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Abstract—We applied both Latent Semantic Indexing (LSI) and
Essential Dimensions of LS| (EDLSI) to the 2010 TREC Legal
Learning task. This year the Enron email collection was used
and teams were given a list of relevant and a list of non-relevant
documents for each of the eight test queries. In this article we
focus on our attempts to incorporate machine learning into the
LSI process. We show the EDLSI continues to outperform LS| on
large datasets.

For 2011 we plan to enhance our system by adding parallel
and distributed approaches to LS| and EDLSI. We believe our
retrieval performance would be improved if we could process
more dimensions. Our current system resources limited us to
70 dimensions this year. Even with 70 dimensions our system
performance was greater than or equal to the median for 6 of the
8 queries on the F1 metric.

2 BACKGROUND

In this section we begin with a description of vector-
space retrieval, which forms the foundation for La-
tent Semantic Indexing (LSI). We also present a brief
overview of LSI [5]. We discuss Essential Dimensions
of LSI (EDLSI) and its improvements over LSI.

2.1 Vector-Space Retrieval

In vector-space retrieval, a document is represented as
a vector int-dimensional space, wheteis the number
of terms in the lexicon being used. If there atelocu-
ments in the collection, then the vectors representing the

documents can be represented by a mattrix R**9,
called theterm-document matrix. Entry a; ; of matrix A
1 INTRODUCTION indicates how important termis to documentj, where
In the 2009 TREC Legal Competition, which used <i<t¢andl <j <d.
the tobacco lawsuit collection, we tested a new matrix The entries inA can be binary numberdl (if the
factorization for Latent Semantic Indexing (LSI). Theerm appears in the document ahdtherwise), raw term
system we used relied on MATLAB for the matrixfrequencies (the number of times the term appears in the
operations, and this severely restricted our ability tdocument), or weighted term frequencies. Weighting can
process the entire term-document matrix as a unit. Asb@ done using either local weighting, global weighting,
result, we relied on distributed techniques for processimg a combination of both. The purpose of local weighting
the collection, and we had no way of comparing ous to capture the relative importance of a term within a
distributed technigues to a run of the entire corpus. specific document; therefore, local weighting uses the
For 2010 we have redeveloped and restructurdequency of the term within the document to calculate
our system for performance reasons, and instead tbe weight and assigns a higher weight if the frequency
MATLAB we used a combination of CLAPACK and is higher. The purpose of global weighting is to identify
SVDLIBC for our matrix operations. Indexing and ternterms that discriminate effectively between documents;
weighting were provided by Lemur. We describe théhus, global weighting uses the frequency of the term
process we used in sectibh 3. Due to time constraints wthin the entire document collection to calculate the
were unable to develop a parallel version of this systemeight and assigns a higher weight if the frequency
to compare to the sequential version. That will be ous lower. Because document size often varies widely,
primary goal for 2011. the weights are also usually normalized; otherwise, long
Teams this year were permitted three runs. Our firdbcuments are more likely to be retrieved. See, €.4g., [2],
run was a standard LSI run with the maximum numbdi4] for a comprehensive discussion of local and global
of dimensions we could process. Our second two rumgighting techniques. In our experiments we used tf-idf
used EDLSI instead of LSI, because EDLSI has beeweighting and cosine normalization.
shown to work as well as or better than LSI with many Common words, such asd, the, if, etc., are consid-
fewer dimensiond [10]. ered to bestop-words [2] and are not included in the



term-document matrix. Words that appear infrequentlgrgest) k£ singular values. The corresponding columns

are often excluded to reduce the size of the lexicon. from k£ + 1 to » of U andV are also truncated, leading
Like the documents, queries are representedi-asto matricesl;, € Rt**, ¥, € RF*F andVj, € Rk, A

dimensional vectors, and the same weighting is appliésithen approximated by

to them. Documents are retrieved by mappiponto the

row (document) space of the term-document matix, Ax Ay = UV

In the context of LSI, there is evidence to show that
Ay, provides a better model of the semantic structure
After this calculation,w is a d-dimensional row vec- of the corpus than the original term-document matrix
tor, entry j of which is a measure of how relevanivas able to provide for some collectiorig [5]! [6]] [7],
document; is to queryq. In a traditional search-and-[3]. For example, searchers may choose a tefmthat
retrieval application, documents are sorted based on thgirsynonymous with a ternt,, that appears in a given
relevance score (i.e., vectow) and returned to the documentd;. If k is chosen appropriately and there is
user with the highest-scoring document appearing firgstmple use of the terms andt, in other documents (in
The order in which a document is retrieved is referresimilar contexts), the PSVD will give a large weight in
to as therank] of the document with respect to thethe d, dimension of4; even though, does not appear
query. The experiments in this paper run multiple queriés 4, . Similarly, an ancillary ternts that appears im;,
against a given dataset, so in general the query vectekgn thoughd; is not ‘about’ t3, may well receive a

w =ql A.

