IIIT Hyderabad at Million Query Track TREC 2009

Sudip
Datta

Vinay Kushal
Pande Dave

Vasudeva
Varma

Prashant
Ullegaddi

{prashant.ullegaddi, sudip.datta, vinay.pande, kushal.dave}@research.iiit.ac.in
vv@iiit.ac.in
Search and Information Extraction Lab,
International Institute of Information Technology,
Hyderabad-500032.

Abstract

This was our maiden attempt at Million Query track,
TREC 2009. We submitted three runs for ad-hoc
retrieval task in Million Query track. We explored
ad-hoc retrieval of web pages using Hadoop—a dis-
tributed infrastructure. To enhance recall, we ex-
panded the queries using WordNet and also by com-
bining the query with all possible subsets of tokens
present in the query. To prevent query drift we
experimented on giving selective boosts to different
steps of expansion including giving higher boosts to
sub-queries containing named entities as opposed to
those that did not. In fact, this run achieved high-
est precision among our other runs. Using sim-
ple statistics we identified authoritative domains such
as wikipedia.org, answers.com, etc and attempted to
boost hits from them, while preventing them from
overly biasing the results. An attempt to query clas-
sification was also made.

1 Introduction

The main goals of Million Query track in TREC 2009
were 1) To explore ad-hoc retrieval and classify the
queries as precision-oriented /recall-oriented queries,
2) To investigate the reusability of the relevance judg-
ments. To evaluate ad-hoc task a set of 40K queries
were provided. First 1000 queries were of the high-
est priority. And every system was required provide
results for the first 1000 queries compulsorily. We
explored ad-hoc retrieval by designing a distributed
system built using Lucene' and Hadoop? which will
be discussed in Section 2.

We started off by exploiting the finer details em-
bedded in a document structure. We had extracted
various fields of a page (e.g., title, bold, href, etc.).

Thttp:/ /lucene.apache.org/
2http://hadoop.apache.org/

We initially tried using this information in ranking
the result (weighing terms in title higher, and so on).
But the results were not too encouraging. Finally, we
retained three fields: document-url, title and body
after parsing the content.

Few experiments on initial search results showed
that a lot of spam/duplicate pages were present in the
data set especially in the top hits. When we checked
with the contents of those pages, it was found that
there was a negligible difference between the dupli-
cate documents. Due to this, most of the results in
the top hits looked similar and had similar content.
To overcome this, We employed a technique called
deduplication explained in Section 3.1 to remove du-
plicates from the result set, resulting in more diver-
sified results. The main motivation behind this was
any user would not want to see very similar (in fact
the same) results in top hits. In all we tried to model
our retrieval system as a web search engine.

Another area we concentrated on was query expan-
ston. Since majority of the queries were short, a query
expansion module had to be designed. We also ex-
perimented with proper nouns in query expansion.
Proper nouns in a query are important than any other
query terms for they seem to carry more information.
In expanded query, sub-queries not containing any of
proper noun terms should have lower weightage (as
they are more likely to result in query drift) as op-
posed to ones containing one or more of these terms.
E.g. consider query “University of Hyderabad”, here
proper noun “Hyderabad” carries more information.
“Hyderabad” together with “University” makes the
above query complete. Hence, here query term “Hy-
derabad” is an important query term and should be
weighed high. We employed a simple heuritsic to
identify all proper nouns in the query log as explained
in Section 3.2.

Finally, we also experimented with giving addi-
tional boost (document level boost) to authoritative
pages among the search results. The webgraph pro-

warc warc warc

MAP 1 MAP 2 MAP m

SHUFFLE ‘

h r r

Reduce 1 Reduce 2 Reduce-n

l

Parsed
Data

Parsed Parsed

Data Data

Figure 1: Stage 1— Parsing of HTML pages on
cluster—One time job

vided with the dataset was not a complete graph as
many outlinks were pointing to pages outside the cor-
pus. Hence pageranking was not found to be too use-
full. We needed another way to devise a way to find
authoritative pages in the corpus over different do-
mains. We used another method as discussed in Sec-
tion 3.3 to find authoritative pages and boost them
in the search results.

