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ABSTRACT
In this paper we present Carnegie Mellon University’s sub-
mission to the TREC 2009 Relevance Feedback Track. In
this submission we take a classification approach on docu-
ment pairs to using relevance feedback information. We ex-
plore using textual and non-textual document-pair features
to classify unjudged documents as relevant or non-relevant,
and use this prediction to re-rank a baseline document re-
trieval. These features include co-citation measures, URL
similarities, as well as features often used in machine learn-
ing systems for document ranking such as the difference in
scores assigned by the baseline retrieval system.

1. INTRODUCTION
Retrieval systems employing relevance feedback techniques

typically focus on augmenting the representation of the in-
formation need in order to improve performance. This is
typically done through adding or re-weighting terms in the
query representation, and have been shown to be effective
techniques in the past [4, 7, 8, 13]. These techniques, how-
ever, are typically limited to the information need represen-
tation used in the baseline retrieval system and generally
don’t utilize information beyond the word distributions in
the feedback documents to modify the query model.

This paper describes the CMU submission to the TREC
2009 Relevance Feedback Track. With this submission, our
goal is to explore techniques beyond query term re-weighting
and other traditional approaches to query expansion. Our
approach constructs pairwise features between judged-relevant
feedback documents and unjudged documents, and then ap-
plies a learned classifier to identify those unjudged docu-
ments likely to be relevant. The output of this classification
is then used to re-rank an initial document ranking, favoring
those documents predicted to be relevant to the query.

2. SYSTEM DESCRIPTION
The CMU submission system consists of four main compo-

nents: baseline retrieval, document selection, relevance clas-
sification and document re-ranking. The document selection
and relevance classification components of the system take
a machine learning approach, using a feature space derived
from document pairs.

This section describes these four components in the CMU
relevance feedback track submission, as well as this feature-
based document-pair representation.

2.1 Baseline Retrieval

For these experiments, we use Indri for our baseline rank-
ing1. Indri has been shown to perform well in ad-hoc re-
trieval tasks at TREC in previous years [8, 10]. For these
experiments we made use of a small standard stop-word
list and applied the Krovetz stemmer. We constructed full-
dependence model queries from the query text [9]. Smooth-
ing parameters were taken directly from previously pub-
lished TREC configurations2.

Initial informal experiments with pseudo-relevance feed-
back (PRF) with relevance models [7] indicated that tradi-
tional approaches to query expansion may be less effective on
the ClueWeb09 collection due to the susceptibility of those
techniques to the web-spam present in the collection. For
this reason we did not use PRF in our baseline run.

2.2 Document Representation
We take a machine learning approach to the document

selection and relevance classification components of our sys-
tem. These components use a common document represen-
tation scheme, described below.

2.2.1 Pairwise Representation
Our feature-based representation constructs feature vec-

tors for each pair of documents retrieved by the baseline
retrieval for a given query.

Dq = {dq1, dq2, . . . , dqR}
Pq = {f(dqi, dqj) | i, j ∈ {1, . . . , R}, i 6= j}

Dq are the R documents retrieved for query q, Pq are the
document pair vectors defined by f : Dq × Dq → RM , a
vector feature function over document pairs:

f(di, dj) = 〈f0(di, dj), f1(di, dj), . . . , fM (di, dj)〉

where each fk are instantiations of individual features de-
rived from the document pairs.

This representation allows use of some features that can be
difficult to integrate into traditional retrieval systems that
exclusively use term-weighting for estimating relevance. As
we describe below, many of our features cannot be mod-
eled with a bag-of-words document representation. Using
a pairwise representation also allows a “query by example”
approach to leveraging the feedback information. We make
the assumption that relevant documents tend to be simi-
lar to each other, viz. the cluster hypothesis [12]. Thus,
using pairwise features that describe document similarities

1http://www.lemurproject.org/indri
2http://ciir.cs.umass.edu/ metzler/indri-tb05.tgz



(or dissimilarities), the goal of our approach is to find other
relevant documents similar to those that have been judged.

2.2.2 Features
The fourteen document-pair feature functions (fk(di, dj))

used in these experiments are described below. These fea-
tures are generally intended to capture different types of
similarity (or dissimilarity) between two documents. Many
of these features are computed with the Jaccard coefficient,
a measure of similarity of two sets of objects. The Jaccard
coefficient of two sets A and B is given by:

J(A,B) =
|A ∩B|
|A ∪B| (1)

1. Document features

(a) Length: The absolute value of the difference in
the lengths of di and dj .

