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Abstract: We document our participation in the
TREC 2008 Legal Track. This year we focused
solely on selecting rank cut-offs for optimizing the
given evaluation measure per topic.

1 Introduction
In recall-oriented retrieval setups, such as the Legal Track,
ranked retrieval has a particular disadvantage in comparison
with traditional Boolean retrieval: there is no clear cut-off
point where to stop consulting results. It is expensive to give
a ranked list with too many results to litigation support pro-
fessionals paid by the hour. This may be one of the reasons
why ranked retrieval has been adopted very slowly in pro-
fessional legal search.1

The “missing” cut-off remains unnoticed by standard eval-
uation measures: there is no penalty and only possible gain
for padding a run with further results. The TREC 2008 Le-
gal Track addresses this head-on by requiring participants to
submit such a cut-off value K per topic where precision and
recall are best balanced. This year we focused solely on se-
lecting K for optimizing the given F1-measure. We believe
that this will have the biggest impact on this year’s compar-
ative evaluation.

The rest of this paper is organized as follows. The method
for determining K is presented in Section 2. It depends
on the underlying score distributions of relevant and non-
relevant documents, which we elaborate on in Section 3. In
Section 4 we describe the parameter estimation methods. In
Section 5 we discuss the experimental setup, our official sub-
missions, results, and additional experiments. Finally, we
summarize the findings in Section 6.

2 Thresholding a Ranked List
Essentially, the task of selecting K is equivalent to thresh-
olding in binary classification or filtering. Thus, we recruited
and adapted a method first appeared in the TREC 2000 Fil-
tering Track, namely, the score-distributional threshold op-
timization (s-d) [2, 3].

∗The programming code implementing the methods described in this
paper will be made publicly available; for information on how to obtain it,
please contact the authors.

1In fact, to the surprise of many, at the TREC 2007 Legal Track the
Boolean reference run outperformed the ranked retrieval models at the rank
cut-off of the Boolean set size.

2.1 The S-D Threshold Optimization

Let us assume an item collection of size n, and a query
for which all items are scored and ranked. Let P (s|1) and
P (s|0) be the probability densities of relevant and non-rele-
vant documents as a function of the score s, and F (s|1) and
F (s|0) their corresponding cumulative distribution func-
tions (cdfs). Let Gn ∈ [0, 1] be the fraction of relevant doc-
uments in the collection of all n documents, also known as
generality. The total number of relevant documents in the
collection is given by

R = nGn (1)

while the expected numbers of relevant and non-relevant
documents with scores greater than s are

R+(s) = R (1− F (s|1)) (2)
N+(s) = (n−R) (1− F (s|0)) (3)

respectively. The expected numbers of the relevant and non-
relevant documents with scores ≤ s respectively are

R−(s) = R−R+(s) (4)
N−(s) = (n−R)−N+(s) (5)

Let us now assume an effectiveness measure M of the
form of a linear combination the document counts of the
categories defined by the four combinations of relevance
and retrieval status, for example a linear utility [18]. From
the property of expectation linearity, the expected value of
such a measure would be the same linear combination of the
above four expected document numbers. Assuming that the
larger the M the better the effectiveness, the optimal score
threshold sθ which maximizes the expected M is

sθ = arg max
s

{M(R+(s), N+(s), R−(s), N−(s))} (6)

Given n, the only unknowns which have to be estimated are
the densities P (s|1) and P (s|0) (or their cdfs), and the gen-
erality Gn.

So far, this is a clear theoretical answer to predicting sθ

for linear effectiveness measures. In Section 2.3 we will see
how to deal with non-linear measures, as well as, how to
predict rank (rather than score) cut-offs.



2.2 Probability Thresholds

Given the two densities and the generality defined ear-
lier, scores can be normalized to probabilities of relevance
straightforwardly [2, 14] by using the Bayes’ rule.

Normalizing to probabilities is very important in tasks
where several rankings need to be fused or merged such as
in meta-search/fusion or distributed retrieval. This may also
be important for thresholding when documents arrive one by
one and decisions have to be made on the spot, depending on
the measure under optimization. Nevertheless, it is unneces-
sary for thresholding rankings since optimal thresholds can
be found on their scores directly, and it is furthermore un-
suitable given F1 as the evaluation measure.

