortunately this prior brought nothing but 
huge noise made the performance inferior. We abandoned this run in our submission. We didn’t 
investigate too much about the reason of this prior’s poor performance, so an attempt to advance this 
idea may be an interesting future work. 
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