
Sparse Matrix Factorization:
Applications to Latent Semantic Indexing

Erin Moulding, Department of Computer Science,
University of Saskatchewan, Saskatoon, SK, S7N 5C9, erm764@mail.usask.ca

April Kontostathis, Department of Mathematics and Computer Science,
Ursinus College, Collegeville PA 19426, akontostathis@ursinus.edu

Raymond J. Spiteri, Department of Computer Science,
University of Saskatchewan, Saskatoon, SK, S7N 5C9, spiteri@cs.usask.ca

✦

Abstract—This article describes the use of Latent Semantic
Indexing (LSI) and some of its variants for the TREC Legal batch
task. Both folding-in and Essential Dimensions of LSI (EDLSI) ap-
peared as if they might be successful for recall-focused retrieval
on a collection of this size. Furthermore, we developed a new LSI
technique, one which replaces the Singular Value Decomposition
(SVD) with another technique for matrix factorization, the sparse
column-row approximation (SCRA). We were able to conclude
that all three LSI techniques have similar performance. Although
our 2009 results showed significant improvement when compared
to our 2008 results, the use of a better method for selection of the
parameter K, which is the ranking that results in the best balance
between precision and recall, appears to have provided the most
benefit.

1 INTRODUCTION

Our submissions for the 2007 and 2008 TREC Legal
competitions tested a variety of both simple and state-
of-the-art normalization systems. For the 2009 TREC
Legal Competition, we tested a new matrix factorization
for Latent Semantic Indexing (LSI).

We have extensive experience with LSI, including
previous years in TREC legal competitions. We also
have used the new Essential Dimensions of LSI (EDLSI)
approach, and tested it on small and large datasets.
EDLSI allows a much smaller LSI dimensionality re-
duction parameter (k) to be used, and weights the LSI
results with the results from traditional vector-space
retrieval. EDLSI has been shown to consistently match or
improve on LSI [8]. This suggested to us that the PSVD
approximation used in LSI may not be ideal, and instead,
an approximation should be used that somehow captures
more of the term-document matrix. Investigating this led
to the sparse column-row approximation (SCRA), which

we test here in its first application to information retrieval
with datasets of this order of magnitude.

Teams this year were permitted only three runs. Our
first run was a LSI run using folding-in, the second
was a fully distributed EDLSI run, and the third was
a fully distributed run using the SCRA. As in last year’s
competition, teams were required to setK and Kh for
each query. These parameters indicate where the system
believes that precision and recall are best balanced for
relevant and highly relevant documents respectively. The
balance is indicated by the scoring measureF1@K:

F1@K =
2 ∗ P@K ∗ R@K

P@K + R@K

The rest of this paper is organized as follows. Section
2 presents necessary background information on the
methods used. Section 3 describes our approach and the
different runs submitted. Section 4 presents the results,
and Section 5 gives our conclusions.

2 BACKGROUND

In this section we begin with a description of vector-
space retrieval, which forms the foundation for La-
tent Semantic Indexing (LSI). We also present a brief
overview of LSI [3], including the technique of folding-
in. We discuss Essential Dimensions of LSI (EDLSI) and
its improvements over LSI. We also describe the sparse
column-row approximation (SCRA) used for our new
work.

2.1 Vector-Space Retrieval

In vector-space retrieval, a document is represented as
a vector int-dimensional space, wheret is the number



of terms in the lexicon being used. If there ared docu-
ments in the collection, then the vectors representing the
documents can be represented by a matrixA ∈ ℜt×d,
called theterm-document matrix. Entry ai,j of matrix A

indicates how important termi is to documentj, where
1 ≤ i ≤ t and1 ≤ j ≤ d.

The entries inA can be binary numbers (1 if the
term appears in the document and0 otherwise), raw term
frequencies (the number of times the term appears in the
document), or weighted term frequencies. Weighting can
be done using either local weighting, global weighting,
or a combination of both. The purpose of local weighting
is to capture the relative importance of a term within a
specific document; therefore, local weighting uses the
frequency of the term within the document to calculate
the weight and assigns a higher weight if the frequency
is higher. The purpose of global weighting is to identify
terms that discriminate effectively between documents;
thus, global weighting uses the frequency of the term
within the entire document collection to calculate the
weight and assigns a higher weight if the frequency
is lower. Because document size often varies widely,
the weights are also usually normalized; otherwise, long
documents are more likely to be retrieved. See, e.g., [1],
[12] for a comprehensive discussion of local and global
weighting techniques.