2. URL features

(a) URL Depth: The absolute value of the differ-
ence in the depth (number of occurrences of ‘/’)
in the URLs of di and dj .

(b) URL Host: The Jaccard coefficient computed
over overlapping character 4-grams in the URL
hostnames of di and dj .

(c) URL Path: The Jaccard coefficient computed
over overlapping character 4-grams in the URL
paths of di and dj .

3. Webgraph features3

(a) In-link: The absolute value of the difference in
the number of in-links to di and dj .

(b) Out-link: The absolute value of the difference in
the number of out-links from di and dj .

(c) Co-citation: The Jaccard coefficient computed
over the set of documents that link to di and dj .

(d) References: The Jaccard coefficient computed
over the set of documents that di and dj link to.

4. Query-derived features

(a) Unigram count: The absolute value of the dif-
ference in the count of query tokens in di and dj .

(b) Ordered bigram count: The absolute value of
the difference in the count of ordered query bi-
grams in di and dj .

(c) Unordered bigram count: The absolute value
of the difference in the count of unordered query
bigrams in di and dj .

(d) Unigram score: The absolute value of the dif-
ference in Indri score of the unigram component
of the baseline dependence model query.

(e) Ordered window score: The absolute value of
the difference in Indri score of the ordered win-
dow component of the baseline dependence model
query.

3All webgraph features were computed with the use
of the WebGraph software package, available from
http://webgraph.dsi.unimi.it/ [3].

(f) Unordered window score: The absolute value
of the difference in Indri score of the unordered
window component of the baseline dependence
model query.

All features are normalized to have zero-mean unit-variance
per query prior to training and testing.

2.3 Relevance Classification
We can use the above document pair representation scheme

to train a classifier that predicts whether unjudged docu-
ments are relevant or non-relevant given some judged doc-
uments. We make the assumption that relevant documents
are likely to be similar to each other, and dissimilar to non-
relevant documents with respect to the features defined in
Section 2.2.2. In contrast, we make no assumption about
the similarity of non-relevant documents to each other.

We train this classifier on a set of queries with known
relevant and non-relevant documents. Let the set of (binary)
judgements for a given training query, q be:

Jq = {(dqi, rqi) | rqi ∈ {0, 1}}

where rqi = 1 indicates the document dqi is relevant for
query q, and rqi = 0 indicates the document is non-relevant.

We train a logistic regression classifier on judged docu-
ment pairs, letting yqij ∈ {0, 1} indicate the class label of
the pair (dqi, dqj). This training set is constructed as follows:

JPq = {(f(dqi, dqj), yqij) | rqi = 1; yqij = rqj}

so that each pair of training examples has at least one judged
relevant document (dqi). The judgement on the other doc-
ument (dqj) indicates whether this pair is a positive or neg-
ative training example. Thus, the classifier is trained to
assign a positive (1) classification to relevant/relevant docu-
ment pairs, and a negative (0) classification to relevant/non-
relevant pairs. The result of this training produces a classi-
fication function h : Dq × Dq → [0, 1], where a value close
to 1 indicates a positive classification, and a value close to
0 indicates a negative classification.

After feedback judgements are collected, assuming some
of the feedback documents are relevant, we can apply the
learned classifier to predict whether or not unjudged doc-
uments are relevant or non-relevant. For each unjudged
document dqj , we make a relevance prediction given all the
judged relevant documents: {h(dqi, dqj) ∀ dqi s.t. rqi = 1}.
This set of predictions can be combined in several ways to
form a final relevance classification, for example taking the
mean, minimum, or maximum value across the predictions.
Preliminary experiments with the TREC 2009 Relevance
Feedback Track data showed that taking the maximum pre-
diction value across all the judged relevant documents gen-
erally yielded the best performance. Thus, we define our
final prediction for an unjudged document as follows:

π(dqj) = max
dqi∈Jq ;rqi=1

h(dqi, dqj)

This relevance prediction effectively classifies unjudged
documents based on their similarity to the closest judged
relevant feedback document with respect to the feature space
defined above. Because of this, it is critical to collect rel-
evance judgements on a diverse set of documents in order
to maximize the chance of identifying relevant documents
similar to possibly relevant but unjudged documents.



Note that judged non-relevant documents are used for
training the model, but are not used at prediction time after
collecting feedback judgements. Methods of using these non-
relevant feedback documents is an area for future refinement
of the models presented here.

