
Mining Specific and General Features in Both Positive and Negative Relevance
Feedback

QUT E-Discovery Lab at the TREC’09 Relevance Feedback Track

Yuefeng Li, Xiaohui Tao, Abdulmohsen Algarni†,
Sheng-Tang Wu∗

School of Information Technology, Queensland University of Technology, Australia
{y2.li, x.tao}@qut.edu.au, †abdulmohsen.algarni@student.qut.edu.au

∗Dept. of Information Science and Applications, Asia University, Taiwan, swu@asia.edu.tw

Abstract

User relevance feedback is usually utilized by Web sys-
tems to interpret user information needs and retrieve ef-
fective results for users. However, how to discover useful
knowledge in user relevance feedback and how to wisely
use the discovery knowledge are two critical problems. In
TREC 2009, we participated in the Relevance Feedback
Track and experimented a model consisting of two inno-
vative stages: one for subject-based query expansion to
extract pseudo-relevance feedback; one for relevance fea-
ture discovery to find useful patterns and terms in relevance
judgements to rank documents. In this paper, the detailed
description of our model is given, as well as the related dis-
cussions for the experimental results.

1 Introduction

Web users’ personal interests and preferences can be
drawn in their user profiles. In Web information gather-
ing, user profiles are used by many works to search infor-
mation for users according to their personal needs [3, 10].
However, effectively acquiring user profiles is difficult. To
acquire user profiles, some techniques explicitly interview
users [13], some use user relevance feedback [14]. These
mechanisms require user-effort in the user profile acquisi-
tion process. Attempting to release such burden from users,
alternatively some automatic techniques have been devel-
oped to acquire user profiles from a collection of user per-
sonal information, for example, browsing history [3, 17].
User profiles acquired by such techniques, however, usually
contain noise and uncertainties. Hence, a method to acquire
user profiles effectively and efficiently (without the burden
of user-effort) is an urgent need for personalized Web infor-
mation gathering.

Relevance features describe what a user wants. They
can be discovered from user relevance feedback. Over the
years, pattern-based approaches have been expected to out-
perform term-based techniques when discovering relevance
features. Patterns are more discriminative and carry more
“semantics”. However, according to information retrieval
(IR) experiments, few significant improvements have been
made by using pattern-based methods to replace term-based
methods [15,16]. When utilizing pattern mining techniques,
people encountered two problems: (i) high frequent patterns
are usually general, whereas specific patterns are usually
with low frequency (this is because the measuring methods
for pattern learning, such as “support” and “confidences”,
appeared unsuitable in the filtering stage [11]); (ii) negative
user feedback is difficult to use when revising the features
extracted from the positive user feedback. Relevance fea-
ture discovery is challenging [10, 12].

Motivated by these challenges, we proposed a relevance
feature discovery model and tested the model in the Rele-
vance Feedback track in TREC 2009. This Relevance Feed-
back track was designed to evaluate a system’s capacity of
finding quality user relevance feedback, as well as its rel-
evance feedback algorithms. Thus, two phases were con-
ducted in the track corresponding to this design: (i) identi-
fying a small number of documents for (pseudo) relevance
feedback; (ii) running relevance feedback algorithms with
relevance judgements. In accordance to the two phases,
we participated with also a two-stage information filtering
model: (i) subject-based query expansion for pseudo rele-
vance feedback extraction; (ii) pattern-based relevance fea-
ture discovery using both positive and negative feedback.
The model aimed to discover relevance features for Web
user profile acquisition.

The first stage was to expend a query (topic) to retrieve
pseudo relevance feedback. To expand queries, we used a
subject ontology LCSH (Library of Congress Subject Head-

ings). The ontology specified commonsense knowledge ob-
tained by people through their experience and education,
and was successfully evaluated in our prior work reported
in [18]. Given a query, the topic-related subjects were ex-
tracted from the LCSH ontology. On the basis of these sub-
jects, user background knowledge was discovered and a per-
sonalized ontology was constructed. Based on the person-
alized ontology and using an information gathering system,
a training set (consisting of a positive and a negative sub-
sets) was extracted from the ClueWeb09 Category-B cor-
pus based on title search, and treated as pseudo relevance
feedback.

At the second stage, relevance features were discovered
from both positive and negative pseudo relevance feedback,
using a model introduced in [9]. These relevance features
consisted of high-level pattern features and low-level term
features. Based on the high-level features, the low-level
features were classified into three groups: positive specific
terms, general terms, and negative specific terms. When ap-
plying negative patterns to revise the discovered features,
we increased the weight of positive specific terms but de-
clined that of negative specific terms. This feature revision
went into a loop to optimize the relevance feature extrac-
tion. Finally, documents highly relevant to these relevance
features were retrieved from the ClueWeb09 Category-B as
the final submission results.

In this paper, the two-stage model and the related evalua-
tion in TREC 2009 Relevance Feedback track are presented
and discussed. Section2 introduces the subject-based query
expansion, and Section 3 presents relevance feature discov-
ery using positive and negative samples. After that, the eval-
uation results are discussed in Section 4. Finally, the last
section makes conclusions.

2 Subject-Based Query Expansion for
Pseudo Relevance Feedback

The first stage aims to automatically retrieve pseudo rele-
vance feedback from the ClubWeb09 Category-B. Because
there was only a limited number of terms in given topics,
the key issue here was how to acquire user interest from
the limited information. In this work, we utilized a world
knowledge ontology to analyze the concepts in the given
topics. For an incoming topic, the positive subjects were ex-
tracted from the ontology. Based on these subjects and their
referring-to instances, user background knowledge was dis-
covered and utilized to expand the given query terms and
to search the ClueWeb09 Category-B for pseudo relevance
feedback. The top five ranked results were considered rel-
evance feedback from users. Figure 1 illustrates the archi-
tecture of our Stage 1 process.