We also attempted the original query classification
task of classifying queries into 4 classes - Hard Pre-
cision, Soft Precision, Soft Recall, Hard Recall. To
determine the viability of finding a global consensus
and possible rules that could later be used to build
a classifier. Four of us independently tagged the first
500 queries, but observed large inter-annotator dis-
agreement both in terms of rules and labels. Thus
we concluded that the task of classifying queries into
precision and recall is very subjective and even harder
to generalize than classifying queries into navigational
and informational.

The rest of the paper explains in detail the ap-
proaches we followed.

2 System Design

The data set consisted of 50 million HTML web
pages, with some long web pages truncated to 256 KB.
The data set size was just over 1TB. Indexing 1TB
data set (50million documents) and handling trun-
cated pages required a careful system design. Trun-
cation caused a major problem in parsing the data
as most of the HTML parsers were vulnerable to
missing tags/malformed tags. We needed a robust

Parsed Parsed
Data Data

MAP 1 MAP 2 MAP m
r
‘ SHUFFLE
y r
Reduce 1 Reduce 2 2l Reduce-n
[S

Figure 2: Stage 2—Indexing on Hadoop cluster

HTML parser and after trying various publicly avail-
able parser, selected Jericho®> HTML parser.

We used Lucene + Hadoop combination in a simi-
lar fashion to Nutch?® architecture, for indexing using
Map/Reduce [2] paradigm. Here we describe Hadoop
cluster which was used to index the data set. We
used a cluster of 9 nodes. Each node was a quad
core machine with 4GB RAM. One node was spe-
cially designated as the master, which only took care
of assigning tasks to the remaining nodes i.e., slaves.
Each slave node was set to run 8 maps and 4 reduces.
With this setting we could index the whole data in
less than 4 hours which otherwise would have taken
a day to index!

The architecture used for parsing and indexing the
data is shown in figure 1 and figure 2. The distributed
infrastructure we employed for indexing the data con-
sisted of two stages:

e Stage 1: Parsing—Every map read a WARC
file, and parsed it with WARC reader. Once
HTML pages were extracted, they were parsed
with Jericho HTML parser, and saved on HDFS
as a key/value pair SequenceFile where key was
clueweb-id of the page, and value was the parsed
content of the page . The architecture for parsing
on Hadoop is shown in figure 1.

e Stage 2: Indexing—The parsed data in first stage
was fed to indexer. We had 8 reduces and each
used Lucene to creat 4 indexes of the data it
processed. In all we had 32 indexes of the data

3http://jerichohtml.sourceforge.net
4http://www.nutch.org/

created by eight reduces. The architecture for
indexing on Hadoop is shown in figure 2.

e Stage 3: Merging—We then merged these 32
indexes into 8 indexes so that they could be
searched in distributed manner by placing each
of the 8 indexes on individual machines. We used
RMI search to get result from each machine and
then merged results on a server. In this way we
could substantially reduce the search time.

3 Experiments

In this section, we present the various approaches we
followed and the experiments we conducted.

3.1 De-duplication

The TREC web corpus contained many duplicate
pages having almost the same title and content but
slightly different URLs. We refer to process of han-
dling these duplicates as De-duplication. When the
search results were analyzed without de-duplication
it was found that the results contained many dupli-
cates clustered together and there was no diverseness
in the top results. For Example: searching for the
string “naive bayes” gave many wikipedia pages that
had the same content and similar URLs. As all these
duplicate results have scores very close to each other,
they come in a group in search results. This situa-
tion is not desirable in the domain of Web search as
it results in large redundancy in search hits. Another
ill-effect of this redundancy is that other important
results fail to figure among the top hits.

3.1.1 Duplicate Detection

As the duplicates have scores very close to each other,
the search for duplicates is carried out only in the
vicinity of the result for which duplicates are checked.
Hence, search for duplicates is done in a window of
50, where the first result(in the group of duplicates)
is kept as it has the highest score amongst all the
duplicates and rest are treated as duplicates.
We used following heuristics to detect duplicates:

1. The string edit distance of the URLs of the two
results was less than a threshold (was set to 10).

2. If the difference in scores of the two duplicates
was less than a threshold (set to 0.001).

3. The titles of the duplicates match exactly.

The duplicates were searched in a sliding window
where one result (the first) was checked for duplicate
with the rest of the results in the window. There
are two approaches that were followed to tackle the
problem:

1. Removing duplicates: As the duplicates do not
contribute anything to the result set, the dupli-
cates are simply deleted from the result set. As
the maximum number of results to be submit-
ted per query was 1000, deleting duplicates gave
chance to any relevant result outside the first
1000 results. This is the approach followed in
all the runs.