2.4 Document Re-Ranking
We use the output of the above relevance classifier π to

re-rank the documents retrieved with the baseline ranking
algorithm. Due to the difficulty of re-scaling Indri’s language
modeling score and the output of a logistic regression clas-
sifier, we chose to combine scores using a rank-based voting
method, Borda Count [1]. Rather than combining the scores
of the baseline ranker and the logistic regression, Borda
Count linearly combines the ranks of the documents from
each of these components. Although this method ignores
the magnitude of the confidence of the prediction output, it
avoids the need to re-scale the scores to be comparable.

We use a weighted version of Borda Count in these experi-
ments to adjust the relative influence of the baseline ranking
score and the relevance prediction output. This weight is se-
lected to maximize Mean Average Precision via a grid search
on the same training data used to train the relevance clas-
sifier. For these experiments, we selected a weight of 0.3 on
the relevance classifier and 0.7 on the baseline ranking.

2.5 Document Selection
The final component of our system is the document selec-

tion system. As pointed out earlier, diversity is a critical fac-
tor underlying our document selection approach. The classi-
fication method in Section 2.3 gives a probabilistic measure
of the relevance of an unjudged document paired with a
judged relevant document. The final relevance score of an
unjudged document is then the maximum value assigned
across all the judged relevant documents for that query.
Having similar judged relevant documents agree on the rele-
vance of an unjudged document is not as effective as having
agreement across a diverse committee. Thus, this is the
main focus of our selection mechanism.

The most näıve approach is to select the top 5 documents
for feedback. However, it is often the case that top doc-
uments are similar to each other. Learning the relevance
level of similar documents might improve the ranking for
additional similar documents, but it might not generalize
to a larger set of documents. The diversity factor has been
investigated in the active learning literature [5, 11]. It is
indicated that choosing the unlabeled examples which are
representative of the underlying data distribution boosts the
performance. Hence, we focus in this section to select doc-
uments that are likely to be relevant and also different from
each other. Specifically, we adopted a clustering framework
where we cluster the unjudged documents using the Fuzzy
Clustering algorithm [2, 6].

The objective of fuzzy clustering is to spread out each
example into various clusters. In other words, each exam-
ple has a degree of belonging to clusters, rather than com-
pletely belonging a single cluster. Hence, it is a soft clus-
tering method instead of hard clustering. For each point x,
there is a corresponding coefficient indicating the degree of
belonging to the kth cluster; i.e. uk(x). However, the sum

of the coefficients for any given point x is equal to 1.

KX
k=1

uk(x) = 1∀x (2)

Furthermore, the degree of belonging uk(x) (or the mem-
bership coefficient) is inversely related to the distance of the
point to the cluster center centerk:

uk(x) =
1

d(centerk, x)
(3)

Hence, points further away from the center of the cluster
have a lower degree of belonging than the points closer to
the center. The cluster center is calculated using the mean
of all points, weighted by their membership coefficients:

centerk =

P
x uk(x)fxP
x uk(x)f

(4)

where f > 1 is a predefined parameter that controls the
fuzzyness. For instance, increasing f leads to crisper cluster-
ings whereas f close to 1 resembles the k-means algorithm.
Finally, the fuzzy clustering tries to minimize the following
objective function

X
k=1,...,K

P
i,j uk(i)fuk(j)fd(i, j)

2
P

j uk(j)f
(5)

where d(i, j) is the distance between two documents di and
dj . The algorithm tries to minimize the inter-cluster similar-
ity while minimizing the intra-cluster variance. It converges
to a locally optimal solution [2].

We use the output of our trained logistic regression clas-
sifier on the document-pair features, as described above, to
approximate this distance metric, d(i, j). Although this is
not a proper metric in the mathematical sense, it can be
used by the presented clustering algorithm and it does cap-
ture the feature-weighted similarity used in the relevance
classification component of our system.

Because our re-ranking system does not use non-relevant
feedback documents, we want to select documents that are
likely to be relevant as well as diverse. The classification
scheme described in Section 2.3 requires judged relevant doc-
uments to make predictions on the unjudged documents dur-
ing testing. Initial investigation with the TREC 2008 Rel-
evance Feedback data indicated that increasing the number
of judged relevant documents is quite beneficial to the final
re-ranking performance. Therefore, our aim is to identify
the potentially relevant documents while maintaining a de-
gree of diversity among them. Assuming the baseline indri
ranking is well-tuned and relatively accurate, it is reasonable
to consider the top documents to be judged. After we build
the clusters among unjudged documents, we choose the top
ranked document in each cluster to be judged. This simple
method has the two characteristics we require: 1) it consists
of top ranked documents that are likely to be relevant, and
2) it is a diverse set that leverages the underlying relevance
distribution.