Figure 1. The Stage 1 Architecture

2.1 World Ontology and Instances

The world ontology was encoded from the Library of
Congress Subject Headings1, a library catalog system. The
LCSH system is a categorization developed for organiz-
ing the large volumes of library collections and for retriev-
ing information from the library. The references specified
in LCSH for subject headings were encoded into the se-
mantic relations associated with and linking the subjects,
where Broader term/Narrower term were for is-a, Used-
for for part-of, and related-to for related-to relations. The
LCSH ontology contained about 400,000 topical, geograph-
ical, and corporate subjects.

The LCSH ontology was populated using the instances
encoded from the information items in a library catalog 2.
Figure 2 illustrates a sample information item for instances.
The descriptive information, such as the title and table of
contents, are the knowledge resource extensive from the
LCSH ontology. Such descriptive information was used for
the content of an instance. A list of indexed content-based
descriptors (subjects) is cited by each item (instance). Thus,
we could have a matrix constructed by instances and sub-
jects. Each instance may cite a list of subjects, and each
subject may refer to a list of instances. Based on this ma-
trix, the belief (bel) of an instance to a subject can be deter-
mined:

bel(i, s) =
1

index(s, i)× |η(i)|
;

where η(i) is the set of subjects cited by i, index(s, i) is
the index (starting with one) of s on the citing list. Us-

1http://classificationweb.net/.
2In particular, the QUT library. For the sake of simplicity, only

the abstracted information (title, table of content, and summary) was
used to represent an instance. Example of instances can be found on
http://www.library.qut.edu.au.

2

Figure 2. An Instance from A Library Catalog Item

ing the instance displayed in Fig. 2 as a sample, let i be
this instance; s be the subject Consumption (Economics)–
Germany (East). We have index(s, i) = 1 and |η(i)| = 4,
and can thus calculate bel(i, s) = 0.25. The less subjects
cited by an instance and the higher index a subject on a cit-
ing list, the stronger belief the instance holds to the subject.
The bel(i, s) will be used to select the right instances to
populate the LCSH ontology.

A method, specificity [18, 19] (denoted as spe), was fur-
ther utilized to measure the focus of a subject in the LCSH
ontology. The subjects located at upper bound levels in the
ontology are more abstractive than those at lower bound
levels towards the “leaves”. Also, upper bound level sub-
jects have more descendant subjects in shadow, in compari-
son with lower bound level subjects. Thus, an upper bound
subject has weaker focus than a lower bound subject in its
shadow.

The spe value of a subject s is determined by analyzing
its associated hierarchical relations of is-a and part-of. By
setting the spe value for “leave” subjects as 1, toward the
root of the ontology, the spe value decreases for each level
up. If a subject has all direct child subjects in shadow with
is-a relationship, the smallest spe of its child subjects is
chosen for the subject’s spe value by decreasing 10%. If a
subject has all direct child subjects in shadow with part-of
relationship, its spe is defined as the average spe value of
its child subjects, applying the 10% decreasing rate. If the
direct child subjects in shadow are mixed with is-a and part-

of relations to their parent subject, two spes are calculated:
one for is-a child subjects, and one for part-of subjects. The
smaller spe is then chosen to value the spe of the parent
subject. As a result, the specificity of a upper bound subject
is guaranteed smaller than that of a lower bound subject in
its shadow.

2.2 Interesting Subject Discovery

Given a topic T := {t1, t2, . . . , tn}, two sets of subjects
were extracted from the LCSH ontology: positive subjects
S+ being relevant to the topic; and negative subjects S−
being paradoxical or ambiguous to the topic. If a subject’s
label contains any keywords in the topic (label(s) ∩ T 6=
∅), this subject is extracted and put into the initial positive
subject set (S+ = S+ ∪ {s}). The positive level of s to T
is thus measured by

pos(s, T) = spe(s)× |label(s) ∩ T | ×
∑

i∈η−1(s)

sup(i, T)

where

sup(i, T) =
∑

s′∈η(i)

bel(i, s′)× |label(s′) ∩ T |

as defined previously, η(i) refers to the set of subjects cited
by i, and η−1(s) gives the set of instances citing s.

The reachable ancestor and descendant subjects of s in
the ontology were also extracted. The “reachable” here is

3

limited to the distance of three edges in the ontology. The
subjects located more than that distance are unlikely impor-
tant to T , as reported by [6]. These reachable subjects were
extracted and put into the negative subject set (S−).

User background knowledge was discovered from the
reference between the subjects and their instances. Let
s1 ∈ S+ and s2 ∈ S−. If η−1(s1) ∩ η−1(s2) 6= ∅, s1
and s2 have something in common and are relevant. The
certainty level of s2 being positive was thus determined by
its linked positive subjects (e.g. s1 ∈ S+). A subject is
more interesting if it has more linked positive subjects. Let
Ŝ(s) be the set of linked positive subjects of s ∈ S−, we
measure the certainty level of s to T by:

pos(s, T |s ∈ S−) =

∑
s′∈Ŝ(s) conf(s′, s)× pos(s′, T)

|Ŝ(s)|

where

conf(s′, s) =
|η−1(s′) ∩ η−1(s)|

η−1(s′)

Considering such discovered user background knowledge,
if a s ∈ S− has pos(s, T) > 0, it would be removed from
S− and replaced to S+.

2.3 Query Expansion for Pseudo Rele-
vance Feedback Extraction

The query terms were expanded based on the positive
subjects discovered in the previous section. In Section 2.2,
a set of positive subjects S+ was discovered, in which each
subject was assigned a pos value indicating the certainty
level of the subject being relevant to the given topic. In Sec-
tion 2.1, we know that a subject refers to a set of instances.
Thus, a training set D+ could be generated, in which each
document d was from the content of an instance i referred
to by a positive subject s ∈ S+. A support value was
calculated for each document in the training set, by accu-
mulating all pos values of the subjects on the citing list of
the instance. The expanding terms were extracted from the
training set.

