UALR at TREC 2011 Entity Track

Venkata Swamy Martha+, Halil Bisgin+, Stephen Wallace+, Hemant Joshi*, Nitin
Agarwal+ and Xiaowei Xut'
+Center for Advanced Research in Data-mining, Information Science Dept.,
University of Arkansas at Little Rock, Little Rock, Arkansas, 72204, USA
* Acxiom Corporation, Little Rock, Arkansas, 72201, USA
{vxmartha, hxbisgin, sxwallace, xwxu, nxagarwal }@ualr.edu,
Hemant.Joshi@acxiom.com

Abstract

The primary objective of the track is to accomplish a mechanism to answer entity related
searches over web data. The TREC organizers provided a segment of web data i.e. ClueWeb09
data collection which is used for this work. An example of the entity related query is “ Countries
other than lceland to which lcelandair flies?’. To answer such queries, it needs two phases of
processing, one is offline processing and the other is query time processing. During offline
processing, the data is indexed using third party search engine tool. Query time processing
involves query reformulation, extracting related documents from the index and document
analysis to answer the query. Document analysis is the heart of the research which include entity
identification and entity ranking based on a query. Since there is no readily available
sophisticated entity identification tool, consensus approach is incorporated for entity
identification. The consensus is achieved from Stanford NER tagger Apache sentence
detector with sentence parser and DBpedia dataset lookup A novel technique is
developed to rank the entities related to a query. In other words, the identified entities from
related documents are ranked based on their relevance to the query terms. Variations of query
reformulations are: no reformulation, manual (human reformulated) and programmed using
entity identification tool, resulted three submissions CARDHTML, CARDHTMLM and
CARDHTMLArespectively. In addition to the above variations, we also used external web search
engine (Bing) to extract related documents and submitted the run as CARDHTMLB. The
submission also involved LOD UA look up which is achieved using organizers provided Sindice

datasetand its too
1. Introduction

University of Arkansas at Little Rock (UALR) in collaboration with Acxiom Corporation
participates in entity track. The main task of this track is to develop a solution for finding
relevant entities and subsequently their LOD-URI using Sindice dataset An example of the
query is “Countries other than Iceland to which lcdlandair flies?”. To answer such queries we
developed a network structure mining approach that is explained in the following.

'Contact author: Xiaowei Xu, email: xwxu@ualr.edu

2. System architecture

The system consists of two components: Indexing and Query Processing. Index is built off-line
independent to queries. We indexed the Clueweb(9 dataset with Indri (part of Lemur)
software [ﬂ] for efficient retrieval. The off-line processing component is presented inw

CfFiteStecoesng o

Distribute ' ‘ Start

datasetamong I:::: :g;z:?'naet IndriDaemon at

machines N each machine

Figure 1: Off-line processing

Query processing leverages the index to retrieve query related documents. Further the query
processing involves following steps: 1. Query restructuring, 2. Identifying sentences in the query
related documents using HTML parser and Apache OPENNLP sentence detection library, 3.
Entity recognition using an open source entity tagging libraries (Stanford NER tagg
Apache OPENNLP sentence parse@', 4, Entity validation with DBpedia dataset which also
returns us entity type information, 5. Weighing sentences by comparing sentence terms with
query terms, and finally 6. Ranking identified entities using a novel network mining approach.
The flowchart of the steps is depicted These steps are explained in detail in Section 3.

Obtain Ranking
Queries algorithm : Lookup URI

Process Construct ‘ Assemble
Queries network \ Results

PP ndri Results - i
! Entity
gcl’témi%?g identification

Figure 2 Query time processing

The overall architecture of our system is illustrated in|Figure 1|and|Figure 2| Architecturally
significant components of the system are explained in Sections 3 and 4 respectively.

3. Procedureto extract related documents

3.1 Index

Indri search engine is used to index the ClueWeb09 dataset. Since the dataset is large enough to
not to fit in a single machine, we segmented the dataset into 46 partitions (each partition with
en<e, en<x+ 1>, en<x+2> directories) and distributed them on to 46 machines which further
fed to indri to index locally with standard indri parameters at each machine. With this
infrastructure, we were able to achieve faster document retrieval. We configured indri to store
documents along with the index; the rational behind doing it is discussed in next section. Indri
daemon (server) is started on all the machines and kept available for further steps.