qi, 92, - - -, qn are collected into a matri € R and lower or negative weight im;, matrix entry (s, d;).
their relevance scores are computed as Choosing an optimal LSI dimensiohn for each col-
T lection remains elusive. Traditionally, an acceptahle
W=Q" A,

has been chosen by running a set of queries with known
where entryw; ; in W € ®"*? is a measure of how relevant document sets for multiple valuesiofThe &
relevant document is to queryk. that results in the best retrieval performance is chosen as

There are two immediate deficiencies of vector-spatee optimalk for each collection. Optimat values are
retrieval. First,1V might pick up documents that aretypically in the range ofl00-300 dimensions|[[6],[[12].
not relevant to the queries i) but contain some of
the same words. Second may overlook documents 5 3 Egssential Dimensions of LSI
that are relevant but that do not use the exact words ) )
being queried. Theartial singular value decomposition S the dimension of the LS| spade approaches the
(PSVD) that forms the heart of LSI is used to Capr_ankr of the term-document matrid, LS| approaches

ture term relationship information in the term-documeﬁ‘tecmr'Space retrieval. In particular, vector-spaceaedt

space. Documents that contain relevant terms but perhé&)gquivalent to LSI wherk =T
not exact matches will ideally still end up ‘close’ to the Figures[1EB ShOV_V graphically that the performance
query in the LSI spacé [5]. of LSl may essentially match (or even exceed) that

of vector-space retrieval even whén <« r. For the
2.2 Latent Semantic Indexing CACM [15] and NPL [8] collections, we see that LSI
retrieval performance continues to increase as additional

deficiencies of vector-space retrieval described aboveOIImenSIons are added, whereas retrieval performance of

The PSVD, also known as the truncated SVD, i Sl for the MED collection peaks wheh = 75 and
derived from the SVD. The (reduced) SVD decomposé en decays to the level of vector-space retrieval. Thus

the term-document matrix into the product of threlve see that vector-space retrieval outperforms LSI on
matrices:U € REX". ¥ € %7 andV € RIX". where SOMe collections, even for relatively large valueskof

v Other examples of collections that do not benefit from
|LSI can be found in[[11] and [9].

These data suggest that we can use the term re-
lationship information captured in the first few SVD
vectors, in combination with vector-space retrieval, a
technique referred to as Essential Dimensions of Latent
A=UxVT. Semantic Indexing (EDLSI). Kontostathis demonstrated
good performance on a variety of collections by using
only the first10 dimensions of the SVD [10]. The model
obtains final document scores by computing a weighted
1. This rank is unrelated to thenk of a matrix mentioned below. average of the traditional LS| score using a small value

LSI uses the PSVD to approximaté, alleviating the

r is the rank of the matrix4. The columns of/ and
are orthonormal, anl is a diagonal matrix, the diagona
entries of which are the non-zero singular values of,
customarily arranged in non-increasing order. THUS
factored as

The PSVD produces an optimal rakk{k < r)
approximation toA by truncatingX after the first (and



Fig. 1. LSI vs. vector-space retrieval for the CACM

Corpus (r = 3204).
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Fig. 2. LSI vs. vector-space retrieval for the NPL

Corpus (r = 6 988).
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Fig. 3. LSI vs. vector-space retrieval for the MED

Corpus (r = 1033).
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erage ofl 2% over vector-space retrieval. All collections
showed significant improvements, ranging fr@&¥ to
19%. Significant improvements over LS| were also noted
in most cases. LSI outperformed EDLSI for= 10 and
x = 0.2 on only two small datasets, MED and CRAN. It
is well known that LSI happens to perform particularly
well on these datasets. Optimizirig and x for these
specific datasets restored the outperformance of EDLSI.
Furthermore, computation of only a few singular val-
ues and their associated singular vectors has a signifi-
cantly reduced cost when compared to the udua-
300 dimensions required for traditional LSI. EDLSI also
requires minimal extra memory during query run time
when compared to vector-space retrieval and much less
memory than LSI[[10].

3 METHODOLOGY

The dataset for the 2010 TREC Legal Track Learning
Task contains a large volume of information, approx-
imately 700,000 documents in many different formats
(.txt, .pst, .ppt, etc.) that take up 3.71 gigabytes of disk
space. Each document needed to be added to an index in
order to create the term-document matrix for the dataset.
The Lemur Toolkit was used to index the collectioni[13].
The Lemur Toolkit is designed to take a set of documents
formatted in a certain way and add them quickly to an
index that can then be used to glean information about
the dataset as a whole, as well as information about each
document.

