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ABSTRACT
We report on the University of Lugano’s participation in
the Blog and Session tracks of TREC 2010. In particular we
describe our system for performing blog distillation, faceted
search, top stories identification and session reranking.

1. INTRODUCTION
User generated content has recently become one of the

most important sources of information in the web. This
data contains a lot of information regarding users’ opinions
and experiences, which can be useful in many applications.
Forums, on-line discussions, community question answering
sites and social networks are all examples of such content.
Blogs are another important source of information in this
category and are the content of interest for the TREC (Text
REtrieval Conference) blog track [5, 8], which involves tasks
of faceted blog distillation and top story identification. We
explain our approach to faceted blog distillation in section
2 and to top stories identification is explained in section
3. The methods we used for the TREC session track are
described in section 4 and we provide conclusions in section
5.

2. BOG DISTILLATION
Blog distillation is the problem of retrieving blogs that

are relevant to a given query. Retrieving blogs as collections
of documents, as apposed to retrieving single documents in
traditional IR tasks, is the main characteristic of this prob-
lem. We employ the Blogger Model for retrieving blogs for
the distillation task [1]. In this model, blogs are ranked by :

p(blog|q) ∝ p(q|blog)p(blog) (1)

where the blog prior p(blog) is estimated by a uniform dis-

.

tribution and the query likelihood p(q|blog) is calculated as
follows:

p(q|blog) =
Y
t∈q

bp(t|blog)n(t,q) (2)

bp(t|blog) = λp(t|blog) + (1− λ)p(t) (3)

p(t|blog) =
X

post∈blog

bp(t|post)p(post|blog) (4)

where again p(post|blog) is assumed to be uniform.

bp(t|post) = βp(t|post) + (1− β)p(t) (5)

This post level smoothing is the only difference be-
tween our implementation and the original Blogger Model.
p(t|post) is estimated by Maximum Likelihood estimation of
the term probability the post. p(t) denotes the probability
of the term in the collection.

2.1 Faceted Search
For the faceted rankings, we followed our approach from

last year with a small modification which we explain below.
We first generated positive and negative facet scores for each
retrieved blog, denoted pos(b) and neg(b) respectively. Facet
scores for each blog are calculated using only the posts that
are relevant to the query, (i.e. those in the top 15000 posts
for the query). A blog facet score is calculated based on the
average of the facet score for the relevant posts:

scorefacet(b) = Eb[scorefacet(d)] =
X
d∈b

p(d|b)scorefacet(d)

(6)
We consider uniform the probability over posts for a blog,

(i.e. p(d|b) = 1/|posts|). These facet scores induce a rank-
ing, denoted rpos(b, q) and rneg(b, q), which we combined with
the original relevance ranking rrel(b, q) using the Borda Fuse
aggregation method as follows:1

scoreBF(d, q) = α rrel(d, q) + (1− α) rfacet(d, q) (7)
1Note that whenever there are ties in the ranking, (i.e. blogs
b1 and b2 have the same score), then the rank for those blogs
is the average of the (total order) ranking.



Indepth Shallow
stdBaseline1 0.3046 0.1425
CrossEntropy 0.3056 0.1280
stdBaseline2 0.2176 0.1033
CrossEntropy 0.2176 0.0957
stdBaseline3 0.1747 0.874
CrossEntropy 0.1747 0.0856

Table 1: MAP of the In-depth vs. Shallow facet
re-ranking over the three TREC baselines for all
queries

In order to enable fair comparison between different facet
re-ranking methods, in TREC 2010, the organizers dis-
tributed three standard baselines which are the results of
the first phase (blog distillation) among participants. Par-
ticipants could submit up to four runs for each of the stan-
dard baselines. We re-ranked the standard baselines using
our facet scoring methods and used the TREC 2009 data
(i.e. relevance judgments) for training in order to set an
appropriate value for the weighting coefficient α.