The training set was first used to evaluate weights for
a set of selected terms T . After text pre-processing of
stopword removal and word stemming, the semantic space
referred to by a d was represented by its normal form
β(d) = {(t1, w1), (t2, w2), . . . , (tk, wk)}, where w is the
weight distribution of terms and wi = fi∑k

j=1 fj
and fi is the

term frequency of ti in d. A probability function on T was
derived based on the normal form of positive documents and
their supports for all t ∈ T :

prβ(t) =
∑

d∈D+,(t,w)∈β(d)

support(d)× w

Figure 3. The Stage 2 Architecture

The terms with top 150 prβ(t) values were then selected to
expand the query terms given in T . The details of evalua-
tion can be referred to [10].

The documents in the ClueWeb09 corpus were indexed
by accumulating the prβ(t) of the expanded top 150 terms
that occurred in the document titles. Because ClueWeb09
Category-B is a large corpus, in order to reduce the com-
plexity, only the title of documents counted into this index
calculation. The top five indexed documents were chosen
as the pseudo relevance feedback from users, and submitted
as the results for Phase 1 of the track.

3 Relevance Feature Discovery

Relevance feature discovery aims to discover a set of fea-
tures from text documents to describe what a user wants.
In Phase 2 of TREC’09 Relevance Feedback track, a given
topic was represented by a set of user judgements contain-
ing documents associated with values of 0, 1, or 2, indi-
cating being non-relevant, relevant, and highly relevant to
the topic, respectively. Treating the documents associated
with 1 and 2 as equally positive and those with 0 negative,
we had two different sets: positive and negative feedback.
In this Stage 2 method, relevance features were to be dis-
covered from both of the positive and negative relevance
feedback.

When generating the positive and negative feedback, two
special problems were encountered: (i) positive feedback
was unavailable because all judgements were with 0 (non-
relevant). For this problem, we formed a positive document
by using the query terms expanded in Stage 1 (as discussed
in Section 2.3), and weighted these terms equally as 1; (ii)
negative feedback was unavailable because all judgement
were with 1 or 2. For this problem, we used only positive
feedback for feature discovery.

4

Table 1. A set of paragraphs
Paragraph Terms

dp1 t1 t2
dp2 t3 t4 t6
dp3 t3 t4 t5 t6
dp4 t3 t4 t5 t6
dp5 t1 t2 t6 t7
dp6 t1 t2 t6 t7

The pattern-based features were first extracted from the
positive user feedback. After that, these features were used
to iteratively select and re-select meaningful negative doc-
uments (called offenders in this paper) from the negative
feedback. These offenders were used to revise the extracted
features. Finally, the revised features were used to retrieve
the final results from the ClueWeb09 Subset-B. Figure 3 il-
lustrates the architecture of our model in Stage 2.

3.1 Frequent and Closed Sequential Pat-
terns

For a given topic, relevance feature discovery extracts
from a document set a set of features, including patterns
and terms, and assigns them weights. The document set,
usually called a training set and denoted as D, consists of a
set of positive documents (D+) and a set of negative docu-
ments (D−). When splitting a document into paragraphs, a
document d can also be represented by a set of paragraphs
PS(d).

Let T = {t1, t2, . . . , tm} be a set of terms extracted from
D+; X be a set of terms (called a termset) in document d.
coverset(X) denotes the covering set of X for d, which
includes all paragraphs dp ∈ PS(d) where X ⊆ dp, i.e.,
coverset(X) = {dp|dp ∈ PS(d), X ⊆ dp}. The abso-
lute support of X is the number of occurrences of X in
PS(d): supa(X) = |coverset(X)|. The relative support
of X is the fraction of the paragraphs that contain the pat-
tern: supr(X) = |coverset(X)|

|PS(d)| . A termset X is then called
a frequent pattern if its supa (or supr) ≥ min sup, a min-
imum support.

Table 1 lists a set of paragraphs for a document d, where
PS(d) = {dp1, dp2, . . . , dp6} with duplicate terms re-
moved. Assume min sup = 3, ten frequent patterns would
be extracted as shown in Table 2.

Given a set of paragraphs Y ⊆ PS(d), we can also de-
fine its termset, which satisfies

termset(Y) = {t|∀dp ∈ Y ⇒ t ∈ dp}.

By defining the closure of X as:

Cls(X) = termset(coverset(X))

Table 2. Frequent patterns and covering sets
Frequent Pattern Covering Set
{t3, t4, t6} {dp2, dp3, dp4}
{t3, t4} {dp2, dp3, dp4}
{t3, t6} {dp2, dp3, dp4}
{t4, t6} {dp2, dp3, dp4}
{t3} {dp2, dp3, dp4}
{t4} {dp2, dp3, dp4}
{t1, t2} {dp1, dp5, dp6}
{t1} {dp1, dp5, dp6}
{t2} {dp1, dp5, dp6}
{t6} {dp2, dp3, dp4, dp5, dp6}

a pattern (or termset) X is closed if and only if X =
Cls(X).

Let X be a closed pattern. We have

supa(X1) < supa(X) (1)

for all patterns X1 ⊃ X .

A taxonomy can be constructed by using closed pat-
terns with is-a (or subset) relations. Table 2 contains three
closed patterns, < t3, t4, t6 >, < t1, t2 >, and < t6 >,
within ten frequent patterns. After pruning the non-closed
patterns, a pattern taxonomy PT can be constructed, like
PT = {〈t3, t4, t6〉, 〈t1, t2〉, 〈t6〉} in Table 2 when consid-
ering 〈t6〉 a subset of 〈t3, t4, t6〉.