All terms that appeared in more than 100,000 doc-
uments were considered bad discriminators between
documents and were removed from the index. Terms
that included numeric characters or other characters
not in the alphabet were also eliminated. Documents
which contained no indexed terms after parsing were
considered to be ‘blank’ and were removed from further
processing. After pruning our term-document matrix size
was 302,119 (terms) by 456,968 (documents). Pruned
documents were added to our run submission file, with
a probability of zero, to meet the requirements for
submission.

After a final term-document matrix was created for
the TREC dataset, the LSI process began. We evaluated

for & and the vector-space retrieval score. The reswfera| different libraries used to perform operations on

vector computation is

W =z(QT Ar) + (1 — 2)(QT A),

where z is a weighting factorq < =z < 1) andk is

small.

In [10], parameter settings df = 10 andz = 0.2

dense vectors and matrices to determine which would ad-
equately serve our needs. This was an important decision
because LSI requires two large matrix multiplications for
every query. We chose CLAPACK (a C library designed
to provide the FORTRAN LAPACK library functionality

in a C/C++ environment) [1] to handle the dense matrix

were shown to provide consistently good results acrosalculations. Although CLAPACK was also our first
a variety of large and small collections studied. Oohoice for the calculation of the SVD, this proved
average, EDLSI improved retrieval performance an aineffective, as CLAPACK does not work with sparse



matrices. SVDLIBC was used for the decomposition arithe cutoff values seem to be way out of line. We most
it provided much-increased speed and functionality faften have suggested retrieval of many more documents
working with the sparse term-document matiik [4].  than were needed (17 of 24 instances), and we were often
orders of magnitude off the mark (ex. LSI for request
207). Interestingly we consistently under-estimated the
number of documents for 205. This probably has less to

We were permltted_ three runs for sgbm|53|on to th@o with the cutoff assignment, however, than the actual
TREC Legal learning task. We decided to use ONRtrieval quality for that request

submission using LSI, and another two using EDLSI

with differentk choices. The's that were chosen were

determined by a simple scoring algorithm: given thatwe CONCLUSION AND FUTURE DIREC-
know a subset of the relevant documents and a subsetfpONS

the |rrelevaqt documents, we can ignore the rest of ﬂ\ﬁe have developed a system that uses LS| and EDLSI
documents in our result set, and count up the known-

on the ENRON collection. Our 2010 run results show

relevant documents that are listed pelow the cutoff f(% at EDLSI outperforms LSI. However, there were two
relevant documents (and the known-irrelevant documents

that are listed above the cutoff for irrelevant document request_s that did not_ perform well at_ all. We wil begm
. . 2011 with an analysis of these queries. We are curious
The sum is the score of a query result, and the highger e e : : .
see if simply modifying (increasing) can improve

the sum, the worse the result. The results that scored the : .

. , our results. We also are planning to do some testing that
best on average across all topics werekfselections of .

— ould optimizek for each request (rather than system-

35 and 70. Due to memory restrictions on our researc

computer, we could not selectravalue greater than 70. wide, as is typically done). Other directions for future
research are noted below.

k-optimization: The selection of in LSl and EDLSI
4 RESULTS AND DISCUSSION (the extent to which we use the SVD) is a very important
The results from our runs are shown in Figurks 4 througthoice to make. If is too low, the LSI portion of the
[. There are some interesting trends and there is alsoesults will be inaccurate. It is too high, computation
lot of room for improvement. time increases substantially, and the effect of the approx-
Figure[4 compares the F1 metric for our runs with thignation of the term-document matrix is mitigatedkit=
best and the median F1 metrics. Using this measure, ¥a¢al number of singular values then LSI and EDLSI are
did reasonably well, with our EDLSIK70 run meeting orequivalent to vector-space retrieval. Finding an optimal
exceeding the median for 6 of the 8 queries. EDLSIK7B for a dataset is an area of ongoing research. Given a
outperforms both of our other runs, showing that EDLSlataset where we know some of the relevant documents,
outperforms LSI on this large collection. we can run the query with multiplé values and select
Figure[® tells the opposite story. The Hypothetical Fivhich one returns the most of the relevant documents
would be the F1 if the best cutoff was chosen. Thigs the optimak. We were limited by memory resources
metric is a measure of our ranking. Our runs performed our current system, but should be able to overcome
lower than the median on 6 of the 8 queries. EDLSthese limitations when we implement a parallel version
however, is still showing improvement over LSI, and &f our system.
lower k value ¢ = 35 vs k = 70) is better for EDLSI. Selective Query Expansion: Knowing a handful of
Figure[®6 and17 are measures of our ability to predicelevant documents for a query is useful in that if they
the probability of relevance for each document. Agaigre all relevant to one thing, they must be similar in at
we show results better than the median on most tH#ast one way. A method of reflecting that in a query is
the queries. Generally, our system had a problem with find significant terms that co-occur in most or all of
queries 202 and 205. More analysis will be needdlie documents and add them to our query. The mentality
to determine the features of these requests that makehat if document set A is relevant to a query and each
them so difficult for us. All of our runs were fully- member is similar to each other member, other sets of
automated, and terms were simply extracted from tlimcuments relevant to that query could also be similar
short description of the request to generate our queiy the members of A.
vector. More carefully chosen terms may improve the Automatic Query Expansion: Query vectors in the LSI
results dramatically (but would also mean that our rusense are represented in the same form as document
would be semi-automated instead of fully-automated).vectors. If we know a set of relevant documents for
Figured 8 an[19 seem to provide conflicting informaa general topic, it should be possible to create query
tion. The cutoff accuracy figures were pretty reasonablegctors from those documents and run queries using each
doing better than the median on 6 of the 8 requests, toft those. Multiple result sets will be returned, and in