Common words, such asand, the, if, etc., are consid-
ered to bestop-words [1] and are not included in the
term-document matrix. Words that appear infrequently
are often excluded to reduce the size of the lexicon.

Like the documents, queries are represented ast-
dimensional vectors, and the same weighting is applied
to them. Documents are retrieved by mappingq into the
row (document) space of the term-document matrix,A:

w = q
T A.

After this calculation,w is a d-dimensional row vec-
tor, entry j of which is a measure of how relevant
documentj is to queryq. In a traditional search-and-
retrieval application, documents are sorted based on their
relevance score (i.e., vectorw) and returned to the
user with the highest-scoring document appearing first.
The order in which a document is retrieved is referred
to as therank1 of the document with respect to the
query. The experiments in this paper run multiple queries
against a given dataset, so in general the query vectors
q1,q2, . . . ,qn are collected into a matrixQ ∈ ℜt×n and
their relevance scores are computed as

W = QT A,

where entrywj,k in W ∈ ℜn×d is a measure of how
relevant documentj is to queryk.

1. This rank is unrelated to therank of a matrix mentioned below.

There are two immediate deficiencies of vector-space
retrieval. First,W might pick up documents that are
not relevant to the queries inQ but contain some of
the same words. Second,Q may overlook documents
that are relevant but that do not use the exact words
being queried. Thepartial singular value decomposition
(PSVD) that forms the heart of LSI is used to cap-
ture term relationship information in the term-document
space. Documents that contain relevant terms but perhaps
not exact matches will ideally still end up ‘close’ to the
query in the LSI space [3].

2.2 Latent Semantic Indexing

LSI uses the PSVD to approximateA, alleviating the
deficiencies of vector-space retrieval described above.

The PSVD, also known as the truncated SVD, is
derived from the SVD. The (reduced) SVD decomposes
the term-document matrix into the product of three
matrices:U ∈ ℜt×r, Σ ∈ ℜr×r, andV ∈ ℜd×r, where
r is the rank of the matrixA. The columns ofU andV

are orthonormal, andΣ is a diagonal matrix, the diagonal
entries of which are ther non-zero singular values ofA,
customarily arranged in non-increasing order. ThusA is
factored as

A = UΣV T .

The PSVD produces an optimal rank-k (k < r)
approximation toA by truncatingΣ after the first (and
largest)k singular values. The corresponding columns
from k + 1 to r of U andV are also truncated, leading
to matricesUk ∈ ℜt×k, Σk ∈ ℜk×k, andVk ∈ ℜd×k. A

is then approximated by

A ≈ Ak = UkΣkV T
k .

In the context of LSI, there is evidence to show that
Ak provides a better model of the semantic structure
of the corpus than the original term-document matrix
was able to provide for some collections [3], [4], [5],
[2]. For example, searchers may choose a term,t1, that
is synonymous with a term,t2, that appears in a given
document,d1. If k is chosen appropriately and there is
ample use of the termst1 andt2 in other documents (in
similar contexts), the PSVD will givet1 a large weight in
thed1 dimension ofAk even thought1 does not appear
in d1. Similarly, an ancillary termt3 that appears ind1,
even thoughd1 is not ‘about’ t3, may well receive a
lower or negative weight inAk matrix entry (t3, d1).

Choosing an optimal LSI dimensionk for each col-
lection remains elusive. Traditionally, an acceptablek

has been chosen by running a set of queries with known
relevant document sets for multiple values ofk. The k

that results in the best retrieval performance is chosen as
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the optimalk for each collection. Optimalk values are
typically in the range of100–300 dimensions [4], [10].