While for some measures there exists an optimal fixed
probability threshold, for others it does not. Lewis [13] for-
mulates this in terms of whether or not a measure satisfies
the probability thresholding principle, and proves that the
F measure does not satisfy it. In other words, how a sys-
tem should treat documents with, e.g., 50% chance of being
relevant depends on how many documents with higher prob-
abilities are available.

The last-cited study also questions whether, for a given
measure, an optimal threshold (not necessarily a probability
one) exists, and goes on to re-formulate the probability rank-
ing principle for binary classification. A theoretical proof is
provided about the F measure satisfying the principle, so
such an optimal threshold does exist. It is just a different
rank or score threshold for each ranking.

2.3 The S-D Rank Optimization

The s-d threshold optimization method is based on the as-
sumption that the measure M is a linear combination of the
document counts of the four categories defined by the user
and system decisions about relevance and retrieval status.
However, measure linearity is not always the case, e.g. the
F measure is non-linear.

Non-linearity complicates the matters in the sense that the
expected value of M cannot be easily calculated. Given a
ranked list, some approximations can be made simplifying
the issue. IfGn, F (s|1), and F (s|0) are estimated on a given
ranking, then Equations 2–5 are good approximations of the
actual document counts. Plugging those counts into M , we
can now talk of actual M values rather than expected. The
score threshold which maximizes M is given by Equation 6.

WhileM can be optimal anywhere in the score range, with
respect to optimizing rank cutoffs we only have to check its
value at the scores corresponding to the ranked documents,
plus one extra point to allow for the possibility of an empty
optimal retrieved set. Let sk be the score of the kth ranked
document, and define Mk as follows:

Mk =
{
M(R+(sk), N+(sk), R−(sk), N−(sk)) k = 1, . . . , n

M(0, 0, R, n−R) k = 0

The optimal rank K is arg maxk Mk. This allows for K to
become 0, meaning that no document should be retrieved.

3 Score Distributions
Let us now elaborate on the form of the two densities P (s|1)
and P (s|0) of Section 2.1 and their estimation. 2

Score distributions have been modeled since the early
years of IR with various known distributions [6, 7, 20, 21].
However, the trend during the last few years, which has
started in [3] and followed up in [1, 2, 8, 14, 22], has
been to model score distributions by a mixture of normal-
exponential densities: normal for relevant, exponential for
non-relevant.

Despite its popularity, it was pointed out recently that,
under a hypothesis of how systems should score and rank
documents, this particular mixture of normal-exponential
presents a theoretical anomaly [17]. In practice, neverthe-
less, it has stand the test of time in the light of

• its (relative) ease to calculate,

• good experimental results, and

• lack of a proven alternative.

The reader should keep in mind that the normal-exponential
mixture fits some retrieval models better than others, or it
may not fit some data at all. As a rule of thumb, candidates
for good fits are scoring functions in the form of a linear
combination of query-term weights, e.g. tf.idf, cosine simi-
larity, and some probabilistic models [2]. Also, long queries
[2] or good queries/systems [14] seem to help.

In this paper, we do not set out to investigate alternative
mixtures. We theoretically extend and refine the current
model in order to account for practical situations, deal with
its theoretical anomaly, and improve its computation. We
also check its goodness-of-fit to empirical data using a sta-
tistical test; a check that has not been done before as far as
we are concerned. At the same time, we explicitly state all
parameters involved, try to minimize their number, and find
for them a robust set of values.

3.1 The Normal-Exponential Model

Let us consider a general retrieval model which in theory
produces scores in [smin, smax], where smin ∈ R ∪ {−∞}
and smax ∈ R ∪ {+∞}. By using an exponential distribu-
tion, which has semi-infinite support, the applicability of the
s-d model is restricted to those retrieval models for which
smin ∈ R. The two densities are given by

P (s|1) =
1
σ
φ

(
s− µ
σ

)
σ > 0, µ, s ∈ R (7)

P (s|0) = ψ(s− smin;λ) λ > 0, s ≥ smin (8)

where φ(.) is the density function of the standard normal dis-
tribution, i.e. with a mean of 0 and standard deviation of 1,

2Probabilistic foundations necessary to follow the discussion can be
found in several sources, [e.g., 10, 11, 16]. Where the derivation of a for-
mula is obvious or it can easily be found in the literature, we give directly
the result. Otherwise, we show its derivation in Appendix B.



and ψ(.) is the standard exponential density (Equations 18–
19 in Appendix B). The corresponding cdfs are given by
Equations 20 and 22. The total score distribution is written
as

P (s) = (1−Gn)P (s|0) +GnP (s|1)

where Gn ∈ [0, 1]. Hence, there are 4 parameters to esti-
mate, λ, µ, σ, and Gn.