3.2 Topicsanalysis

The given QUeries from the organizers include narrative, type. To avoid inconsistency we
mapped the given types to generic DBpedia classes. For example, “school” to
“Educational Ingtitute”.

QObtain
Queries

Query Bingfor - .
answer pages

Cidentify @
entities in
queries

eformulate
queries

3 Download
b, manually

documents with
crawler

Translate |
query to
Indri query

Extract o

7 Extract

Extract Map web URL to
documents documents documents clueweb dociD
using Indri__# using indri

, using Indri_

Relevantdocuments L Relevant documents |

e - ... (Fromclueweb) . (Fromwww) |
Figure 3 Finding query relevant documents

3.2.1 Query reformulation (Manual)

As part of the manual run, we reformulated the query narrative into indri query language. The
main reason behind human intervention is to remove/replace more generic terms, to keep specific
terms together as phrase (particularity entities with two terms). For instance, the query (1) is

reformulated as
“Scombine(#1(lcalandAir) #1(destinations))

3.22 Query reformulation (Automatic)

This run involves complex processing of the query narrative. First, entities are identified using
methodology discussed in Section-4.3. The stop words are removed except the term “of”,
doubting it is part of entities. The phrases are called “query_key_words’. The query_key_words
plays an important role in weighing sentences in documents. Now the query,_key_words are
translated to indri query language. Here we included weight which is the length of the terms
included in the specific frame. The automatic reformulation turned the query (1) into

“#weight(7 #1(iceland) 10 #1(icdandair) 54 #1(countries other than iceland to which
icelandair flies) 9 #1(countries) 9 #1(countries) 33 #1(icdland to which icelandair flies) 16
#1(iceland to which) 7 #1{iceland) 16 #1(icdandair flies) 5 #1(flies))"

3.2.3 Query relevant documents

The reformulated query is requested to indri which returns us query related document id’s (we
use this doc _id later for network construction). Using dumpindex utility of indri, corresponding
raw documents are retrieved. For the four runs we submitted for organizers, we followed four
different approaches to obtain relevant documents. The variations are clearly depicted as
The raw documents are digested to extract the answer entities for a given query. The document
processing involves complex operations and uses other third party tools, further detailed in
section 4. '

4. Documents processing

There are 150 documents from the Clueweb09 collection which can contain answer. For the discussion,
let us consider “clueweb09-en00-123456” is one of the result documents i.e one of the 150 documents
hows the steps involved in the document processing for ranking entities.

41 HTML parsing

The document is parsed using HTML parser obtained from to retrieve text nodes along with
it’s html tree positions. For each text node, there exists an “hitml_tree tag id’ which is unique
and represents position of the text node in the document.

4.2 Sentence detection

A text node might contain more than one sentence. For the reason, each text node is further
drilled to segment into sentences. Each sentence is assigned a unique numeric id called
“sentence id”. The segmentation is achieved through Apache Incubator’s OPENNLP sentence
detection too! [[7]] The OpenNLP Sentence Defector can detect that a punctuation character
marks the end of a sentence or not. In this sense a sentence is defined as the longest white space
trimmed character sequence between two punctuation marks. The first and last sentences make
an exception to this rule. The first non whitespace character is assumed to be the beginning of a
sentence, and the last non whitespace character is assumed to be a sentence end. The OpenNLP
Sentence Detector cannot identify sentence boundaries based on the contents of the sentence.

i 'Related documents |

7~ Mine networlk
to score nodes

Parse htmil
tree

I
bt >

Combine
Detect features of Rank scored
sentences each sentence _. noces
= Weigh
Tag entities sentences in
US‘"QNSEtENfOfd context to query Lookup URI

Assemble

entence parse
Results

to identify noun
phrases

» Find entity type
Figure 4 Document processing and ranking entities

4.3 Entity detection

A sentence has set of terms which have specific meaning. Sentence analysis is critical and
important task which can affect results significantly. We followed following steps to achieve
concise entities and semantic meanings among them.