2.3 Folding-In

The PSVD is useful in information retrieval, but calcu-
lating it is computationally expensive [16]. This expense
is offset by the fact that the LSI space for a given set
of documents can be used for many queries. However, if
terms or documents are added to the initial dataset, then
either the PSVD must be recomputed for the newA or
the new information must be added to the current PSVD.
In LSI, the two traditional ways of adding information to
an existing PSVD are folding-in [11], [2] and updating
[16]. We describe folding-in here.

Folding-in is computationally inexpensive, but the
performance of LSI generally deteriorates as documents
are folded-in [2], [11]. In order to fold-in new docu-
ment vectors, the documents are first projected into the
reducedk-dimensional LSI space and then appended to
the bottom ofVk. SupposeD ∈ ℜt×p is a matrix whose
columns are thep new documents to be added. The
projection is

Dk = DT UkΣ−1

k ,

and Dk is then appended to the bottom ofVk, so the
PSVD is now

[ A, D ] ≈ Uk Σk [ V T
k , DT

k ].

Note thatUk and Σk are not modified when using
folding-in. A similar procedure can be applied toUk to
fold-in terms [2]. Folding-in may be useful if only a few
documents are to be added to the dataset or if word usage
patterns do not vary significantly, as may be the case in a
restricted lexicon. However, in general, each application
of folding-in corrupts the orthogonality of the columns
of Uk or Vk, eventually reducing the effectiveness of
LSI. It is not generally advisable to rely exclusively on
folding-in when the dataset changes frequently [15].

2.4 Essential Dimensions of LSI

As the dimension of the LSI spacek approaches the
rank r of the term-document matrixA, LSI approaches
vector-space retrieval. In particular, vector-space retrieval
is equivalent to LSI whenk = r.

Figures 1–3 show graphically that the performance
of LSI may essentially match (or even exceed) that
of vector-space retrieval even whenk ≪ r. For the
CACM [13] and NPL [6] collections, we see that LSI
retrieval performance continues to increase as additional
dimensions are added, whereas retrieval performance of
LSI for the MED collection peaks whenk = 75 and
then decays to the level of vector-space retrieval. Thus

we see that vector-space retrieval outperforms LSI on
some collections, even for relatively large values ofk.
Other examples of collections that do not benefit from
LSI can be found in [9] and [7].

Fig. 1. LSI vs. vector-space retrieval for the CACM
Corpus (r = 3 204).
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Fig. 2. LSI vs. vector-space retrieval for the NPL
Corpus (r = 6 988).
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Fig. 3. LSI vs. vector-space retrieval for the MED
Corpus (r = 1 033).
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These data suggest that we can use the term re-
lationship information captured in the first few SVD
vectors, in combination with vector-space retrieval, a
technique referred to as Essential Dimensions of Latent

3



Semantic Indexing (EDLSI). Kontostathis demonstrated
good performance on a variety of collections by using
only the first10 dimensions of the SVD [8]. The model
obtains final document scores by computing a weighted
average of the traditional LSI score using a small value
for k and the vector-space retrieval score. The result
vector computation is

W = x(QT Ak) + (1 − x)(QT A),

where x is a weighting factor (0 ≤ x ≤ 1) and k is
small.

In [8], parameter settings ofk = 10 and x = 0.2
were shown to provide consistently good results across
a variety of large and small collections studied. On
average, EDLSI improved retrieval performance an av-
erage of12% over vector-space retrieval. All collections
showed significant improvements, ranging from8% to
19%. Significant improvements over LSI were also noted
in most cases. LSI outperformed EDLSI fork = 10 and
x = 0.2 on only two small datasets, MED and CRAN. It
is well known that LSI happens to perform particularly
well on these datasets. Optimizingk and x for these
specific datasets restored the outperformance of EDLSI.

Furthermore, computation of only a few singular val-
ues and their associated singular vectors has a signifi-
cantly reduced cost when compared to the usual100–
300 dimensions required for traditional LSI. EDLSI also
requires minimal extra memory during query run time
when compared to vector-space retrieval and much less
memory than LSI [8].