3.1 Optimizing k

4



Fig. 4. TREC Results Using F1 Metric

F1 Scores
Topic TREC best TREC median URSK35T URSK70T URSLSIT
200 20 2.1 2.1 2.8 2.8
201 30.9 5 15 5.1 3.7
202 80.1 16.9 3.1 1.6 1.8
203 325 11.3 55 11.3 11.3
204 26 3.9 3.2 8.5 2.3
205 51.2 31 3.4 7.0 7.0
206 6.1 2.8 2.8 4.7 4.7
207 89.9 11.4 8.1 11.4 3.8

Fig. 5. TREC Results Using Hypothetical F1 Metric

Hypothetical F1 Scores

Topic TREC best TREC median URSK35T URSK70T URSLSIT
200 25.8 8.9 8.7 7.4 7.4
201 72.9 171 11.7 9.3 111
202 88.5 49.9 13.6 10.0 7.5
203 63.6 304 15.3 14.8 14.8
204 26.6 133 53 15.6 20.9
205 57.4 48.8 17.9 18.9 18.9
206 35.7 11.7 21.1 20.4 20.4
207 90.3 19.1 11.5 141 16.3

order to know the overall theme shared by each of thod®, ACKNOWLEDGEMENTS

an average of a document’s score for each query Cou[lE" terial is based K ted by th
be taken and used as the final result for that documer‘iieIS matenial 1S based upon work supported by the

relevancy to the general topic. This idea presents t ggfi.”a' ?fuer(;ge Foundatlo_(rj\ L(ljnge;hGrSnt.No. é003972.
most interesting possibilities due to its flexibility. A ‘e iional funding was provided by the Ursinus summer

estimate’ query for the general topic could be used to ug’ego;v_s p,\r/l()gr%m‘ vae al?ﬁ tTJan_k Dr: Ra]yc/rgonlfl :[].hSplten
and performk-optimization for the dataset first. Also, nd Erin Moulding from the University of Saskatchewan

it we know a set of documents that are irrelevant tI)or their assistance with understanding the Matlab code

the general topic, as is the case with the TREC tas%d providing background on the project from prior

we could use those documents as queries and rejggt”‘rs'
documents that have high similarities to them.
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Fig. 6. TREC Results - Relative Accuracy

Relative Accuracy
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Fig. 8. TREC Results - Cutoff Accuracy

Topic

Fig. 9. TREC Results - Best Cutoff

Topic

Cutoff Accuracy
TREC best TREC median URSK35T URSK70T

200 90.4 11.6 2.5 114

201 84.8 114 2.3 26.2

202 86.8 23.1 14.9 44.8

203 56.3 22.8 22.8 45.2

204 89.5 22.6 37.9 73.2

205 63.2 37.7 2.2 344

206 26.8 4.7 3.2 11.5

207 99.3 25.7 17.8 53.5

EDLSI k=35 EDLSI k=70 LSI

Cutoff Est  Best Cutoff Cutoff Est Best Cutoff Cutoff Est

200 66557 1660 27845 3164 27845
201 39719 921 6995 1831 14528
202 33094 4928 5978 13345 11286
203 44180 10073 15125 6840 15125
204 19464 51377 9743 13304 367930
205 15380 684218 12257 35663 12257
206 30901 1000 19574 2260 19574
207 49846 8891 25620 13655 225412

URSLSIT
11.4
9.4
54.2
45.2
2.8
34.4
11.5
2.2

k=70
Best Cutoff
3164
1367
20808
6840
10302
35663
2260
4986
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