Small patterns (e.g. 〈t6〉) in a taxonomy are usually gen-
eral because they have more chance to be used frequently.
Vice versa, large patterns (e.g. 〈t3, t4, t6〉) are relatively
specific because they usually have a low frequency.

A sequential pattern s =< t1, . . . , tr > (ti ∈ T) is an or-
dered list of terms. Denoted by s1 v s2, a sequence s1 =<
x1, . . . , xi > is a sub-sequence of s2 =< y1, . . . , yj >,
iff ∃j1, . . . , ji such that 1 ≤ j1 < j2 . . . < ji ≤ j and
x1 = yj1 , x2 = yj2 , . . . , xi = yji . Given s1 v s2, we
call s1 a sub-pattern of s2, and s2 a super-pattern of s1. To
simplify the explanation, we refer to sequential patterns as
patterns.

As the same as those defined for normal patterns, we
define the absolute support and relative support for a pat-
tern (an ordered termset) X in d. We also denote the cov-
ering set of X as coverset(X), which includes all para-
graphs ps ∈ PS(d) such that X v ps, i.e., coverset(X) =
{ps|ps ∈ PS(d), X v ps}. X is then called a frequent pat-
tern if supr(X) ≥ min sup. By using Eq. (1), a frequent
sequential pattern X is closed if @ any super-pattern X1 of
X such that supa(X1) = supa(X).

5

3.2 Deploying High-Level Patterns on
Low-Level Terms

To overcome the problem of patterns with low-
frequency, a method was developed to deploy high level
patterns over low-level terms. The evaluation of term sup-
ports (weights) in this paper is different from that in term-
based approaches. For a term-based approach, the value of
a term is scaled based on its appearance in documents. In
our method, the value of terms are scaled based on their
appearance in discovered patterns.

To improve the efficiency of the pattern taxonomy min-
ing (PTM), an algorithm, SPMining(D+,min sup), was
introduced by [21] and further developed in [11, 20] to find
closed sequential patterns from positive documents D+.
The SPMining algorithm used the well-known Apriori prop-
erty to narrow down the searching space.

Let SP1, SP2, ..., SPn be the sets of discovered closed
sequential patterns for all documents di ∈ D+(i =
1, · · · , n), where n = |D+|. For a given term t, its weight
in discovered patterns is assigned by:

w(t,D+) =
n∑
i=1

∑
t∈p⊆SPi

supr(p, di)
|p|

(2)

where |p| is the number of terms in p.
With weights assigned to the terms in D+, a function

can be used to rank and judge the relevance of incoming
documents:

rank(d) =
∑
t∈T

w(t)τ(t, d)

where w(t) = w(t,D+); and τ(t, d) = 1 if t ∈ d, other-
wise τ(t, d) = 0.

3.3 Mining Negative Patterns for Revis-
ing Low-Level Features

In general speaking, the definition of relevance is sub-
jective. People may describe the relevance of a topic (or a
document) in two dimensions, specificity and exhaustivity,
where specificity describes the focus of the topic on what
users want, and exhaustivity describes the extent of the topic
dealing what users want. Such two-dimension description is
easy for human beings to use, however, difficult for a com-
putational system to apply. In this section, we first discuss
how to use the two dimensions to understanding the seman-
tic meanings of low-level feature terms. We also present an
algorithm for negative pattern discovery and term weight
revision.

3.3.1 Specific and General Features

Let DP+ be the union of all patterns in pattern taxonomies
discovered from D+, and DP− be the union of all negative

patterns in the pattern taxonomies discovered from D−. A
closed sequential pattern of D+ (or D−) is called a positive
pattern (or negative pattern).

Given a term t ∈ T , its exhaustivity refers to the num-
ber of discovered patterns containing t in both DP+ and
DP−, and its specificity refers to the number of discovered
patterns containing t in only DP+ but not DP−. Based
on these, we can classify terms into three groups: general
terms (GT ,) for those appearing in both positive patterns
and negative patterns; positive specific terms (T+) for those
appearing in only positive patterns; negative specific terms
(T−) for those appearing in only negative patterns. They
are defined by:

GT = {t|(∃p1 ∈ DP+)∧(∃(p2 ∈ DP−)⇒ t ∈ (p1∩p2)},

T+ = {t|t /∈ GT, ∃(p ∈ DP+)⇒ t ∈ p}, and

T− = {t|t /∈ GT, ∃(p ∈ DP−)⇒ t ∈ p}

where GT ∩ T+ ∩ T− = ∅.
Specific terms contain more semantic meanings and dis-

tinguish a topic from others. Thus, specific terms are use-
ful to describe the relevance feature of a topic. However,
using specific terms alone may be insufficient when trying
to improve the performance of relevance feature discovery.
Documents containing no specific terms may also highlight
user information needs as well. Therefore, one possible so-
lution is to use the hybrid of specific terms, general terms,
and negative terms. However, adequate control is necessary
for the side effects generated by using general terms.

3.3.2 Revision Strategy

In this section, we discuss the basic strategies of revising the
features discovered from a training set. This feature revising
process takes place only after terms are classified into three
categories of general, positive specific, and negative specific
terms.

From the positive documents in a training set, the revis-
ing process first discovers initial positive features includ-
ing high-level positive patterns and low-level terms. Select-
ing some negative samples from the negative documents in
the training set, the process also discovers negative patterns
and terms by using the same pattern mining technique as
that used for positive feature discovery. The process then
revises the initial features to obtain revised features. This
process can be repeated several times: selecting negative
documents, mining negative features and revising revised
features.