2. Demoting duplicates: Another approach that
can be followed is demoting the results. In this
approach duplicates are penalized and are moved
down the order. The process of demotion has
to be in such a way that the duplicates are dis-
peresed down the results while other hits from
the top 1000 are promoted up. Descending all
the duplicates by a Fibonacci sequence (2, 3, 5,
8 ...) is a natural choice for such an application.
For example, the first duplicate is demoted by 2
positions from its current position, the next by
3, then next by 5 and so on. For some duplicates
the position to which the duplicate descended
can reach 1000, hence they should be promoted
up from the position 1000 again by a Fibonacci
sequence.

3.2 Query Expansion using Lucene

We search the query terms in different fields of doc-
uments like “url”, “title”, “h1”, “bold”, “text”, etc.
We observed that if query terms occured in url or ti-
tle of the document, then chances of document being
relevant are high. Hence, we gave more boost to doc-
uments having query terms in their url and title. For
rest of the fields we assigned weights in decreasing
order of their importance.

For query expansion, we generated a large num-
ber of simple queries containing query terms from the
original query and process them separately. After ex-
ecuting all the subqueries we obtained final result by
combining all results after giving differential boosts
to results from individual queries. Procedure for cre-
ating subqueries is stated below:

1. We assume that query term order and proxim-
ity are very important for finding relevant doc-
uments. Hence, we did exact search of query
terms in the documents. Documents having ex-
act query terms in url and titles have more weigh-

tage than documents with exact terms in other
fields of the document.

2. We also search query term in approximate vicin-
ity by using window of three words. Here, we
assume that query terms can occur toghether in
any order within the window of three words con-
taining other words with query terms.

3. To increase recall, we also constructed queries
from all the possible subsets of tokens (except
the stop words) contained in the query. As an
ill-effect, this could result in large query drift.
We observed that for queries containing noun
terms, subqueries which do not contain any of
the noun terms result in very noisy results. Fur-
ther, if the queries contain ’proper nouns’, giv-
ing higher weightage to results from subqueries
containing these terms, results in further con-
tainment of quert drift. We used WordNet [3] to
identify noun terms. Any term not contained in
WordNet is likely to either be a ‘proper noun’ or
a mis-spelling. We employed this hypothesis as
a first step to identifying proper nouns. Besides,
we manually short-listed proper nouns from the
list of words marked as nouns by WordNet. This
query expansion technique could be more effec-
tively employed if there exist other efficient ways
to identify ‘proper nouns’.

To decide weightage among subqueries containing
nouns we use a simple formula to provide more boost
to subqueries containing more proper nouns than
query containing mixture of nouns and proper noun
terms. The weightage assigned to a sub-query Qgsup
is given by:

. _ Qsub| | [Psubl
Weightage(Qsup) = ‘Q‘b . \Plb - By
where,
|Qsup| is number of terms in subquery
|Q| is total number of terms in original query

| Psyp| is number of pronouns in subquery

|P| is total number of proper nouns in original query

By is boost set for field ‘f ’

From this formula, it is clear that sub-query con-
taining more number of terms and more number of
proper nouns gets more weightage than smaller sub-
queries containing less proper nouns; thus naturally,
original query getting maximum weightage.

For some queries we found less recall even after
doing all of the above steps. For such queries, we

Table 1: Top Authoritative Domains

’ Authoritative Domains \ No. of Pages
en.wikipedia.org 5996421
dictionary.reference.com 34686
dir.yahoo.com 30428
www.aboutus.org 26818
acronyms.the freedictionary.com 25849

expand the query by adding synonyms of query terms.
To get synonyms we use WordNet database.

Results returned by subquries may not be mutually
independent. If a document is retrieved by multiple
queries, then it is assigned highest of these scores.

Example: For a query “President Barrack Obama”,
final expanded query becomes:

(title:"president barack obama"~3000.0 |
title:"president barack obama"~371000.0 |
title:"barack obama"~11.304348 |
title:"barack obama"~375.652174 |
title:"president obama""13.043479 |
title:"president obama"~376.5217395 |
title:"president barack"~0.05 |
title:"president barack"~370.05 |
title:obama~4.347826 |
title:obama~2.173913 |

title:barack™0.5 |
title:president~0.5)70.1

Because the fully expanded query is very large we
display only a part of the expanded query. Out of
three query terms only ‘Obama’ is tagged as proper
noun in our proper noun list. Hence, subqueries con-
taining term Obama have higher weightage.