2.1.1 In-depth versus Shallow
For the in-depth versus shallow facet, we calculated the

Cross Entropy (CE) between each retrieved document(post)
and the collection as a whole. We used CE as the positive
score for the positive (in-depth) facet value since high CE
indicates that the document contains many rare and infor-
mative words:

pos(d) = CE(p(.|d), p(.|c)) =
X
t∈d

p(t|d) log
1

p(t|c) (8)

Here p(t|d) is the probability of a term t appearing within
the document d, which we calculate using the relative term
frequency as follows: p(t|d) = tf(t, d)/

P
t′ tf(t′, d), where

tf(t, d) is the absolute term frequency. Meanwhile p(t|c)
denotes the probability of a term across the whole collection
c, for which we use a document frequency based estimate
p(t|c) = df(t)/|c| where |c| is the number of documents in
the collection. Our rational for using a df rather than tf

based estimate is that the former appears less susceptible to
noise from spam documents, which oftentimes include terms
with very high frequency (high tf values).

For the negative (shallow) facet score we simply use the
negation of the CE, i.e. neg(d) = −pos(d). Table 1 shows
the result of re-ranking the baselines with this method.

2.1.2 Opinion versus Factual
For the opinion versus factual facet, we built lexi-

cons of opinionated and objective words using the TREC
Blog06 collection and corresponding relevance/opionion
judgments. In the lexicon, terms were weighted according
to a document-frequency based version of the Mutual Infor-
mation (MI) metric [6]. We then calculated (positive and
negative) facet scores for each retrieved document by aver-
aging over the lexicon weights for each word in the document
(see equation 11 below.)

In order to calculate both positive (opinionated) and neg-
ative (factual) facet weights for terms we split the Mutual
Information metric into two values as follows. Let T denote
the event that a document contains the particular term t,

and T̄ the event that the document doesn’t contain the term.
Then let O denote the event that a document is classed as
being (relevant and) opinionated about the query and Ō that
it is (relevant but) not opinionated about the query. We cal-
culate the positive facet score for a term by calculating the
MI summation only over the two positively correlated quad-
rants (i.e. T ∩ O and T̄ ∩ Ō) as follows:

pos(t) = p(T ,O) log
p(T ,O)

p(T ), p(O)
+ p(T̄ , Ō) log

p(T̄ , Ō)

p(T̄ ), p(Ō)
(9)

The negative facet score is calculated analogously as follows:

neg(t) = p(T , Ō) log
p(T , Ō)

p(T ), p(Ō)
+ p(T̄ ,O) log

p(T̄ ,O)

p(T̄ ), p(O)
(10)

We calculate the required joint and marginal probabilities
using document frequency estimates using the sets of opin-
ionated O and relevant R documents in the TREC Blog06
collection as:

p(T ,O) = df(t, O)/|R|
p(T ) = df(t, R)/|R|
p(O) = |O|/|R|

Where df(t, O) is the number of opinionated documents con-
taining the term t. The other joint and marginal probabil-
ities required for equations 9 and 10 are estimated analo-
gously.

Having calculated positive and negative weights for each
term, we then averaged these lexicon weights over each doc-
ument to calculate positive and negative facet scores for the
document as follows:

pos(d) = Ed[pos(t)] =
X
t∈d

p(t|d)pos(t) (11)

As an alternative to the lexicon built from the Blog06
collection, for another set of runs, we used a lexicon which
is built from amazon review and specification corpus [3].
We considered p(subj|t) provided by the lexicon as pos(t) in
equation 11.

We should note that we also investigated using the number
of comments and emoticons in each post as two additional
features (besides the opinion score) and trained a SVM clas-
sifier using last year’s data, but they didn’t show to be useful
in training a good classifier.

Table 2 shows the result of re-ranking the baselines with
the MI weight of terms in the Blog06 collection and the
second method in which we used an opinion lexicon.

2.1.3 Personal versus Official
Finally for the personal versus official facet, the same

scores were used as in the opinion case, since we believe
that more “personal content” is on the whole more likely to
contain opinions than more “official content”.

Table 3 shows the result of re-ranking the baselines with
the MI weight of terms in the Blog06 collection and the
second method in which we used an opinion lexicon.

