
PARADISE Based Search Engine at TREC 2009 Web Track

Dongdong Shan, Dongsheng Zhao, Jing He, and Hongfei Yan

School of Electronic Engineering and Computer Science

Peking University, Beijing, China, 100871

{sdd, zds, hj, yhf}@net.pku.edu.cn

ABSTRACT

In this paper, we introduce the PARADISE search engine in

TREC09 Web track. PARADISE is the abbreviation for

Platform for Applying, Research and Developing Intelligent

Search Engine, which is a search engine platform developed

by SEWM group, Peking University. The system is

designed to support both English and Chinese information

retrieval. This system preprocessed and indexed the five

hundred million web pages for this year’s Web Track. In

the preprocessing stage, the templates were removed, the

encoding were identified and unified, and the anchor texts

and InLink information are extracted with the mapreduce

framework (using Hadoop in this system). In retrieval, our

runs used an extension of BM25. This model distinguishes

terms from different fields and integrated both term counts

and position information. Furthermore, some web based

features are also considered.

Categories and Subject Descriptors

H.3.3 [Information Search and Retrieval]: Systems Issues,

Retrieval Models

General Terms

Performance, Design, Experimentation.

Keywords

System Design, Information Retrieval, Term Proximity.

1. INTRODUCTION
PARADISE[1] was developed by Search Engine and

Web Mining group in Peking University. It aims to provide

a search engine platform for processing large volume of

data. The Web track requires retrieving documents on a

very large document collection, so it becomes a challenge

for both effectiveness and efficiency.

 PARADISE system contains several important

components: store, preprocessing, indexing and retrieval.

We would introduce both the architecture and algorithms in

detail. Furthermore, we would analyze our performance in

Web track this year.

2. Task
This year's Web Track uses a new collection named

ClueWeb09. It contains one billion web pages in different

languages. The total size of this new collection is 25TB,

and the compressed size is 5TB, which is significantly

larger than earlier collections. This year’s task focuses on

the English corpus in the test collection，which involves a

total of 504 million English web pages with a size of

1.94TB after compression.

In this task we used 24 machines. 23 machines are used

to process the data, such as content extraction, data

indexing, information retrieval. The rest is used as a front-

end service machine. It interacts with the 23 machines when

they run queries. It submits queries and collects the results

returned by those machines. Each of the machines has two

2.8 GHz Intel Pentium CPUs, 4GB memory, and 1.6TB of

local SATA disk.

In addition, we have a cluster of 30-machine running

Hadoop distributed computing environment. We use it to

merge anchor texts, compute PageRank, and find duplicate

pages.

3. Document Representation
In our system, we have two kinds of documents. The first

kind of document is a normal document, such as HTML,

PDF, and MP3. The second one is the document that has

been preprocessed by preprocessing system. This kind of

document has a certain format. The index system only reads

this kind of document. We will take HTML page as an

example to introduce the second kind of document contains.

As we know, a HTML page contains much information,

such as URL, title, body, description and anchor texts.

There is also some specific information, such as importance

and duplicate degree of this document. The preprocessing

system is mainly used to extract these information from the

original web page, and then save those information into

store system. Therefore the indexing system can read the

formatted document for store module.

In this year’s task, we use the following information as

contents of the document: title, body, anchor text, URL’s

text, and InLink value. The title part contains the text in the

<title> tag. We don’t extract the real title of this document.

Body mainly contains HTML text without HTML tags.

Anchor text includes text information showing that other

pages point to this page. URL text contains text information

belongs to the URL in this page. Inlink degree represents

the total number page links pointing to this page.

4. Data Store Module
Web pages are allocated to different data servers by the

hash values of their URLs. The hash function is designed in

a way that pages from the same host are hashed to the same

data server. In the allocating process, each page is assigned

a unique 64-bit ID, the first 24 bits of which represent the

data server and the last 40 bits is the page's sequence

number on that data server.

A data server partitions the received web page data into a

set of files, whose size can be configured. In this task, it is

configured to 1GB. Data server's application interfaces

provide sequential scan and random access functions. In

this task, each data server maintains about 130GB web page

data and processes 2,200,000 pages on average.

Two data formats are used on data servers. In one of

them, namely the Tianwang format, web pages are simply

sequentially stored, which provides good sequential scan

performance but it is slow when random accessing.

However, the whole processing rarely performs random

access to the pages, so this format works well. Alternatively,

the other format supports quick random access but not

quick sequential scan. This format is designed for document

summary and snapshot services in which case page data

need be fetched efficiently.

Information after preprocessing includes the original web

page and the result of preprocessor. We also store that

information, such as the titles and the main contents on

those store servers.