3.2 Problems of the Normal-Exponential Model

Over the years, two main problems of the normal-
exponential model have been identified. We describe each
one of them, and then introduce new models which elimi-
nate the first problem and deal partly with the other.

3.2.1 Support Incompatibility

Although we already generalized somewhat above by intro-
ducing a shifted exponential, the mix, as it has been used
in all related literature so far, has a support incompatibility
problem: while the exponential is defined at or above some
smin, the normal has a full real axis support. This is a theo-
retical problem which is solved by the new models we will
introduce.

3.2.2 Recall-Fallout non-Convexity

From the point of view of how scores or rankings of IR sys-
tems should be, Robertson [17] formulates the recall-fallout
convexity hypothesis:

For all good systems, the recall-fallout curve (as
seen from [. . . ] recall=1, fallout=0) is convex.

Similar hypotheses can be formulated as a conditions on
other measures, e.g., the probability of relevance should be
monotonically increasing with the score; the same should
hold for smoothed precision. Although, in reality, these con-
ditions may not always be satisfied, they are expected to hold
for good systems, i.e. those producing rankings satisfying
the probability ranking principle (PRP), because their fail-
ure implies that systems can be easily improved.

As an example, let us consider smoothed precision. If it
declines as score increases for a part of the score range, that
part of the ranking can be improved by a simple random re-
ordering [19]. This is equivalent of “forcing” the two under-
lying distributions to be uniform (i.e. have linearly increas-
ing cdfs) in that score range. This will replace the offending
part of the precision curve with a flat one—the least that can
be done— improving the overall effectiveness of the system.

Such hypotheses put restrictions on the relative forms of
the two underlying distributions. The normal-exponential
mixture violates such conditions, only (and always) at both
ends of the score range. Although the low-end scores are of
insignificant importance, the top of the ranking is very sig-
nificant, especially for low R topics. The problem is a man-
ifestation of the fact that an exponential tail extends further
than a normal one.

To complicate matters further, our data suggest that such
conditions are violated at a different score sc for the proba-
bility of relevance and for precision. Since the F -measure
we are interested in is a combination of recall and preci-
sion (and recall by definition cannot have a similar prob-
lem), we find sc for precision. We force the distributions
to comply with the hypothesis only when sc < s1, where
s1 the score of the top document; otherwise, the theoreti-
cal anomaly does not affect the score range. If smax is fi-
nite, then two uniform distributions can be used in [sc, smax]
as mentioned earlier. Alternatively, preserving a theoretical
support in [smin,+∞), the relevant documents distribution
can be forced to an exponential in [sc,+∞) with the same λ
as this of the non-relevant. We apply the alternative.

In fact, rankings can be further improved by reversing the
offending sub-rankings; this will force the precision to in-
crease with an increasing score, leading to better effective-
ness than randomly re-ordering the sub-ranking. However,
the big question here is whether the initial ranking satisfies
the PRP or not. If it does, then the problem is an artifact of
the normal-exponential model and reversing the sub-ranking
may actually be dangerous to performance. If it does not,
then the problem is inherent in the scoring formula produc-
ing the ranking. In the latter case, the normal-exponential
model cannot be theoretically rejected, and it may even be
used to detect the anomaly and improve rankings.

It is difficult, however, to determine whether a single rank-
ing satisfies the PRP or not; it is well-known since the early
IR years that precision for single queries is erratic, espe-
cially at early ranks, justifying the use of interpolated pre-
cision. On the one hand, according to interpolated precision
all rankings satisfy the PRP, but this is forced by the inter-
polation. On the other hand, according to simple precision
some of our rankings do not seem to satisfy the PRP, but we
cannot determine this for sure. We would expect, however,
that using precision averaged over all topics should produce
a—more or less—declining curve with an increasing rank.
Figure 1 suggests that the off-the-shelf system we currently
use produces rankings that may not satisfy the PRP for ranks
5,000 to 10,000, on average.

