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Abstract—We applied both Latent Semantic Indexing (LSI) and
Essential Dimensions of LSI (EDLSI) to the 2010 TREC Legal
Learning task. This year the Enron email collection was used
and teams were given a list of relevant and a list of non-relevant
documents for each of the eight test queries. In this article we
focus on our attempts to incorporate machine learning into the
LSI process. We show the EDLSI continues to outperform LSI on
large datasets.

For 2011 we plan to enhance our system by adding parallel
and distributed approaches to LSI and EDLSI. We believe our
retrieval performance would be improved if we could process
more dimensions. Our current system resources limited us to
70 dimensions this year. Even with 70 dimensions our system
performance was greater than or equal to the median for 6 of the
8 queries on the F1 metric.

1 INTRODUCTION

In the 2009 TREC Legal Competition, which used
the tobacco lawsuit collection, we tested a new matrix
factorization for Latent Semantic Indexing (LSI). The
system we used relied on MATLAB for the matrix
operations, and this severely restricted our ability to
process the entire term-document matrix as a unit. As a
result, we relied on distributed techniques for processing
the collection, and we had no way of comparing our
distributed techniques to a run of the entire corpus.

For 2010 we have redeveloped and restructured
our system for performance reasons, and instead of
MATLAB we used a combination of CLAPACK and
SVDLIBC for our matrix operations. Indexing and term
weighting were provided by Lemur. We describe the
process we used in section 3. Due to time constraints we
were unable to develop a parallel version of this system
to compare to the sequential version. That will be our
primary goal for 2011.

Teams this year were permitted three runs. Our first
run was a standard LSI run with the maximum number
of dimensions we could process. Our second two runs
used EDLSI instead of LSI, because EDLSI has been
shown to work as well as or better than LSI with many
fewer dimensions [10].

2 BACKGROUND

In this section we begin with a description of vector-
space retrieval, which forms the foundation for La-
tent Semantic Indexing (LSI). We also present a brief
overview of LSI [5]. We discuss Essential Dimensions
of LSI (EDLSI) and its improvements over LSI.

2.1 Vector-Space Retrieval

In vector-space retrieval, a document is represented as
a vector int-dimensional space, wheret is the number
of terms in the lexicon being used. If there ared docu-
ments in the collection, then the vectors representing the
documents can be represented by a matrixA ∈ ℜt×d,
called theterm-document matrix. Entry ai,j of matrix A

indicates how important termi is to documentj, where
1 ≤ i ≤ t and1 ≤ j ≤ d.

The entries inA can be binary numbers (1 if the
term appears in the document and0 otherwise), raw term
frequencies (the number of times the term appears in the
document), or weighted term frequencies. Weighting can
be done using either local weighting, global weighting,
or a combination of both. The purpose of local weighting
is to capture the relative importance of a term within a
specific document; therefore, local weighting uses the
frequency of the term within the document to calculate
the weight and assigns a higher weight if the frequency
is higher. The purpose of global weighting is to identify
terms that discriminate effectively between documents;
thus, global weighting uses the frequency of the term
within the entire document collection to calculate the
weight and assigns a higher weight if the frequency
is lower. Because document size often varies widely,
the weights are also usually normalized; otherwise, long
documents are more likely to be retrieved. See, e.g., [2],
[14] for a comprehensive discussion of local and global
weighting techniques. In our experiments we used tf-idf
weighting and cosine normalization.

Common words, such asand, the, if, etc., are consid-
ered to bestop-words [2] and are not included in the



term-document matrix. Words that appear infrequently
are often excluded to reduce the size of the lexicon.

Like the documents, queries are represented ast-
dimensional vectors, and the same weighting is applied
to them. Documents are retrieved by mappingq into the
row (document) space of the term-document matrix,A:

w = q
T A.

After this calculation,w is a d-dimensional row vec-
tor, entry j of which is a measure of how relevant
documentj is to queryq. In a traditional search-and-
retrieval application, documents are sorted based on their
relevance score (i.e., vectorw) and returned to the
user with the highest-scoring document appearing first.
The order in which a document is retrieved is referred
to as therank1 of the document with respect to the
query. The experiments in this paper run multiple queries
against a given dataset, so in general the query vectors
q1,q2, . . . ,qn are collected into a matrixQ ∈ ℜt×n and
their relevance scores are computed as

W = QT A,

where entrywj,k in W ∈ ℜn×d is a measure of how
relevant documentj is to queryk.