3. TOP STORIES IDENTIFICATION
Our method for the top stories task proceeded as follows.

We first extracted time-stamped blog posts for each query
date. Applying a clustering method on the extracted posts



Opinionated Factual
stdBaseline1 0.1888 0.2189

MI 0.1926 0.2155
Lexicon 0.1974 0.1888

stdBaseline2 0.1274 0.1757
MI 0.0976 0.1774

Lexicon 0.1415 0.1201
stdBaseline3 0.1085 0.1058

MI 0.0987 0.1058
Lexicon 0.1225 0.1020

Table 2: MAP of the Opinionated vs. Factual facet
re-ranking over the three TREC baselines for all
queries

Personal Official
stdBaseline1 0.1973 0.2457

MI 0.2573 0.2469
Lexicon 0.1920 0.2469

stdBaseline2 0.1442 0.1832
MI 0.1529 0.1763

Lexicon 0.1429 0.1583
stdBaseline3 0.0857 0.1956

MI 0.0839 0.1956
Lexicon 0.0848 0.1956

Table 3: MAP of the Personal vs. Official facet
re-ranking over the three TREC baselines for all
queries

for each date, we generate different topics that have been
discussed on each day. Then by considering the importance
of each extracted topic in the Reuters headline corpus, we
generate a ranked list of headlines for each day. In the fol-
lowing sections we outline our approach in more detail.

3.1 The algorithm
In this section we present details of our top stories identi-

fication algorithm. Our method for top stories task proceeds
as follows.

1. For every query date we extract a set of blog posts that
have a publish date that is the same as query.

2. We cluster the selected posts for each day in multi-
ple clusters, by assuming each cluster would be about
some topics that have been discussed on that date. De-
tails of our clustering method are presented in Section
3.2.

3. Using the KL divergence between each cluster and the
collection, we extract the most informative terms for
each cluster.

4. The informative terms for each cluster are used as a
query against the headlines collection in order to ex-
tract the most important headlines for each cluster.

5. Aggregating the ranked lists of headlines for each date,
we generate our final ranking of the headlines.

6. We classify the headlines into the pre-defined classes.

3.2 Clustering the blog posts
For each query date, we selected a random sample con-

taining 10% of the blog posts published on the date of the
query and then followed a simple clustering process based
on k-means [7]. We decided to use k-means clustering be-
cause of its low computational requirements and the time
constraints that we had. The clustering process was run for
every query date independently. For each date, we randomly
selected 100 documents from among the sample of blog posts
to act as seeds for the clustering algorithm. After running
the k-means algorithm over the 10% sample for every query,
we had a set of 100 clusters from which we extracted 100
topics as explained in the next section.

In the k-means algorithm three factors need to be deter-
mined: the document representation, the similarity measure
and the stop condition:

1. Every document d, a blog post, was represented by its
tfidf vector, in which the value for each term t was
calculated as follows:

tfidf(d, t) = tf(d, t)× log(
N

df(t)
)

where tf(d, t) is the term frequency of the term t in
the document d, df(t) is the document frequency of
the term t in the collection sampling of size N .

2. In order to compute the documents similarities in the
clustering method we used the cosine similarity:

Sim(di, dj) =

Pm
t=1 tfidf(di, t)× tfidf(dji, t)pPm

t=1 tfidf(di, t)2
Pm

t=1 tfidf(dj , t)2

where m is the size of the lexicon.

3. As a convergence condition, we checked the number of
items whose assignments changed in a given iteration.
We also limited the number of iterations to 100, al-
though this maximum value was never reached during
our experiments.

3.3 Generating the Cluster Representation
After clustering the posts, we use the Kullback-Leibler

(KL) divergence between the cluster and the collection in
order to select the most informative terms in the cluster:

score(t, cluster) = p(t|cluster) log
p(t|cluster)

p(t)
(12)

Based on this score, we select the top 100 terms for each
cluster as the representation of the cluster. The cluster rep-
resentation is used as a query, to retrieve the related head-
lines for that cluster.