5. Data Preprocessing and Indexing
The main target of preprocessing system is to extract

useful information from various files, such as HTML, PDF,

and MP3 etc. for retrieval system. When it extracts

information, it usually contains the following steps: web

page encoding transformation, page normalization, noise

elimination, anchor text extraction, link-analysis, and

duplicate pages elimination etc.

Web page encoding transformation translates various

coding of html pages into one certain coding. Page

normalization repairs the missing tags in HTML page.

Noise elimination removes useless information like

advertisements from the web page. We extract anchor text

and URL pairs on multiple machines when eliminating

noise information in HTML pages.

Duplicate pages elimination aims to find the duplicate

pages, and to remove the Duplicate pages from the

collection. It is useful in web search. But when we did

experiments with GOV2 dataset, we found that lots of

pages were removed by our program so that the recall was

very low. In this task, we do not use this step when

preprocess the collection. We use a simple version to

remove the noise in web pages, by just removing the tags of

HTML page.

We use Hadoop to merge anchor texts and compute the

InLink degree for each page. The computing data size is

about 1.7 TB. We have two copies for replication in

Hadoop. The Map function [2] reads huge <URL, anchor

text> key-value pairs from link list file. We found there are

large amounts of duplication in anchor texts. So we encode

the anchor texts and compress the data by merging the

strings of anchor texts. This reduced 80%-90% storage

compared with raw data. The reason why we use Inlink

instead of PageRank is that computing InLink is more

efficient.

The indexing system reads information about each web

page from store module. In this year’s task, we index four

kinds of texts: title, body content, URL text, and anchor text.

We also store InLink values, page ID and URL in index file.

Indexing system tokenizes the text, removes stop words and

stems word with poster algorithm. Then it builds the

inverted file. It also writes the special information such as

InLink value and the length of texts into a special file. This

kind of files should be read fast, so this information always

is kept in memory.

We submit three official runs for evaluation. They are

generated by different information. Run1 and Run2 use the

same copy of index, which only contains title and body.

The index used in Run3 contains all information as we

mentioned before. We also reserve the stop words in index

using by Run3. Although it makes the index much bigger,

stop words can help retrieval under some condition.

6. Retrieval Model
The retrieval model is based on BM25. We slightly

extend this formula. Every field is extended according to its

weight during the retrieval process [3]. InLink, term

proximity and term occurrence are also taken into

consideration. The final score formula of a document is

 (1)

where β is set to 0 in Run1 and Run2. Table 1 shows the

three official runs used information. Parameter c is the term

occurrence score, which is calculated as

 (2)

In this formula, qtotal is the number of unique terms in the

query, and qocc represents number of terms which have

occurrence in the current document. c1 and c2 are two

smoothing parameters. We find it can get the best results

when c1 = 6 and c2 = 5.5 in GOV2 data collection.

ScoreBM25 is the score computed by BM25 model;

ScoreInLink represents contribution made by InLink; and

ScoreTP is defined as the score of term proximity. Each of

the three is described below.

ScoreBM25 is calculated as normal BM25 formula with a

small modification, that is, the term frequencies is extended

in each field. For example, a term t appears once in title, 3

times in content. If we define the title weight as 5 and

content weight as 1, the final term frequencies is 1*5+3*1 =

8. The BM25 parameters are set

Title and content are treated equally inRun1. The

computation of Scoretp and the value of γ are different

between Run1 and Run2. In Run2 and Run3, the proportion

of title and content is set to 2:1. ScoreInLink is calculated [4,5]

as

 (3)

where N is the value of InLink, and c3 is a parameter. The

parameter β is set to 0 in Run1 and Run2. We set c3 is 0.5

in our runs.

ScoreTP is described as follow. For a query t1t2…tn with n

terms, there exists n-1 adjacent term pairs: t1t2, t2t3…tn-1tn.

For each adjacent term pair titi+1 in different fields, we can

compute the minimum distance between ti and ti+1, which is

denoted as MinDisti,f. The score is calculated [6,7] as

 (4)

where Boostf denotes the weight of field f, F is the set of

indexed fields. The score of all adjacent titi+1 in all fields is

 (5)

The final ScoreTP is

 .(6)

C4 is a smoothing parameter, which is set to 0.5 in our

experiment. We use RawScoretp in Run1, and Scoretp in

Run2 and Run3.

Table 1 The information and method each run used

7. Result and Analysis
In this section, we analyze of three official runs we

submitted. Though, the results are not as good as we

expected, we find some important and worth-exploring

factors.

In this year’s task, the average length of 50 topics is 2.1,

which is shorter than that of previous Terabyte Track by 1.