Algorithm NFMining(D) describes the details of the the
revision strategy, with an assumption that the number of
negative documents is greater than the number of positive
documents. For a given training setD = {D+, D−}, we as-
sume that the initial features, (DP+, DP−, T), have been

6

Algorithm 1. NFMining(D)
Input: A training set, {D+, D−}, α = −1;

extracted features (DP+, DP−, T), DP− = ∅;
support function, minimum support min sup,
and experimental parameters K and σ.

Output: Updated term set T and function weight.

Method:
1: GT = ∅, T+ = ∅, T− = ∅, loop = 0;
2: foreach t ∈ T do
3: weight(t) = weight(t,D+);
4: foreach d ∈ D−do
5: rank(d) = Σt∈d∩(T∪T−)weight(t);
6: let D− = {d0, d1, ..., d|D−|−1} in descendent order,

let j = σ if loop = 0, otherwise j = 0;
7: D−3 = {di|di ∈ D−, j ≤ i < K + j};
8: DP− =SPMining(D−3 ,min sup); //find negative patterns
9: T0 = {t ∈ p|p ∈ DP−}; // all terms in negative patterns
10: foreach t ∈ (T0 − T) do
11: if (loop = 0) then weight(t) = α× weight(t,D−3)

else weight(t) = α× weight(t,D−3) + weight(t);
12: T− = T− ∪ (T0 − T), loop+ +;
13: if loop < 3 then goto step 4;
14: foreach t ∈ T do //term partition
15: if (t ∈ T−) then GT = GT ∪ {t}

else T+ = T+ ∪ {t};
16: foreach t ∈ T+ do
17: weight(t) = weight(t)× (1 +

|{d|d∈D+,t∈d}|
|D+|);

18: T = T ∪ T−;

Table 3. Example of a set of terms discovered
from DP+, DP+ ∈ D+ and |D+| = 6.

term weight # of docs that include the term
〈t1〉 0.34 4
〈t2〉 0.90 6
〈t3〉 0.55 3
〈t4〉 0.65 5
〈t5〉 0.75 6
〈t6〉 0.84 2

extracted from positive documentsD+ before the algorithm
starts, where T = {t ∈ p|p ∈ DP+} and DP− = ∅. The
experimental parameter is set as α = −1 to calculate the
weights of terms in negative patterns.

Step 1 initializes the sets of general terms GT , positive
specific terms T+, and negative specific terms T−. loop is
used to control the number of revision cycles. Step 2 and 3
compute weights for all terms in T . Table 3 shows a set of
terms and their weights deploying from positive patterns. In
experiments, when positive documents were unavailable, a
set of 100 terms with weight set to 1 from query expansion
(as discussed in Section 2.3) were used as positive terms.

Steps 4 and 5 rank documents in the negative document
set. If t is a negative specific term, its has an revising weight
evaluated in step 10 and 11. The weight function is de-

scribes as:

weight(t) =

 its revising weight, if t ∈ T−

support(t,D+), otherwise

Steps 6 and 7 sort the negative documents based on their
rank values, and select offenders (meaningful negative doc-
uments). A document is considered negative to the topic if
it is ranked lower than or equal to 0. For the first loop the
minimum weight that we can get is 0 because there is no
negative weight in the term set T . However, from the next
loop some negative terms from D− with negative weight
are added. Then it is most likely to get weight less than 0.
If a document has a high rank, the document is selected as
an offender because it forces the system to make a mistake.
The offenders are normally defined as the top-K negative
documents in sorted D− [10]. Given that positive docu-
ments are the main source of features, we expect the total
number of offenders not more than the positive documents.
Therefore, we set K = d |D

+|
3 e in our experiments. In the

first revision (loop = 0), where T contains only positive
terms and no negative terms having added yet, the top-j
negative documents are omitted for offender selection. The
initial features come from positive documents only, and the
positive features are more important than negative features
at the beginning. An experimental parameter σ is used here
and set as σ = b |D

−|
|D+| c.

To be clear, Table 3 and 4 are used as an example for
the selection of offenders process. Table 4 shows a list of
ranked negative documents using the terms appearing in Ta-
ble 3. The first step is to eliminate the documents with
weight less than or equal 0. Thus, d6, d7 from Table 4 are ig-
nored for offenders. For the sample shown on Table 3 and 4,
the number of training documents is 13 with a distribution
of |D+| = 6 and |D−| = 7. Therefore, K = d 63e = 2 and
if (loop = 0) then j = σ = b 76c = 1; otherwise, j = 0. Af-
ter that, started from j + 1 and counting for K documents,
the documents in this range are selected as offenders. As
a result d3, d4 from Table 4 are selected as offenders at the
first loop (loop = 0). In the second and third loops the same
process is repeated with j = 0 and the updated list of terms
is used.

Steps 8 and 9 extract negative features (DP−, T0)
from selected negative documents D−3 . The SPMin-
ing(D−3 ,min sup) algorithm is employed to discover neg-
ative patterns DP− and T0, including all terms in patterns
of DP−. Table 5 shows a list of terms extracted from of-
fenders.

Steps 10 to 12 revise the weights for negative specific
terms. These steps go three times through a loop with the
iteration controlled by Step 13. In each loop, if a specific
negative term is extracted at the first time, the algorithm
negates its support obtained from the selected negative doc-

7

Table 4. A set of ranked negative documents
with their weight, |D−| = 7.

Negative documents weight

1 d1 0.67
2 d2 0.60
3 d3 0.44
4 d4 0.34
5 d5 0.30
6 d6 0.00
7 d7 0.00

Table 5. A set of terms discovered from of-
fender documents.

terms weight

〈t1〉 −0.20
〈t3〉 −0.45
〈t7〉 −0.50
〈t8〉 −0.75

uments; otherwise, the algorithm cumulates its weight as
follows:

weight(t) = α× weight(t,D−3) + weight(t).