3.4 Aggregating the Ranked Lists
After retrieving the headlines for each cluster, we have

multiple ranked-lists of headlines per day. By normalizing
the scores in each ranked list and aggregating all the ranked
lists per day, we will have one headline ranked list per query
day. We employ two different approaches for aggregation.
In the first approach, we use ComSum method which is a
simple summation of the scores in different lists as the fi-
nal score of the headline [4, 2]. In the second approach
we use the Ordered Weighted Averaging (OWA) operators
for aggregating scores [9]. The ordered weighted averaging



operator, commonly called the OWA operator, was intro-
duced by Yager [9]. OWA provides a parametrized class of
mean type aggregation operators, that can generate an OR
operator (Max), an AND operator (Min) and any other
aggregation operator in between.

An OWA operator of dimension n is a mapping F : Rn →
R that has an associated weighting vector W ,

W = [w1, w2, ..., wn]T

such that
nX

i=1

wi = 1, 0 ≤ wi ≤ 1,

and where

F (a1, ..., an) =

nX
i=1

wibi (13)

where bi is the ith largest element in the collection a1, ..., an.
There are different methods for indicating weighting vector
W . We use a quantifier based method introduced by Yager
[9].

3.5 Classifying the Headlines
Another part of the top stories identification task is to

classify headlines into 5 pre-defined classes, namely: world,
US, sport, scitech, business. Since we are not allowed to use
any external resource for classification, we decided to use the
Reuters corpus itself for classifying the headlines. To this
end, we generates 5 short queries for each class manually.
Submitting the generated queries to the headlines corpus, we
retrieved the top 100 most relevant headlines for each class.
We then used the KL divergence to extract the informative
terms for each class. Later in order to classify each headline,
we calculate its similarity to the 5 class representation and
assign it to the most similar class.

4. SESSION TRACK
The session track is held for the first time in TREC 2010.

The objective is to take into account the interaction of the
user with the search system during a session and not only
one single query. User reformulates his query multiple times,
in order to clarify what is his information need. To this end,
by looking into the results of previous reformulations, search
engine will be able to reveal aspects of his information need
which were not explicitly stated at first.

4.1 Data Collection
We used the Category B subset of the ClueWeb and in-

dexed it using the Terrier information retrieval system.

4.2 Our Approach
We first generated two ranked lists (RL1 and RL2) for

the first and second query using the BM25 implementation
of Terrier. We then implemented two different approaches.

1. In the first approach we generate the third ranking
(RL3) by scoring documents according to the weighted
summation of the reciprocal ranks of documents in
RL1 and RL2, where the weight given to documents
from RL1 is negative and RL2 is positive. Thus the

score for a document d is computed as follows:

score(d, RL3) = −α· 1

rank(d, RL1)
+(1+α)· 1

rank(d, RL2)
(14)

If a document was not present in one of the ranked
lists, it’s reciprocal rank was set to 0. We empirically
set α to 0.2 and submit a run for this approach.

2. In the second approach we build the relevance model
for the first and second query using the top N ranked
documents from RL1 and RL2 as the pseudo-relevant
documents (denoted PR1 and PR2). We estimate the
relevance models R1 and R2 by averaging the relative
frequencies for terms across the pseudo-relevant doc-
uments. We also smoothed the R1 estimate with a
background language model based on collection term
frequency estimates as follows:

p(w|R1) =
λ

N

X
d∈PR1

tf(w, d)

|d| + (1− λ)
ctf(w)P

d |d|
(15)

p(w|R2) =
1

N

X
d∈PR2

tf(w, d)

|d| (16)

Here tf(w, d) denotes the term frequency of word w
in document d, ctf(w) is the collection term frequency
and |d| denotes the length of document d.