Consequently, we rather leave open the question of
whether the problem is inherent in some scoring functions or
introduced by the combined use of normal and exponential
distributions. Being conservative, we just randomize the of-
fending sub-rankings rather than reversing them. The impact
of this on thresholding is that the s-d method turns “blind”
inside the upper offending range; as one goes down the cor-
responding ranks, precision would be flat, recall naturally
rising, so the optimal F1 threshold can only be below the
range.

We will use new models that, although they do not elimi-
nate the problem, also do not always violate such conditions
imposed by the PRP (irrespective of whether it holds or not).
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Figure 1: Precision, Recall, and F1—as these are estimated by
TREC’s deep-sampling method—averaged over all 26 topics of
TREC Legal 2008. By rank 100,000, precision is still flat rather
than declining, recall is still rising, so F1 has not yet peaked; this
suggests that there are optimal K’s larger than 100,000. Systems
correctly predicting K’s larger than 100,000 do not get credit.

3.3 The Truncated Normal-Exponential Model

In order to enforce support compatibility, Arampatzis et al.
[5] introduced truncated models which we will discuss in
this and the next section. They introduced a left-truncated at
smin normal distribution for P (s|1). With this modification,
we reach a new mixture model for score distributions with a
semi-infinite support in [smin,+∞), smin ∈ R.

In practice, however, scores may be naturally bounded (by
the retrieval model) or truncated to the upside as well. For
example, cosine similarity scores are naturally bounded at
1. Scores from probabilistic models with a (theoretical) sup-
port in (−∞,+∞) are usually mapped to the bounded (0, 1)
via a logistic function. Other retrieval models may just trun-
cate at some maximum number for practical reasons. Con-
sequently, it makes sense to introduce a right-truncation as
well, for both the normal and exponential densities.

Depending on how one wants to treat the leftovers due to
the truncations, two new models may be considered.

3.3.1 Theoretical Truncation

There are no leftovers (Figure 2). The underlying theoretical
densities are assumed to be the truncated ones, normalized
accordingly to integrate to one:

P (s|1) =
1
σ φ

(
s−µ

σ

)
Φ(β)− Φ(α)

s ∈ [smin, smax] (9)

P (s|0) =
ψ(s− smin;λ)

Ψ(smax − smin;λ)
s ∈ [smin, smax] (10)

where
α =

smin − µ
σ

β =
smax − µ

σ
(11)
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Figure 2: Theoretical truncation.
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Figure 3: Technical truncation.

Φ(.) and Ψ(.) are the cdfs of φ(.) and ψ(.) respectively
(Equations 20 and 22). The cdfs of the above P (s|1) and
P (s|0) are given by Equations 21 and 23, respectively.

Let Srel and Snrel be the random variables correspond-
ing to the relevant and non-relevant document scores respec-
tively. The expected value and variance of Srel are given by
Equations 24 and 25 in Appendix B.3. For Snrel , the corre-
sponding Equations are 26 and 27 in Appendix B.4.

3.3.2 Technical Truncation

The underlying theoretical densities are not truncated, but
the truncation is of a “technical” nature. The leftovers are
accumulated at the two truncation points introducing discon-
tinuities (Figure 3). For the normal, the leftovers can easily
be calculated:

P (s|1) =


Φ(α) δ(s− smin) s = smin

1
σ φ

(
s−µ

σ

)
s ∈ (smin, smax)

(1− Φ(β)) δ(s− smax) s = smax



where δ(.) is Dirac’s delta function. For the exponential,
while the leftovers at the right side are determined by the
right truncation, in order to calculate the ones at the left side
requires to assume that the exponential extends below smin

to some new minimum score s′min:

P (s|0) =

8><>:
Ψ(smin − s′min;λ) δ(s− smin) s = smin

ψ(s− s′min;λ) s ∈ (smin, smax)

(1−Ψ(smax − s′min;λ)) δ(s− smax) s = smax

The cdfs corresponding to the above densities are:

F (s|1) =

{
Φ( s−µ

σ ) s ∈ [smin, smax)
1 s = smax

F (s|0) =

{
Ψ(s− s′min;λ) s ∈ [smin, smax)
1 s = smax

The equations in this section simplify somewhat when es-
timating their parameters from down-truncated ranked lists,
as we will see in Section 4.1. We do not need to calculate
s′min. If, for some measure, the number of non-relevant doc-
uments is required, it can simply be estimated as n−R.

The expected values and variances of Srel and Snrel, if
needed, have to be calculated starting from Equations 24–27
and taking into account the contribution of the discontinu-
ities. We do not give the formulas in this paper.