3. EXPERIMENTS
This section describes the experiments conducted for the

TREC 2009 relevance feedback track.



3.1 Training
The document selection and relevance classification com-

ponents require training data in order to learn weights on the
features described in Section 2.2.2 for use in the logistic re-
gression relevance classifier (Section 2.3) and the clustering
algorithm (Section 2.5). Because previous queries and rele-
vance judgements do not exist on the ClueWeb09 dataset, we
built our training data from previous years’ TREC ad-hoc
tasks using the GOV2 collection. This training set includes
all relevance judgements for queries 701-850 excluding those
queries with no relevant documents. The final constructed
training set includes 1.8 million document pairs, with 31%
positive examples (relevant/relevant pairs) and 69% nega-
tive examples (relevant/non-relevant pairs). Although these
two document collections are somewhat different, the fea-
ture set described above can be generated on both collec-
tions. We make the assumption for these experiments that
the feature weights learned on the GOV2 collection are sim-
ilarly effective on the ClueWeb09 collection.

3.1.1 Features Weights
Sections 2.2 and 2.3 describe the pairwise document rep-

resentation and how we use this representation in a logistic
regression classifier to predict the relevance level of an un-
judged document given a judged relevant document. It is
informative to inspect the learned logistic regression weights
for each of the features used in our model, as the larger mag-
nitude weights indicates a more influential feature. Figure
1 shows the absolute weights of all the features learned in
the logistic regression model. We can see that the most in-

Learned Feature Weights

Feature Weight Absolute Magnitude
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Figure 1: Learned Feature Weights.

fluential features in our model are the URL-based features,
particularly the similarity of the host name and path por-
tions of the URL. The next most powerful features are the
components of the baseline Dependence Model query — the
ordered and unordered window scores assigned by Indri. The
Out-link count feature is the only webgraph feature that
is at all influential in the model. This feature is derived

exclusively from the content of the page (just the count of
anchors), rather than relations between documents in the
collection. This may be an indication that the GOV2 we-
bgraph used for training may be too sparse to effectively
estimate the other webgraph features which rely on linking
among documents in the collection.

3.1.2 Document selection
In this section, we analyze the quality of our document

selection mechanism across queries. First, looking at the
distribution of ranks in our baseline retrieval selected for
judgement, we can see a strong skew towards the top-ranked
documents to be selected for judgement. We also see that
we do a reasonably good job of finding relevant documents
not only at high ranks but also at lower ranks, though with
decreasing frequency. This is especially useful since it de-
tects the relevant documents the baseline ranker misjudged
by putting in lower ranks. Incorporating such documents to
the rank learner is likely to lead to improvements.
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Figure 2: Rank distribution of selected documents,
and judged relevant documents.

To evaluate the quality of our phase-1 document selec-
tion (CMU.1), we primarily consider the fraction of other
inputs that our phase-1 input performed better than, which
we refer to as the score here. (This score was computed
and distributed by the track organizers.) The score value is
intended to measure the general quality of the selected doc-
uments across a variety of systems that use this feedback as
input. A higher value indicates the documents selected by
our phase 1 system tended to be more useful that document
selected by other phase 1 systems. The score is calculated
on a per-query basis, and we evaluate the correlation across
queries with various other measures. These measures are
described below:

1. Mean Rank: The mean rank in our baseline rank-
ing of the documents selected in our phase 1 selection
(CMU.1).



2. Max Rank: The max rank in our baseline ranking
of the documents selected in our phase 1 selection
(CMU.1).

3. Num. Relevant: The number of documents selected
by CMU.1 judged relevant for the query.

Table 1 shows the mean and the standard deviation of
these measures and their correlations with the score, all
computed across queries. There is not a strong correlation
between the score value and any of the other performance
measures computed over our document selection set.