There are two immediate deficiencies of vector-space
retrieval. First,W might pick up documents that are
not relevant to the queries inQ but contain some of
the same words. Second,Q may overlook documents
that are relevant but that do not use the exact words
being queried. Thepartial singular value decomposition
(PSVD) that forms the heart of LSI is used to cap-
ture term relationship information in the term-document
space. Documents that contain relevant terms but perhaps
not exact matches will ideally still end up ‘close’ to the
query in the LSI space [5].

2.2 Latent Semantic Indexing
LSI uses the PSVD to approximateA, alleviating the
deficiencies of vector-space retrieval described above.

The PSVD, also known as the truncated SVD, is
derived from the SVD. The (reduced) SVD decomposes
the term-document matrix into the product of three
matrices:U ∈ ℜt×r, Σ ∈ ℜr×r, andV ∈ ℜd×r, where
r is the rank of the matrixA. The columns ofU andV

are orthonormal, andΣ is a diagonal matrix, the diagonal
entries of which are ther non-zero singular values ofA,
customarily arranged in non-increasing order. ThusA is
factored as

A = UΣV T .

The PSVD produces an optimal rank-k (k < r)
approximation toA by truncatingΣ after the first (and

1. This rank is unrelated to therank of a matrix mentioned below.

largest)k singular values. The corresponding columns
from k + 1 to r of U andV are also truncated, leading
to matricesUk ∈ ℜt×k, Σk ∈ ℜk×k, andVk ∈ ℜd×k. A

is then approximated by

A ≈ Ak = UkΣkV T
k .

In the context of LSI, there is evidence to show that
Ak provides a better model of the semantic structure
of the corpus than the original term-document matrix
was able to provide for some collections [5], [6], [7],
[3]. For example, searchers may choose a term,t1, that
is synonymous with a term,t2, that appears in a given
document,d1. If k is chosen appropriately and there is
ample use of the termst1 andt2 in other documents (in
similar contexts), the PSVD will givet1 a large weight in
thed1 dimension ofAk even thought1 does not appear
in d1. Similarly, an ancillary termt3 that appears ind1,
even thoughd1 is not ‘about’ t3, may well receive a
lower or negative weight inAk matrix entry (t3, d1).

Choosing an optimal LSI dimensionk for each col-
lection remains elusive. Traditionally, an acceptablek

has been chosen by running a set of queries with known
relevant document sets for multiple values ofk. The k

that results in the best retrieval performance is chosen as
the optimalk for each collection. Optimalk values are
typically in the range of100–300 dimensions [6], [12].

2.3 Essential Dimensions of LSI

As the dimension of the LSI spacek approaches the
rank r of the term-document matrixA, LSI approaches
vector-space retrieval. In particular, vector-space retrieval
is equivalent to LSI whenk = r.

Figures 1–3 show graphically that the performance
of LSI may essentially match (or even exceed) that
of vector-space retrieval even whenk ≪ r. For the
CACM [15] and NPL [8] collections, we see that LSI
retrieval performance continues to increase as additional
dimensions are added, whereas retrieval performance of
LSI for the MED collection peaks whenk = 75 and
then decays to the level of vector-space retrieval. Thus
we see that vector-space retrieval outperforms LSI on
some collections, even for relatively large values ofk.
Other examples of collections that do not benefit from
LSI can be found in [11] and [9].

These data suggest that we can use the term re-
lationship information captured in the first few SVD
vectors, in combination with vector-space retrieval, a
technique referred to as Essential Dimensions of Latent
Semantic Indexing (EDLSI). Kontostathis demonstrated
good performance on a variety of collections by using
only the first10 dimensions of the SVD [10]. The model
obtains final document scores by computing a weighted
average of the traditional LSI score using a small value
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Fig. 1. LSI vs. vector-space retrieval for the CACM
Corpus (r = 3 204).
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Fig. 2. LSI vs. vector-space retrieval for the NPL
Corpus (r = 6 988).
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Fig. 3. LSI vs. vector-space retrieval for the MED
Corpus (r = 1 033).