3.3 Promoting Authoritative Pages

As Web pages from authoritative domains like
wikipedia.org provide reliable and less noisy informa-
tion, the chances of them being relevant hits are high.
Hence, we promoted the authoritative pages in the
search results. To identify authoritative domains in
our corpus, we generated a list of top domains from
the corpus based on number of pages from that do-
main. We promoted authoritative pages in search
results which were ranked among top 100 hits. Table
1 shows a few top authoritative domains.

4 Results

The performance measures used for evaluation were
Prec@N and nDCG@N, where Prec@QN is precision

Table 2: Prec@QN for our runs

’ RunID \ Prec@10 \ Prec@30 \ Prec@50 \ Prec@100 \ MAP ‘
iithAuEQ 0.208 0.188 0.178 0.189 0.154
1iith AuthPN 0.214 0.195 0.183 0.194 0.156
1ithExpQry 0.285 0.230 0.207 0.180 0.179
Table 3: nDCG@N for our runs
| RunID | nDCGQ10 [nDCG@Q30 [nDCG@50 [nDCG@100 |
iiithAuEQ 0.260 0.268 0.279 0.290
tiith AuthPN 0.207 0.240 0.252 0.267
1iithExpQry 0.202 0.233 0.247 0.263

at rank N, and nDCD@N is Normalized Discounted
Cumulative Gain(NDCG) at rank N. Table 2 shows
the Prec@N values for N = 10, 30, 50 and 100 and
Table 3 shows the nDCG@N values for N = 10, 30,
50 and 100.

We submitted 3 runs for the Million Query track

where each of the runs were built on top of Lucene.
The salient features for each of the runs are men-
tioned:
In iiithExpQry to enhance recall we did query ex-
pansion using WordNet, giving higher boost to sub-
queries containing named entity terms from the orig-
inal query, to prevent query drift. It also incorpo-
rated de-duplication wherein we removed repeated
hits. We did this, because we observed that a num-
ber or similar/identical hits were coming in the top
results and deduplication helped in removing them.
In retrospect, we realised that this severly hurt our
performance as it resulted in removal of several rele-
vant (though possibly repeated) results.

The iiithAuthPN run included features from ii-
ithExpQry except query expansion using WordNet.
It incorporated changes in terms of improved query
expansion (my minimizing query drift using selective
boosting). It also incorporated boosting of hits from
authoritative domains.

The iiithAuEQ incorporated a combination of all
approaches that we experimented with. Since, it re-
sulted in the worst performance, we believe that its
difficult to integrate multiple approaches to come up
with a cumulative improved performance.

5 Summary

We started off with the understanding of how Nutch
[1] works. Nutch is an open source search tool built
on top of Lucene and Hadoop. We also indexed the
clueweb(09 data in the same way. Our architecture
which combines both Lucene and Hadoop is explained

in detail in Section 2 and also depicted in Figure 1
and Figure 2.

To summarize, we experimented with 1) Proper
noun based query expansion, 2) Authoritative boost
for hits, and 3) Deduplication to remove similar pages
from the top hits. Expanding the proper noun terms
helped in increasing the recall for the search results,
while authoritative pages helped in promoting the top
relevant results from authoritative domains. Using
de-duplication resulted in the removal of relevant but
redundant hits from the search results. We attribute
the lower precision of all the three runs to the removal
of such duplicates.

We also made an attempt at query classification
task of classifying quries into precision/recall queries.
The results obtained were not encouraging. We an-
notated the queries manually. Each query was anno-
tated by four annotators, but the annotations differed
to a greater extent. This called for some sort of per-
sonalization in query classification.

In future, we wish to work on query classification
and design a more robust proper noun based query
expansion. Also we want to investigate better ways
of detecting authoritative pages in a data set.

References

[1] Mike Cafarella and Doug Cutting. Building nutch:
Open source search. Queue, 2(2):54-61, 2004.

[2] Jeffrey Dean and Sanjay Ghemawat. Mapreduce:
simplified data processing on large clusters. Com-
mun. ACM, 51(1):107-113, 2008.

[3] George A. Miller. Wordnet: a lexical database for
english. Commun. ACM, 38(11):39-41, 1995.