Measure Mean Std. Correlation with score

score 0.525 0.152 —
Mean Rank 10.24 5.85 0.139
Max Rank 30.0 19.59 0.115

Num Relevant 2.42 1.26 -0.030

Table 1: Document selection statistics and correla-
tions with the score

3.1.3 Phase 2 Performance
Our document selection component was designed to iden-

tify documents useful for our relevance classifier and re-
ranking components. For this reason, another appropriate
method of evaluating the quality of our phase 1 input is to
compare the relative improvement in phase 2 performance
using our phase 1 input and other phase 1 inputs. Figure
3 shows this relative improvement as a function of the total
number of relevant documents selected by that phase 1 in-
put. For each input set, we compute the statMAP on the
baseline and phase 2 run excluding those documents in the
input set from each evaluation (i.e. residual performance).
The relative improvement of a phase-2 run over the baseline
is referred to as the relative residual performance improve-
ment and is used as our primary measure to evaluate phase-2
performance.

There is a strong correlation between the number of rel-
evant documents selected and the relative improvement in
statMAP (Pearsons’s correlation of 0.926). This is likely due
to our phase 2 system ignoring non-relevant feedback docu-
ments, and suggests that focusing only on relevant feedback
is not always an appropriate strategy.

We also see that, although our phase 1 selection system
is moderately coupled with the phase 2 re-ranking system,
it doesn’t yield the best relative improvement in statMAP.
These results clearly indicate that for our phase 2 system,
increasing the number of relevant documents selected for
feedback is an effective strategy for improving performance.

Looking deeper at the robustness of our phase-2 perfor-
mance as a function of feedback documents, we evaluate the
relative residual performance for all input sets as we vary
the wight given to the feedback documents. Figure 4 shows
the relative residual performance for each of our system’s
input sets as the weight on feedback documents varies from
0 to 1. The vertical line in this figure indicates the weight
we used in our TREC submission (0.3) and the values along
this vertical line correspond to those plotted in Figure 3. We
can see that the weight selected based on our training data
is not optimal for all of the input sets, but does represent
a reasonable tradeoff across the different inputs. The best
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Figure 3: Relative residual performance improve-
ment in statMAP over our baseline vs. number of
relevant documents found in the input set. Each
point represents a unique input set, and our phase-
1 input (CMU.1) is shown in black.

performing input set (CMIC.1) could have achieved almost
a 13% improvement in residual statMAP had we selected
a lower weight, but for most input sets the selected value
is within 2% relative residual performance of the optimal
weight.

Interestingly, the CMIC.1 input set, which yielded our
best relative increase in statMAP, almost exclusively con-
sists of documents from Wikipedia4, whereas all of the other
input sets consist of less than 5% Wikipedia documents. Al-
though documents from Wikipedia may tend to be of higher
general quality with less spam, these documents may be less
diverse especially with regard to our link-based and URL-
based document pair features. This result is somewhat con-
trary to the hypothesis that drove our document selection
algorithm, that a diverse set of documents with respect to
our feature space woud be most beneficial in final re-ranking
performance.

4. CONCLUSION
In this year’s submission to the TREC Relevance Feed-

back track, we took a machine learning approach to both
the phase 1 (document selection) and phase 2 (document re-
ranking) components of our system. These two systems use
a shared feature space to represent pairs of documents. Our
system specifically tried to leverage non-textual information
such as webgraph features and URL similarity features, as
well as textual features such as scores generated from dif-
ferent components of the baseline query. The shared rep-
resentation moderately couples our selection and re-ranking
systems, enabling us to select a set of documents specifi-
cally deemed to be useful for the down-stream re-ranking

4http://en.wikipedia.org
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component.
Initial analysis suggests that phase 1 selection algorithms

that identify more relevant documents yield a higher relative
increase in performance for our phase 2 re-ranking system.
Although our phase 1 selection system performed well, yield-
ing almost an 8.5% relative improvement in statMAP, higher
relative improvement was achieved by several other phase 1
inputs which did not share the same feature space. For this
reason, it is not clear that coupling the representation used
in our phase 1 and phase 2 systems yielded a significant per-
formance boost. Further analysis is necessary to understand
the effect of coupling these two systems.

One of the goals of the phase 1 selection system was to
identify a diverse set of relevant documents by clustering
the top-ranked documents from the baseline retrieval. This
clustering was performed in the same feature space used by
the relevance classification component (Section 2.3) in an
effort to couple the two systems. To evaluate the effect of
this coupling, future work should assess the performance of
other selection mechanisms that aim to identify diverse doc-
uments, but not necessarily within the same feature space.
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