4.3.1 Stanford NER tagger

This is very naive approach to identify entities of primitive types person, location, organization.
Stanford NER tagger takes a sentence and tags recognized entities. We ignore entity types
assigned the tagger because the types are more generic to filter out target entities. We forwarded
the knowledge (identified entities) to next step. To forward the knowledge, the entities in the
sentence are replaced by indices (here we used XYZ<index>) which are recognized as single
term in the next step, we call the resulting sentence “virtual sentence”.

4.3.2 Apache Incubator’s Parser

The sentence (virtual sentence) from entity tagger is forwarded to Apache Incubator’s Parser
The parser identifies terms with its parts of speech tags. The reason behind using parser
instead of POS tagger is to retain tag tree structure. To focus on the given task (entity
identification), only phrases tagged as NP, NN, NNP, NN§ NNPS are considered as entities.
Since NP is a phrase clause and lead to its descendants, so all descendant terms of NP tag is
considered as an entity. The rational behind using parser instead of POS tagger is to get the
descendant terms of NP tag. Here is an example tags obtained from the parser

(TOP (NP (NP (DT The) (JJ quick) (JJ brown) (NN fox) (NNSjurmps)) (PP (IN over) (NP
(DT the) (M lazy) (NN dog))) (.)
Once all the nouns are extracted, the entities found in earlier step (section 4.3.1) are reverted
back by replacing indices (XYZ<indexx>) with corresponding phrases. By the end of the step we
had entities in the sentence.

4.3.3 Entity validation and Entity type lookup

The entities recognized are needed to be validated to avoid noise. The validation is carried out
using DBPEDIA datase Advantage in using the dataset is that it not only validates but also
gives fine grained entity types. For faster access, we indexed the dataset using Apache Lucena
Since queries include target entity type, we wiped off all the entities except the ones we needed
to answer. The remaining entities are farget_entitiesand are ranked in coming steps.

4.4 Weighing sentences

The sentences are given a relevance_score which represents correlation of the sentences to the
given query. The score of a sentence is “sum of the length of the query_key_words found in the
sentence”.

By the end of this step, we have following parameters for each sentence from all related
documents:

doc_id , htmi_tree tag id , Ssentence id

rdlevance score , larget_entities

4.5 Sentencesto network trandation

The processed sentences are translated to network. The vertices in the network are two types:
entities and phrase called “sentence_node”, formed by writing doc_id, html_tree tag id and
sentence_id together i.e. <dog_id>:<html_tree tag id>:<sentence id>. The sentence_node's
retain relevance scorevalues along with them in the network. Now an edge from an entity node
and a sentence exists if the entity derived from the sentence. Two sentences are connected only if
their sentence _node prefix matches up to 90%. The limitation leads sentences, with common
ancestor at very near to the sentence in a document html tree, are connected. In this way, we
have links among sentences and sentences to entities.

4.6 Network processing

We applied network mining algorithm to find answer entity nodes in the network. It is obvious
that the answer entities are descendants of the sentences or its descendants for which the
relevance score is high. At the same time, we need to avoid sentences at very high level of the
html tree to avoid more generic answers. Less number of neighbor sentences will give us the
sentences at lowest level. The score that a sentence inherits to its descendants is equally
distributed i.e. divided by neighboring entities In summary, the score of a sentence node on the
network is:
Score of a sentence = (relevance score/ (count{neighbor entities} * count{ neighbor
sentences }

The entities might occur in more than one sentence and can inherit score from multiple
sentences. The one score maximum of neighbor sentences is an entity’s score.

Score of an entity = max{ score of neighbor sentence }
The sentence which inherits the score (max score) to an entity is supporting document for the
entity in the query context.

4.7 Ranking network nodes|.e. entities

The entity nodes with their scores are sorted to rank. By this time, we have answer entities with
their scores, rank and supporting document id’s.

5. Variationsof submitted runs

Thanks to super computing facility at our university, we were able to setup indri search engine. It made us
to tune the framework for better results. We picked best four tunings from many. For the submission, we
used the top four variations:

1. CARDHTMLA: In this run we leveraged entity identification method to identify phrases
in given query narratives and then they are translated to indri query language to extract
related documents.

2. CARDHTMLM: We manually identified phrases in the query narratives and then they are
translated to indri query language to extract related documents.