Average Precision for LSI and Vector MED 
Corpus, Rank = 1033

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

10 40 70 10
0

13
0

16
0

19
0

22
0

25
0

28
0

31
0

34
0

37
0

40
0

k

A
ve

ra
g

e 
P

re
ci

si
o

n

LSI

Vector

 

for k and the vector-space retrieval score. The result
vector computation is

W = x(QT Ak) + (1 − x)(QT A),

where x is a weighting factor (0 ≤ x ≤ 1) and k is
small.

In [10], parameter settings ofk = 10 and x = 0.2
were shown to provide consistently good results across
a variety of large and small collections studied. On
average, EDLSI improved retrieval performance an av-

erage of12% over vector-space retrieval. All collections
showed significant improvements, ranging from8% to
19%. Significant improvements over LSI were also noted
in most cases. LSI outperformed EDLSI fork = 10 and
x = 0.2 on only two small datasets, MED and CRAN. It
is well known that LSI happens to perform particularly
well on these datasets. Optimizingk and x for these
specific datasets restored the outperformance of EDLSI.

Furthermore, computation of only a few singular val-
ues and their associated singular vectors has a signifi-
cantly reduced cost when compared to the usual100–
300 dimensions required for traditional LSI. EDLSI also
requires minimal extra memory during query run time
when compared to vector-space retrieval and much less
memory than LSI [10].

3 METHODOLOGY

The dataset for the 2010 TREC Legal Track Learning
Task contains a large volume of information, approx-
imately 700,000 documents in many different formats
(.txt, .pst, .ppt, etc.) that take up 3.71 gigabytes of disk
space. Each document needed to be added to an index in
order to create the term-document matrix for the dataset.
The Lemur Toolkit was used to index the collection [13].
The Lemur Toolkit is designed to take a set of documents
formatted in a certain way and add them quickly to an
index that can then be used to glean information about
the dataset as a whole, as well as information about each
document.

All terms that appeared in more than 100,000 doc-
uments were considered bad discriminators between
documents and were removed from the index. Terms
that included numeric characters or other characters
not in the alphabet were also eliminated. Documents
which contained no indexed terms after parsing were
considered to be ‘blank’ and were removed from further
processing. After pruning our term-document matrix size
was 302,119 (terms) by 456,968 (documents). Pruned
documents were added to our run submission file, with
a probability of zero, to meet the requirements for
submission.

After a final term-document matrix was created for
the TREC dataset, the LSI process began. We evaluated
several different libraries used to perform operations on
dense vectors and matrices to determine which would ad-
equately serve our needs. This was an important decision
because LSI requires two large matrix multiplications for
every query. We chose CLAPACK (a C library designed
to provide the FORTRAN LAPACK library functionality
in a C/C++ environment) [1] to handle the dense matrix
calculations. Although CLAPACK was also our first
choice for the calculation of the SVD, this proved
ineffective, as CLAPACK does not work with sparse
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matrices. SVDLIBC was used for the decomposition and
it provided much-increased speed and functionality for
working with the sparse term-document matrix [4].

3.1 Optimizing k

We were permitted three runs for submission to the
TREC Legal learning task. We decided to use one
submission using LSI, and another two using EDLSI
with differentk choices. Thek’s that were chosen were
determined by a simple scoring algorithm: given that we
know a subset of the relevant documents and a subset of
the irrelevant documents, we can ignore the rest of the
documents in our result set, and count up the known-
relevant documents that are listed below the cutoff for
relevant documents (and the known-irrelevant documents
that are listed above the cutoff for irrelevant documents).
The sum is the score of a query result, and the higher
the sum, the worse the result. The results that scored the
best on average across all topics were thek-selections of
35 and 70. Due to memory restrictions on our research
computer, we could not select ak value greater than 70.

4 RESULTS AND DISCUSSION

The results from our runs are shown in Figures 4 through
9. There are some interesting trends and there is also a
lot of room for improvement.