3.3.3 The Relation Between the Truncated Models

For both models the right truncation is optional. For smax =
+∞, we get Φ(β) = Ψ(smax−s′min;λ) = 1, leading to left-
truncated models; this accommodates retrieval models with
scoring support in [smin,+∞), smin ∈ R. This is the max-
imum range that can be achieved with the current mixture,
since the restriction of a finite smin is imposed by the use of
the exponential.

When smin � µ � smax then Φ(α) ≈ 0 and Φ(β) ≈ 1.
If additionally s′min = smin, then Ψ(smin−s′min;λ) = 0 and
Ψ(smax − s′min;λ) ≈ 1. Thus we can well-approximate the
standard normal-exponential model. Consequently, using a
truncated model is a valid choice even when truncations are
insignificant.

From a theoretical point of view, it may be difficult to
imagine a process producing a truncated normal directly.
Truncated normal distributions are usually the results of cen-
soring, meaning that the out-truncated data do actually exist.
In this view, the technically truncated model may correspond
better to the IR reality. This is also in line with the theoreti-
cal arguments for the existence of a full normal distribution
[2].

Concerning convexity, both truncated models do not al-
ways violate such conditions. Consider the problem at the
top score range (sc,+∞). In the cases of sc ≥ smax, the
problem is out-truncated in both models, while—in theory—
it still always exists in the original model. The improvement
so far is of a rather theoretical nature. In practise, we should

be interested in what happens when sc < s1. Our extended
experiments (not reported in this paper) suggest that trunca-
tion helps estimation in producing higher numbers of convex
fits within the observed score range. Consequently, the ben-
efits are also practical.

These improvements make the original model more gen-
eral, and it indeed produces better fits on our data. In fact,
the truncated distributions should have been used in the past
during parameter estimation even for the original normal-
exponential model due to down-truncated rankings.

4 Parameter Estimation
The normal-exponential mixture has worked best under the
availability of some relevance judgments which serve as
an indication about the form of the component densities
[3, 8, 22]. In filtering or classification, usually some training
data—although often biased—are available. In the current
task, however, no relevance information is available.

A method was introduced in the context of fusion which
recovers the component densities without any relevance
judgments using the Expectation Maximization (EM) algo-
rithm [14]. In order to deal with the biased training data in
filtering, the EM method was also later adapted and applied
for thresholding tasks [1].3 Nevertheless, EM was found
to be “messy” and sensitive to its initial parameter settings
[1, 14]. We will improve upon this estimation method in
Section 4.3.

4.1 Down-truncated Rankings

For practical reasons, rankings are usually truncated at some
rank t < n. Even what is usually considered a full ranking is
in fact a collection’s subset of those documents with at least
one matching term with the query.

This fact has been largely ignored in all previous research
using the standard model, despite that it may affect greatly
the estimation. For example, in TREC Legal 2007 and 2008,
twas 25, 000 and 100, 000 respectively. This results to a left-
truncation of P (s|1) which at least in the case of the 2007
data is significant. For 2007 it was estimated that there were
more than 25, 000 relevant documents for 13 of the 43 Ad
Hoc topics (to a high of more than 77, 000) and the median
system was still achieving 0.1 precision at ranks of 20, 000
to 25, 000.

Additionally, considering that the exponential may not be
a good model for the whole distribution of the non-relevant
scores but only for their high end, some imposed truncation
may help achieve better fits. Consequently, all estimations
should take place at the top of the ranking, and then get
extrapolated to the whole collection. The truncated models
of [5] require changes in the estimation formulas.

Let us assume that the truncation score is st. For both
truncated models, we we need to estimate a two-side trun-
cated normal at st and smax, and a shifted exponential by st

3Another method for producing unbiased estimators in filtering can be
found in [22], but it requires relevance judgements.



right-truncated at smax, with smax possibly be +∞. Thus,
the formulas that should be used are Equations 9 and 10 but
for αt instead of α

αt =
st − µ
σ

and for st instead of smin. Beyond this, the models differen-
tiate in the way R is calculated.