After three loops, the algorithm partitions T into general
terms GT and positive specific terms T+ at Step 14 and
15. It also revises positive specific term weights using the
following equation in Step 16 and 17:

weight(t) = weight(t)× (1 +
|{d|d ∈ D+, t ∈ d}|

|D+|
) (3)

Finally, T is updated to include negative specific terms
at Step 18.

Table 3 and 5 show a set of terms extracted from pos-
itive documents and offenders. The method introduced in
Section 2.3 is again used to classify those terms into three
main groups: specific positive, specific negative, and gen-
eral terms:

T+ = {〈t2〉0.90, 〈t4〉0.65, 〈t5〉0.75, 〈t6〉0.84}

T− = {〈t7〉−0.50, 〈t8〉−0.75}

G = {〈t1〉(0.34,���−0.20), 〈t3〉(0.65,���−0.45)}

The terms in T+ and T− have only one weight. How-
ever, the terms in general group G have two weights: the
first one is for the term occurred in D+; the second one
is for the term occurred in offenders D−3 . Because the
group T+ is more important than T− and G, the weight
of a t ∈ T+ is awarded by Eq. (3) based on t’s appearance

on positive documents. For negative terms T−, the term
weights are updated via a three-loops technique as shown at
Step 11. The groups of terms with updated weights are:

T+ = {〈t2〉1.8=0.90∗(1+ 6
6), 〈t4〉1.19, 〈t5〉1.5, 〈t6〉1.12}

T− = {〈t7〉−0.50, 〈t8〉−0.75}
G = {〈t1〉0.34, 〈t3〉0.65}

NFMining calls three times SPMining. The total num-
ber of negative documents used in these three times equals
O(|D+|). Therefore, NFMining for mining negative pat-
terns has the same complexity as the SPMining for mining
positive patterns inD+. NFMining also takes times for sort-
ing D−, assigning weights to terms, and partitioning terms
into categories. The time complexity for these operations is
O(|D−|(log|D−| + |T |) + |T |2).

3.4 Final Retrieval

Given a topic, the feature terms are extracted by using
Algorithm NFMining and assigned with a value weight(t),
as discussed previously. These features were used in our ex-
periments to perform the final retrieval. Because the volume
of ClueWeb09 Category-B corpus is huge, the final retrieval
was separated to two steps in order to reduce the complex-
ity.

At the first step, for each topic we retrieved about 30,000
candidate documents based on only title search from the
ClueWeb09 Category-B corpus. The process of query ex-
pansion (discussed in Section 2.3) was reused here for can-
didate retrieval. In our investigation on the results of Phase
1 submission, a limitation was exposed that the knowledge
specified in the world ontology was not up-to-date. The
LCSH system used for ontology construction was the 2006
version. As a result, the ontology missed some up-to-date
knowledge, e.g., that about “Obama” and “Obama family
tree”. In order to solve this problem, at Stage 2 we used
world knowledge extracted from the Web using Google
API. For each topic, ten Web documents were retrieved and
pooled with the training set generated from the instances
(library catalog). As discussed in Section 2.3, a set of ex-
panding query terms was then extracted and used for can-
didate retrieval. Finally, approximately 30,000 candidate
documents were retrieved from the Category-B corpus by
accumulating the prβ(t) of the terms that occurred in the
document titles.

In the next step, we filtered the candidates based on
document contents using the features discovered from pos-
itive and negative judgements, as discussed previously.
The 30,000 candidates were re-ranked by accumulating the
weight(t) of features (see Algorithm NFMining) that oc-
curred in document contents. After that, the top 1,000 doc-
uments were selected and submitted as the final retrieved
results against the given topic.

8

Topic εMap StatAP Score Topic εMap StatAP Score
1 13 11 12 12 0.371 26 5 19 9 16 0.6557
2 10 13 10 15 0.6613 27 16 9 16 9 0.3
3 4 11 7 9 0.5676 28 16 9 21 4 0.2459
4 17 7 17 7 0.2982 29 12 3 11 8 0.3235
5 12 4 9 12 0.4286 30 10 15 8 17 0.6508
6 19 5 19 5 0.2545 31 21 4 18 7 0.2419
7 8 15 9 16 0.7258 32 19 6 11 14 0.3621
8 6 11 12 7 0.5 33 12 12 10 14 0.5088
9 13 10 9 16 0.5345 34 16 7 16 8 0.3519

10 15 7 17 6 0.3585 35 9 15 7 17 0.5893
11 9 14 13 11 0.4833 36 11 12 15 8 0.4074
12 21 4 14 11 0.2344 37 15 2 11 7 0.2857
13 11 1 7 6 0.4194 38 10 14 7 18 0.5873
14 12 13 14 11 0.45 39 13 10 11 14 0.4483
15 9 16 12 13 0.5333 40 8 1 12 5 0.2
16 10 10 10 15 0.5536 41 4 17 7 15 0.6226
17 23 1 19 6 0.1455 42 17 3 7 6 0.25
18 12 11 6 18 0.6481 43 9 15 9 16 0.5517
19 6 0 0 0 0 44 9 11 13 11 0.434
20 - - - - - 45 18 7 8 17 0.5937
21 11 12 16 7 0.5085 46 8 15 9 15 0.5902
22 9 16 9 16 0.7187 47 8 13 9 13 0.5357
23 5 11 11 7 0.5 48 15 4 14 6 0.25
24 8 8 10 3 0.3421 49 11 9 10 10 0.3958
25 10 15 10 15 0.6562 50 13 8 12 9 0.375

All 9 16 13 12 0.4844

Table 6. Evaluation of Phase 1 performance

4 Results and Discussions

As discussed previously, the Relevance Feedback track
was designed to evaluate a system’s capacity of finding
quality user relevance feedback and utilizing relevance
judgement. In Phase 1, each group submitted five docu-
ments for (pseudo) relevance feedback; in Phase 2, groups
ran their relevance feedback algorithms based on different
sets of judged docs from Phase 1, including their own Phase
1 docs, and several other groups’ Phase 1 documents. Eval-
uation then compared the intrinsic quality of the Phase 1
feedback, as well as each group’s relevance feedback algo-
rithm.