Figure 4 compares the F1 metric for our runs with the
best and the median F1 metrics. Using this measure, we
did reasonably well, with our EDLSIK70 run meeting or
exceeding the median for 6 of the 8 queries. EDLSIK70
outperforms both of our other runs, showing that EDLSI
outperforms LSI on this large collection.

Figure 5 tells the opposite story. The Hypothetical F1
would be the F1 if the best cutoff was chosen. This
metric is a measure of our ranking. Our runs performed
lower than the median on 6 of the 8 queries. EDLSI,
however, is still showing improvement over LSI, and a
lower k value (k = 35 vs k = 70) is better for EDLSI.

Figure 6 and 7 are measures of our ability to predict
the probability of relevance for each document. Again,
we show results better than the median on most of
the queries. Generally, our system had a problem with
queries 202 and 205. More analysis will be needed
to determine the features of these requests that make
them so difficult for us. All of our runs were fully-
automated, and terms were simply extracted from the
short description of the request to generate our query
vector. More carefully chosen terms may improve the
results dramatically (but would also mean that our run
would be semi-automated instead of fully-automated).

Figures 8 and 9 seem to provide conflicting informa-
tion. The cutoff accuracy figures were pretty reasonable,
doing better than the median on 6 of the 8 requests, but

the cutoff values seem to be way out of line. We most
often have suggested retrieval of many more documents
than were needed (17 of 24 instances), and we were often
orders of magnitude off the mark (ex. LSI for request
207). Interestingly we consistently under-estimated the
number of documents for 205. This probably has less to
do with the cutoff assignment, however, than the actual
retrieval quality for that request.

5 CONCLUSION AND FUTURE DIREC-
TIONS

We have developed a system that uses LSI and EDLSI
on the ENRON collection. Our 2010 run results show
that EDLSI outperforms LSI. However, there were two
requests that did not perform well at all. We will begin
2011 with an analysis of these queries. We are curious
to see if simply modifying (increasing)k can improve
our results. We also are planning to do some testing that
would optimizek for each request (rather than system-
wide, as is typically done). Other directions for future
research are noted below.

k-optimization: The selection ofk in LSI and EDLSI
(the extent to which we use the SVD) is a very important
choice to make. Ifk is too low, the LSI portion of the
results will be inaccurate. Ifk is too high, computation
time increases substantially, and the effect of the approx-
imation of the term-document matrix is mitigated; ifk =
total number of singular values then LSI and EDLSI are
equivalent to vector-space retrieval. Finding an optimal
k for a dataset is an area of ongoing research. Given a
dataset where we know some of the relevant documents,
we can run the query with multiplek values and select
which one returns the most of the relevant documents
as the optimalk. We were limited by memory resources
in our current system, but should be able to overcome
these limitations when we implement a parallel version
of our system.

Selective Query Expansion: Knowing a handful of
relevant documents for a query is useful in that if they
are all relevant to one thing, they must be similar in at
least one way. A method of reflecting that in a query is
to find significant terms that co-occur in most or all of
the documents and add them to our query. The mentality
is that if document set A is relevant to a query and each
member is similar to each other member, other sets of
documents relevant to that query could also be similar
to the members of A.

Automatic Query Expansion: Query vectors in the LSI
sense are represented in the same form as document
vectors. If we know a set of relevant documents for
a general topic, it should be possible to create query
vectors from those documents and run queries using each
of those. Multiple result sets will be returned, and in
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Fig. 4. TREC Results Using F1 Metric����� ���� �	
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order to know the overall theme shared by each of those,
an average of a document’s score for each query could
be taken and used as the final result for that document’s
relevancy to the general topic. This idea presents the
most interesting possibilities due to its flexibility. A ‘best
estimate’ query for the general topic could be used to try
and performk-optimization for the dataset first. Also,
if we know a set of documents that are irrelevant to
the general topic, as is the case with the TREC task,
we could use those documents as queries and reject
documents that have high similarities to them.

Query Analysis: Analysis of which topics EDLSI or
LSI failed on and the characteristics of those topics could
lead to a better machine learning process; perhaps we can
find an attributed that can be used to determine which
algorithm to use based on the nature of the query and
the document set.
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