3. CARDHTMLB: For this we took advantage of external web search engine Bing. The query
narratives are directly sent to Bing which returns us set of result documents. They became
related documents of the query in the next step.

4. CARDHTML: This run is very conservative. It does not go for query reformulation. The query

narratives are queried to indri to get related documents. This run retrieved only top 100
document hits from the indri search engine whereas other runs retrieved 150 top documents.

6. Evaluationsdf the results

We observed promising results for various queries we tried with, but we are not able to quantify their
accuracy. Since we received evaluation from TREC organizers, we evaluated our submissions over a
ground truth. The ground truth is prepared from the evaluation of the task. Since our main task is to
identify related entities, our evaluation is performed on entity names instead of URIs’. The evaluation

metrics include nDCG (in and Average Precision (in|Figure 6]. The charts below depict the

evaluation of the four submitted runs for the given 50 queries.

; B CARDHTMLA "~ mCARDHTM
| nDCG ™
T e g s o MCARDHTMIB WCARDHTML . __

Figure 5 : nDCG scores of each topic for the four runs

Y Average Precision ROOHMIA - acHIMA
i H
1 g ® CARDHTMLB W CARDHTML ;
;
| 0 1} - t i
: |
| [] I :
P |
cg 0.6 1+ - e) | N
t ‘
} 04 | I | _ 1 |

H
i i
o002 - |
I |
Lo _ |
]‘ L L - - v A R L A B = A~ - - - L A - L ‘}
‘ R e e S O - T~ TR -] P T - - - - R - T = I I B B B s o o oA

Figure 6 : Average Precision scores of each topic for the four runs
The averages of the scores of all the 50 queries are tabulated i Table1

Table 1 Average of evaluation metrics
nDCG | MAP Automatic run employ high nDCG values while

CARDHTMLA 0.47 0.41 CARDHTML‘ l(no query processing) shows high Mean
CARDHTMLM 0.45 036 Average Precision (MAP) scores.

CARDHTMLB 0.32 0.41
CARDHTML 0.20 0.44

Besides the topic wise analysis of the results, we also summarized target entity type bases analysis. The
following chart depicts the summary for run CARDHTMLA (automated query preprocessing).

avg(nDCG)

©organizati
nn
fucalion . i \Ul-]‘il.l)ﬂ 5.34
0.70 I (5% pIos
35%

peron
0.43
2R

Figure 7 : average nDCG and Mean Average Precision of topics based on entity types for CARDHTMLA run

The charts if[Figure 7 freveal that our approach performs better for location based queries.

7. Condudonsand Future work

The primary aim of the track is to answer (in specific, answer entities) a given question. This paper had
shown a novel methodology to identify entities and to rank them in context to the given query. With the
advantage of several third party parsers like html parser, sentence parser, we were able to extract semantic
relationship among entities and sentences. Such relationship constituted to a network which further eased
our task to rank the entities. The results shown are promising when we evaluated the queries with TREC
organizers provided results. This work proves one more time that network mining algorithms can address
complex problems with simple solutions.

8. References
[1] http}[posto myRdiiDatiltluewetyps/
[2] http{hiffistanfordiedyiibetfiindepishtml
{31 htep/!] murprojeclibrglindri|
[4] http}|vwiillemurprojectiprd

[5] S. Campinas, D. Ceccarelli, T. E. Perry, R. Delbru, K. Balog, and G. Tummarell
|SindicH2011H)atasEtHoH Entitﬂ{]riente#“iearcﬂm hHP/eHbﬂpatal In EOS SGIR 2011
workshop, July 28, Beijing, China.

[6] httpy[htmlparse ourceforgﬂ%ﬁﬂavadocm)vcrvie\ﬁ fummary{lhtm!

[71 hutp}]{ncubatoffpach b ;pcnnlﬂgocumemaﬁor}' anu?’HQpennl htm !kolméltdeteitl

(8] http}/{Incubatoffpachgiorgippennl ocumentatiorfjnanuajfppenn!fiktm| HoolRlparser |
[9] http}{jvikiffibpedigprgiPownioadi}7|
[10] [http://data.sindice.com/trec201 1/index.html|

.t