Four methods, εMap [1], MapA, P10A, and StatAP [2],
were used in the track to measure the performance of Phase
2 runs. εMap and StatAP were applied to the runs us-
ing the testing set of only ClueWeb09 Category-B, whereas
MapA and P10A were applied to those using the whole
ClueWeb09 English set. Because our experiments were
based on only ClueWeb09 Category-B, measuring our per-
formance by MapA and P10A might not give us an ade-
quate, substantial analysis. Thus, we investigated our re-
sults with only the εMap and StatAP in this discussion.

The quality of a set of Phase 1 extracted documents could
be marked if more groups using the set in Phase 2 had better
performance than using other Phase 1 sets, when applying
to the same relevance feedback algorithm. Table 6 shows
the detailed results for the evaluation of our Phase 1 re-

sults. In each εMap or StatAP column, the first digit shows
the number of runs that using our Phase 1 set was outper-
formed by using another groups’ Phase 1 sets, whereas the
second digit shows the number of runs that using ours out-
performed using others. Therefore, a larger deviation of two
digits indicates higher quality of our pseudo relevance feed-
back retrieved in Phase 1 when the second digit is greater
than the first. In Table 6, those tie or wining comparisons
are flagged by the bold, italic font. In terms of εMap per-
formance, using our Phase 1 retrieved feedback was better
then (or equal to) using other groups’ retrieved feedbacks
in 23 out of 49 topics (Topic 20 was dropped because it
had no relevant docs). In terms of StatAP, the tie or wining
topic number is 24 out of 49. In overall εMap performance
of counting 49 topics, the number of runs our Phase 1 set
was better than is 16, much more than the number of runs
(9) our Phase 1 set was worse than. In overall StatAP per-
formance, the two numbers in the pair is quite close (13
vs. 12). Base on the results, the pseudo relevance feedback
retrieved by our group in Phase 1 had a relatively high qual-
ity. This is also confirmed by the performance comparisons
illustrated in Fig. 4, where our submission (QUT.1) is in-
dexed in a middle position (ahead of 16 groups but behind
13 groups). Out system’s capacity of finding quality user
relevance feedback is encouraging.

Phase 2 evaluated a system’s performance of using rel-
evance judgement for retrieval. The Stage 2 in our model
was to use both positive and negative feedback judgements

9

Figure 4. Phase 1 Performance Comparison

Figure 5. Phase 2 Performance Comparison

10

for information retrieval. Though many reports suggested
that negative relevance judgements were useless or of a lit-
tle help [4,5,7], this idea has been successfully tested in our
previous work [9] on an experimental environment setup by
Reuters Corpus Volume 1 (RCV1) corpus [8] and TREC fil-
tering track. The work showed that the method significantly
outperformed both the state-of-the-art term-based methods
underpinned by Okapi BM25 or Support Vector Machine
and pattern based methods on precision, recall and F mea-
sures. However, in this track our Phase 2 performance
was unsatisfactory, according to the comparison plotted in
Fig. 5. In our investigation, we found that the unsatisfac-
tory performance was largely caused by the difficulties en-
countered when coping with the large testbed, ClueWeb09
Category-B.

Performing content search in ClueWeb09 Category-B
for each topic was time and computational resource con-
suming that we could not afford, according to the track’s
tough schedule and our accessible resources. ClueWeb09
Category-B is a huge corpus with 1.5 terabyte data, approxi-
mate 45,000,000 documents. Pre-processing of ClueWeb09
Category-B required investment of a large amount of time
and use of high performance computer. Unfortunately, as
the first time in our lab to deal with the High Performance
Computer (HPC) Centre in QUT, the poor collaboration and
the shortage of HPC experience stole a large amount of our
time. As a result, time became against us in the experi-
ments. Consequently, in order to simplify the complexity
in maximum with only minimal sacrifice of effectiveness,
as discussed in Section 3.4 we separated the Phase 2 search
into two steps: for each topic, (i) retrieving about 30,000
candidates from ClueWeb09 Category-B based on only title
search; (ii) re-ranking those candidates based on contents
and submitting the top 1,000 documents as the final results.
We expected with 30,000 candidates we could have only a
limited portion of relevant documents missing. However, as
shown on Fig. 5, the final result of Phase 2 was disappoint-
ing.

The evaluation methods and our Stage 2 method have a
basic difference on term weight evaluation. This may also
cause the disappointing result in Phase 2. εMap and StatAP
are term-based methods that evaluate term weights based
on term distribution in documents. Due to the large vol-
ume, the ClueWeb09 corpus does not have precise judge-
ments for the testing set (like those manual judgements in
RCV1 for topics R101-R150 in TREC 11 Filtering track).
In order to test a relevance feedback method, based on
term-based algorithms, εMap and StatAP computationally
judged the testing set. However, our Stage 2 method is
pattern-based. Term weights are evaluated based on term
distribution in discovered patterns rather than that in doc-
uments (as discussed in Section 3). Therefore, there may
exist a problem that the performance of our pattern-based

method could be underestimated when using term-based
computational judgements to measure. This problem ac-
tually happened in our previous experiments: when us-
ing RCV1’s manual judgements (topics R101-R150), this
pattern-based Stage 2 method was largely succeed in the
experiments and significantly improved the performance of
an information filtering system from using Rocchio, BM25,
and SVM [9]; however, such performance improvement
became relatively slight when experimented with RCV1’s
computational judgements (topics R151-R200). Though at
this stage it is still too early to justify this problem, it will
be interesting to investigate this problem in our future work
and test our pattern-based method with more data sets.