2.5 Sparse Column-Row Approximation

The performance of EDLSI suggested to us that the
PSVD approximation that forms the basis for LSI may
not be the best approximation for use in the context of
information retrieval. EDLSI provides improvement to
LSI results using a weighted combination of LSI and
vector-space, and the best results are seen when the
weighting of LSI is small, e.g.,x = 0.1 or 0.2. However,
the vast proportion of the work done in EDLSI in the
computation of the LSI component.

The PSVD approximation used for LSI is well known
to be the optimal rank-k approximation to A, such that
the difference

‖Ak − A‖ = ‖UkΣkV T
k − UΣV T ‖,

where‖.‖ can be the Frobenius norm or the 2-norm, is
minimized. This does not necessarily correspond to op-
timality for information retrieval.Ak is also, in general,
not sparse, even ifA is. This leads to increased storage
needs.

Stewart proposed in [14] a matrix approximation
called the Sparse Column-Row Approximation (SCRA)

based on a quasi-Gram Schmidt method for computing
truncated, pivoted QR approximations for sparse ma-
trices. The SCRA factorsA into the product of three
matrices:Y ∈ ℜt×s, T ∈ ℜs×s, andZ ∈ ℜd×s, wheres

is the reduced dimension. ThenA is approximated as:

A ≈ Y TZT .

The matricesY andZ are formed by taking optimal
QR approximations ofA andAT respectively, such that
Y is composed of columns ofA andZT is composed of
rows ofA. The matrixT is a dense matrix chosen such
that, givenY andZ, the difference

‖Y TZT − A‖F

is minimized.
The code accepts either a dimensions, or a tolerance

τ that determiness. The matricesY andZ are built up
column by column, incorporating at each step the most
important column ofA or AT , respectively. When the
norm of the discarded portion of the matrix is smaller
than the tolerance, or the reduced dimensions is reached,
the factorization is finished.

3 APPROACH

Our indexing of the dataset resulted in a term-document
matrix of 486 654 terms and6 827 940 documents. We
divided this into 81 pieces of approximately84 000
documents each for ease in loading and working with
the matrix.

Optimization runs were done for each of the three
runs, using the set of document judgements given.
These judgements resulted in a term-document matrix
of 486 654 terms and20 090 documents. When forming
the matrix of relevance judgements, documents assigned
relevance ratings of0, −1, and−2, as well as documents
that were not judged for the query in question, were
all assigned as non-relevant. Ratings of highly relevant
and relevant were assigned as given. The optimization
runs were performed for a range of parameters, and
the parameters that gave the highest 11-point average
precision, rounded to 2 decimal places, for all relevant
documents were chosen as optimal, and were used for
the full runs.

3.1 LSI with Folding-In

The first run we submitted used LSI with the folding-in
algorithm for new documents. For the optimization run,
the judged dataset was divided into an intial dataset of
10 000 documents, with increments of500 documents
each. The PSVD decomposition was performed on the
initial set, and each increment was then folded-in. The
run testedk = 100 to 1000 in steps of100 at first, then
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Fig. 4. Percent documents in common for queries 1–5
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from 200 to 400 in steps of10. The optimal value of
k was 220, with an 11 point average precision of0.19
for all relevant documents and0.09 for highly relevant
documents.

For the full run, the same approach was taken. A
PSVD was performed on the first of the81 pieces of
the full set, then the remaining80 were folded-in.

3.2 Distributed EDLSI

This run treated each division of the matrix as a separate
collection, and performed EDLSI on each. The optimiza-
tion run divided the judged dataset into80 pieces, and
after EDLSI was perfomed on each, the scores were
collected and ranked overall. We intended to test values
of k from 5 to 100 in increments of5, and values of
x from 0.1 to 0.5 in increments of0.1. However, after
seeing results up tok = 45, with the results steadily
worsening, and being short on time, we stopped there.
The optimal combination wask = 5 andx = 0.1, with
an 11 point average precision of0.20 for all relevant
documents and0.10 for highly relevant documents.

The full run proceeded similarly, with the81 pieces of
the matrix treated individally, then the results combined.