In addition, there are also many single-word topics. We turn

our system parameters based on GOV2 dataset using topic

701~850 without any special optimization on short queries.

We also remove the stop words from the topics, which

make the topics shorter. The description of topics is show in

table 2.

Table 2. Length of topics in Wt09 and GOV2
Topic Length Wt09(total 50) 701-850(total 150)

1 17(34%) 2 (1.3%)

2 17(34%) 39 (26%)

>2 16(32%) 109(72.7%)

Due to these short topics, we give an analysis of how

they affect the performance of our system. Among 17 one-

word topics, 14 topics need to find the homepage, only

three topics are purely information topic (wt09-04: totlet,

wt09-12: djs, wt24: diversity). In official Run1 and Run2,

these methods only find one topic which has relevant results

in top10. For other 16 topics, we don’t find any relevant

document in top10. Link method (Run3) can find at least 7

topics which at least one relevant document in top 10. From

the above results, we can find link method is better than

previous two methods we mentioned for one-word topics. It

may because link method combines the URL content and

link information. However, it performs worse than the

previous two methods for information topic wt09-12.

Table 3 The number of topics find at least one

relevant document @5,@10
Topic Length Run1 Run2 Run3 Med

Rel Retr @ 5(Len=1) 1 1 5 4

Rel Retr @ 10(Len=1) 1 1 7 7

Rel Retr @ 5(Len=2) 5 5 5 7

Rel Retr @ 10(Len=2) 6 5 8 12

Rel Retr @ 5(Len>2) 8 8 7 10

Rel Retr @ 10(Len>2) 10 10 9 11

Rel Retr @ 5(all) 14 14 17 21

Rel Retr @ 10(all) 16 16 24 30

For two-word queries, our runs give bad results due to

several reasons. First, 13 of these 17 topics are needed to

find homepage. Second, we filter out stop words and stems

word which makes the topics shorter. However, we need

further experiments to find out the true reasons. We also

find that the methods using document structural information

performs slightly worse than that without structural

information. Maybe we use different term proximity scores.

Most of these two-word topics are phrases, while our

system doesn’t optimize for them. Although we use the

proximity techniques, we limited the maximum proximity

score is 1. For other 16 longer queries, we find more

relevant documents in top 5 ranks and top 10 ranks. This

may suggest that our system is more robust for longer

queries.

Since our system finds none relevant docs in top 10 for

nearly half of all topics, the whole score we get is much

lower than that of GOV2.

Run Anchor

Text

URL Text InLink Term

proximity

1 pkuTp N N N Y

2 pkuStruct N N N Y

3 pkuLink Y Y Y Y

Table 4. Effectiveness of office run
Run bpref map P5 P10

1.pkuTp 0.170 0.059 0.132 0.148

2.pkuSturct 0.171 0.062 0.132 0.146

3.pkuLink 0.159 0.045 0.108 0.116

8. Conclusion
The Web track provides a good test bed for retrieving

documents from a very large Web document collection. We

find out some deficiency of the PARADISE system,

including: 1) It performs worse for short queries; 2) There

is no query analysis system. It is supposed to perform better

if we can distinguish multiple query intents; 3) It has not

employed much information from web structure, such as

PageRank.

9. Acknowledgments
This work is partially supported by China MOE under

the grant number 2008107, NSFC under the grant number

70903008 and 60933004, and 863 Grant 2007AA01Z154.

We also thanks to Kai Fan who help us to calculate InLink

values and merge anchor texts via Hadoop Cluster.

10. References
[1] "http://sewm.pku.edu.cn/src/paradise/."

[2] J. Dean and S. Ghemawat, "MapReduce: Simplified data

processing on large clusters." OSDI 2004

[3] S. Robertson, H. Zaragoza, and M. Taylor, "Simple BM25

Extension to Multiple Weighted Fields," CIKM 2004, pp.

42-49.

[4] T. Upstill, N. Craswell, and D. Hawking, "Query-

independent evidence in home page finding," ACM

Transactions on Information Systems (TOIS), vol. 21, 2003,

pp. 286-313.

[5] N. Craswell, S. Robertson, H. Zaragoza, and M. Taylor,

"Relevance weighting for query independent evidence,"

ACM, 2005, p. 423.

[6] C.L. Clarke and B. Lushman, "Term Proximity Scoring for

Ad-Hoc Retrieval on Very Large Text Collections," Third

Text.

[7] R. Song, M.J. Taylor, J. Wen, H. Hon, Y. Yu, and M.R.

Asia, "Viewing Term Proximity from a Different

Perspective," Work, 2008, pp. 346-357.