It is desirable for this task to highlight words from
the term distribution of R2 that are rare in the term
distribution of R1 in order to reduce the number of
documents from RL1 that are present in RL3. To this
end, we weighted term probabilities in R2 by their rela-
tive information in R2 and R1 to calculate a new query
model R3:

p(w|R3) ∝ p(w|R2) log
p(w|R2)

p(w|R1)
(17)

The normalizing constant in this case is simply the
Kullback-Leibler divergence between R2 and R1. After
obtaining the new term distribution, we select the top
K terms from R3 and submit them as a weighted query
to Terrier again using the BM25 retrieval function. In
this way we generated two runs with the parameters:
N = 10, K = 10 and λ set to either 0.9 or 0.5.

4.3 Experimental Results
Organizers of Session Track released 150 query sessions

with three reformulation types: specification, generalization
and drifting.

nsDCG@10
Run RL12 RL13

USIML052010 0.2044 0.1855
USIML092010 0.2044 0.1784
USIRR2010 0.2044 0.2044

Table 4: Evaluation scores for the entire session of
our three submitted runs using the nsDCG@10 met-
ric

Only 136 sessions (query pairs) were provided with judge-
ment from NIST and were finally evaluated. We submitted



nsDCG dupes@10
Run RL12 RL13

USIML052010 0.2069 0.1938
USIML092010 0.2069 0.1869
USIRR2010 0.2069 0.2086

Table 5: Evaluation scores for the entire ses-
sion of our three submitted runs using the ns-
DCG dupes@10 metric

three runs for this task. Runid USIRR2010 belongs to our
first approach, while USIML052010 and USIML092010 be-
long to our second approach where we set λ to 0.5 and 0.9 re-
spectively. Our submitted runs were evaluated by three met-
rics nsDCG@10, nsDCG dupes@10, and nDCG@10. The
evaluation scores of our three submitted runs with three
mentioned metrics are presented in Table 1-3. Table 4 shows
the evaluation scores of our systems for task 1 which can be
observed by comparing RL1-RL2 and RL1-RL3. Table 5
shows the evaluation scores of our systems for task 2. ns-
DCG@10 for RL1-RL3 is considered as the official metric
for Task 2. We see that USIRR2010 performs better than
the two other approaches in both tasks. Table 6 shows the
evaluation scores of our submitted runs using the nDCG@10
metric.

Due to the absence of training data (query pairs and cor-
responding relevance judgements), we were unable to set
parameters to maximize performance. Arbitrary setting of
the parameters (α and λ) explains the relatively poor per-
formance of the approaches. We intend to test parameter
settings on relevance data when it becomes available.

Finally, Table 7 shows the performance of our best run
with respect to different formulation types. By comparing
RL12 and RL13 it can be seen that this method performs
better on “Specification” and “Drifting” as opposed to “Gen-
eralization”.

nDCG@10
Run RL1 RL2 RL3

USIML052010 0.1896 0.2144 0.1645
USIML092010 0.1896 0.2144 0.1449
USIRR2010 0.1896 0.2144 0.2147

Table 6: Evaluation scores of our three submitted
runs using the nDCG@10 metric

nsDCG@10
ReformulationType RL12 RL13

Specification 0.1529 0.1532
Drifting 0.1967 0.2013

Generalization 0.2706 0.2652

Table 7: Performance of our best run across the
different reformulation types.

5. CONCLUSIONS
We have described our participation in TREC 2010 Blog

and Session track for faceted blog distillation, top stories

identification and result re-ranking.
For the faceted rankings, we first generated positive and

negative facet scores for each retrieved document and then
combined the facet rankings with the relevance ranking us-
ing Borda Fuse.

For the top stories task we extracted time-stamped blog
posts for each query date. Applying a clustering method
on the extracted posts for each date, we generated different
topics that have been discussed on each day. Then by consid-
ering the importance of each extracted topic in the Reuters
headline corpus, we generated a ranked list of headline for
each day.

In the session track, for re-ranking the documents, we first
generated two rank lists for first and second query. We then
implemented two different approaches for building the third
ranked list. The first method is based on the reciprocal ranks
in first two rank lists. In the second approach we build the
relevance model for the first and second query using their
top ranked documents. We then tried to select terms from
the second ranked list which were rare in the first list using
the Kullback-Leibler divergence.
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