5 Conclusion

This paper investigated a model that was experimented in
the TREC 2009 Relevance Feedback track. The model had
two stages, corresponding to the design of the track. Given
a topic, the first stage of our model used a world knowl-
edge ontology to discover user background knowledge for
query expansion, and then retrieved the pseudo relevance
feedback. From both the positive and negative user rele-
vance judgements, the second stage method mined specific
and general features, and used these features to benefit in-
formation retrieval. According to the evaluation results, the
model performed well in Stage 1 but unsatisfactory in Stage
2. The unsatisfactory performance was caused by the dif-
ficulties in coping with the large ClueWeb09 Category-B
corpus.

Our participation on this TREC 2010 Relevance Feed-
back track was an innovative exploration of using both
positive and negative feedback judgements in information
retrieval. The participation also demonstrated that us-
ing a world knowledge ontology is capable of discovering
user background knowledge and improving information re-
trieval. In our future work, further investigation and ex-
periments will be carried on based on full content search
on ClueWeb09 Category-B, rather than half title-search half
content-search in this reported experiment.

Acknowledgements

The work presented in this paper was partially supported by
Grants DP0988007 from the Australian Research Council and
NSC98-2218-E-468-002 from the National Science Council of
Taiwan.

References

[1] B. Carterette. Robust test collections for retrieval evaluation. In
SIGIR ’07: Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval,
pages 55–62, New York, NY, USA, 2007. ACM.

11

[2] B. Carterette, V. Pavlu, E. Kanoulas, J. A. Aslam, and J. Allan. If
i had a million queries. In ECIR ’09: Proceedings of the 31th Eu-
ropean Conference on IR Research on Advances in Information Re-
trieval, pages 288–300, Berlin, Heidelberg, 2009. Springer-Verlag.

[3] S. Gauch, J. Chaffee, and A. Pretschner. Ontology-based person-
alized search and browsing. Web Intelligence and Agent Systems,
1(3-4):219–234, 2003.

[4] B. He, C. Macdonald, I. Ounis, J. Peng, and R. L. T. Santos. Uni-
versity of glasgow at trec 2008: Experiments in blog, enterprise, and
relevance feedback tracks with terrier. In TREC, 2008.

[5] R. Kaptein, J. Kamps, and D. Hiemstra. The impact of positive,
negative and topical relevance feedback. In TREC, 2008.

[6] L. Khan, D. McLeod, and E. Hovy. Retrieval effectiveness of an
ontology-based model for information selection. The International
Journal on Very Large Data Bases, 13(1):71–85, 2004.

[7] M. Lease. Incorporating relevance and pseudo-relevance feedback in
the markov random field model. In TREC, 2008.

[8] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A New Bench-
mark Collection for Text Categorization Research. Journal of Ma-
chine Learning Research, 5:361–397, 2004.

[9] Y. Li, A. Algarni, S.-T. Wu, and Y. Xu. Mining negative rele-
vance feedback for information filtering. In Proceedings of the
IEEE/WIC/ACM international conference on Web Intelligence, pages
606–613, 2009.

[10] Y. Li and N. Zhong. Mining Ontology for Automatically Acquiring
Web User Information Needs. IEEE Transactions on Knowledge and
Data Engineering, 18(4):554–568, 2006.

[11] Y. Li, X. Zhou, P. Bruza, Y. Xu, and R. Y. Lau. A two-stage text min-
ing model for information filtering. In CIKM ’08: Proceeding of the
17th ACM conference on Information and knowledge management,
pages 1023–1032, New York, NY, USA, 2008. ACM.

[12] X. Ling, Q. Mei, C. Zhai, and B. Schatz. Mining multi-faceted
overviews of arbitrary topics in a text collection. In KDD ’08:
Proceeding of the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 497–505, New York,
NY, USA, 2008. ACM.

[13] S. E. Middleton, N. R. Shadbolt, and D. C. D. Roure. Ontological
user profiling in recommender systems. ACM Transactions on Infor-
mation Systems (TOIS), 22(1):54–88, 2004.

[14] S. E. Robertson and I. Soboroff. The TREC 2002 filtering track re-
port. In Text REtrieval Conference, 2002.

[15] S. Scott and S. Matwin. Feature engineering for text classification. In
ICML ’99: Proceedings of the Sixteenth International Conference on
Machine Learning, pages 379–388, San Francisco, CA, USA, 1999.
Morgan Kaufmann Publishers Inc.

[16] F. Sebastiani. Machine learning in automated text categorization.
ACM Computing Surveys (CSUR), 34(1):1–47, 2002.

[17] A. Sieg, B. Mobasher, and R. Burke. Web search personalization
with ontological user profiles. In Proceedings of the sixteenth ACM
conference on Conference on information and knowledge manage-
ment, pages 525–534, New York, NY, USA, 2007. ACM.

[18] X. Tao, Y. Li, and N. Zhong. A personalized ontology model for web
information gathering. Accepted by IEEE Transaction on Knowledge
and Data Engineering, December 2009.

[19] X. Tao, Y. Li, N. Zhong, and R. Nayak. Ontology mining for
personalized web information gathering. In Proceedings of the
2007 IEEE/WIC/ACM International Conference on Web Intelligence,
pages 351–358, 2007.

[20] S.-T. Wu, Y. Li, and Y. Xu. Deploying approaches for pattern re-
finement in text mining. In Proceedings of the Sixth International
Conference on Data Mining, pages 1157–1161, 2006.

[21] S.-T. Wu, Y. Li, Y. Xu, B. Pham, and C. P. Automatic pattern taxon-
omy exatraction for web mining. In Proceedings of IEEE/WIC/ACM
International Conference on Web Intelligence, pages 242–248, Bei-
jing, China, 2004.

12