3.3 Distributed SCRA-Based LSI

Our final run made use of the SCRA to approximate
the term-document matrix instead of the SVD. The run
was fully distributed, with LSI performed on each piece,
but using the SCRA in place of the PSVD. To optimize,
the judged matrix was divided into80 pieces. Instead
of inputing a dimensions, we used a tolerance, which
we calculated relative to the norm of the full matrix
A. We tested tolerance parameters of0.05 to 0.3 in
steps of0.05, and the absolute tolerance was computed
by multiplying the relative tolerance with the norm of
A. The optimal value for the tolerance was0.10, with
an 11 point average precision of0.22 for all relevant
documents and0.12 for highly relevant documents.

The full dataset was treated similarly. Unfortunately,
with 81 partitions and a tolerance of0.10, the run would
not have completed in time for submission. For this
reason, the81 pieces were each further subdivided into
40 partitions, and the tolerance was increased to0.50.
Though we did not test this tolerance, we note that the
11 point average precision for all relevant documents for
the highest tested tolerance of0.30 was only reduced to
0.17. This run was able to finish in time.
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Fig. 5. Percent documents in common for queries 6–10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Documents

P
er

ce
nt

 D
oc

um
en

ts
 in

 C
om

m
on

 

 

query 6
query 7
query 8
query 9
query 10

3.4 Setting K and Kh

Teams were required to set values ofK andKh for each
query, indicating where they believe a balance between
precision and recall is achieved. Table 1 shows the values
we chose for each query. These values were the same for
the three runs.

To set the value ofK for each query, we decided
to make use of the three runs. The runs used three
different algorithms, and any document that was highly
ranked by all three should be relevant. With this idea
in mind, we calculated for each query the proportion
of documents that all three methods had in common
when looking only at the firstn documents, where
n is less than the maximum of1 500 000 documents
that may be submitted. We then choseK to maximize
percent documents in common. Figures 4 and 5 show
the percent documents in common for queries1–5 and
6–10 respectively.

To setKh, we looked at the scores for each query and
run. We noticed that for a small number of documents,
scores were quite high, but the scores dropped off
sharply within the first1 000 documents. These high
scores indicate that the documents are very ‘close’ in
space to the query, and may indicate a higher relevance.

Accordingly, we choseKh representing approximately
the point where the scores had dropped off.

4 RESULTS

Figure 6 presents the results for our standard runs.
At first glance the chart implies that LSI outperforms
EDLSI and SCRA on the competition metric of Esti-
matedF1 at K. However, when the results are broken
down by query, we see that all the performance on in-
dividual queries is split almost evenly between the three
methods (see Table 7, which has the best performing
method highlighted in each row). These results imply,
to our surprise, that there is no clear advantage to any
particular method.

In general the highly relevant results were not very
strong, most likely due to a poor choice for theKh value,
which we continue to find very difficult to set (see Figure
8).

Interestingly, some queries continue to be much more
difficult than others. Our results range from a high of
43.21% to a low of .41% (estimatedF1 atK), and we see
many instances where estimated recall atK is reasonable
(greater than 50%) but precision is so low as to make the
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TABLE 1
K and Kh values for each query

Query number K value Kh value

7 1 500 000 500
51 100 000 300
80 1 500 000 600
89 1 500 000 100
102 600 000 1 000
103 1 500 000 500
104 300 000 300
105 400 000 500
138 1 500 000 1 000
145 700 000 1 000

Fig. 6. Result Summary
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task unreasonable (finding 3% of 1,500,000 documents).
We believe more research on determining appropriate
K values is necessary. It appears as if retrieving large
numbers of documents continues to the best approach
for maximizing the competition metric.

5 CONCLUSION

We tested three LSI variants on a series of 10 queries on
the TREC Legal batch corpus, the IIT Complex Docu-
ment Information Processing (IIT CDIP) test collection,
which contains approximately 7 million documents (57
GB of uncompressed text). Our early results show that
all three methods have similar performance. However,
a suboptimal parameter size was used for the SCRA
method, due to time constraints. Additional experimen-
tation with this method is warranted to determine if it
outperforms EDLSI and LSI with folding-in.

The current three methods outperformed our LSI
methods from 2008. Most of the gains appear to be
obtained by selecting much largerK values; however,

precision atB (the number of documents retrieved by
a boolean query run), which does not depend onK, is
much higher this year.
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