IfGt is the fraction of relevant documents in the truncated
ranking, extrapolating the truncated normal outside its es-
timation range and appropriately per model in order to ac-
count for the remaining relevant documents, the R is calcu-
lated as:

• theoretically truncated normal-exponential

R = tGt
Φ(β)− Φ(α)
Φ(β)− Φ(αt)

• technically truncated normal-exponential

R = tGt
1

Φ(β)− Φ(αt)

Consequently, Equation 1 must be replaced by one of the
above depending on the model in use, Equations 2 and 3
must be re-written as

R+(s) = tGt (1− F (s|1))

N+(s) = t (1−Gt) (1− F (s|0))

while Equations 4 and 5 remain the same. F (s|1) and
F (s|0) are now the cdfs either of Section 3.3.1 or 3.3.2, de-
pending on which model is used.

In estimating the technically truncated model, if there are
any scores equal to smax or smin they should be removed
from the data-set; these belong to the discontinuous legs of
the densities given in Section 3.3.2. In this case, t should be
decremented accordingly. In practise, while scores equal to
smin should not exist in the top-t due to the down-truncation,
some smax scores may very well be in the data. Remov-
ing these during estimation is a simplifing approximation
with an insignificant impact when the relevant documents
are many and the bulk of their score distribution is below
smax, as it is the case in current experimental setup. As we
will see next, while we do not use the smax scores during fit-
ting, we take them into account during goodness-of-fit test-
ing; using multiple such fitting/testing rounds, this reduces
the impact of the approximation.

4.2 Score Preprocessing

Our scores have a resolution of 10−6. Obviously, LUCENE
rounds or truncates the output scores, destroying informa-
tion. In order to smooth out the effect of rounding in the data,
we add ∆s = rand(10−6)−0.5∗10−6 to each datum point,

where rand(x) returns a uniformly-distributed real random
number in [0, x).

Beyond using all scores available and in order to speed
up the calculations, we also tried stratified down-sampling
to keep only 1 out of 2, 3, or 10 scores.4 Before any down-
sampling, all datum points were smoothed by replacing them
with their average value in a surrounding window of 2, 3, or
10 points, respectively.

In order to obtain better exponential fits we may further
left-truncate the rankings at the mode of the observed distri-
bution. We bin the scores (as described in Section A.1), find
the bin with the most scores, and if that is not the leftmost
bin then we remove all scores in previous bins.

4.3 Expectation Maximization

EM is an iterative procedure which converges locally [9].
Finding a global fit depends largely on the initial settings of
the parameters.

4.3.1 Initialization

We tried numerous initial settings, but no setting seemed uni-
versal. While some settings helped a lot some fits, they had
a negative impact on others. Without any indication of the
form, location, and weighting of the component densities,
the best fits overall were obtained for randomized initial val-
ues, preserving also the generality of the approach:5

Gt,init = rand(1) , λinit = max(ε, rand(µs − st))−1

µinit = smin + rand(s1 − smin)

σ2
init = max(ε2, (1 + c1rand(1))2σ2

s − λ−2
init)

where s1 is the maximum score datum, µs and σ2
s are re-

spectively the mean and variance of the score data, ε is an
arbitrary small constant which we set equal to the width of
the bins (see Appendix A.1), and c1 ∈ (0,+∞) is another
constant which we explain below.

Assuming that no information is available about the ex-
pected R, not much can be done for Gt,init, so it is random-
ized using its whole supported range. Next we assume that
right-truncation of the exponential is insignificant, which
seems to be the case in our current experimental set-up.

If there are no relevant documents, then µs−(st−smin) ≈
λ−1 +smin. From the last equation we deduce the minimum
λinit. Although in general, there is no reason why the expo-
nential cannot fall slower that this, from an IR perspective it
should not, or E(Snrel) would get higher than E(Srel).

The µinit given is suitable for a full normal, and its range
should be expanded in both sides for a truncated one because

4In order not to complicate things further, we do not include the down-
sampling into the formulas in this paper; it is not difficult to see where things
should be weighted inversely proportional to the sampling probability.

5With some (even biased) training data, suitable initial parameter set-
tings are given in [1]. Without any training data, assuming that the relevant
documents are much fewer than non-relevant by rank t, initial parameters
can be estimated as described in [14]; unfortunately this assumption cannot
be made in TREC Legal due to the large variance of estimated R and topics
with R > t.



the mean of the corresponding full normal can be below smin

or above s1. Further, µinit can be restricted based on the
hypothesis that for good systems should hold that E(Srel) >
E(Snrel). We have not worked out these improvements.

The variance of the initial exponential is λ−2
init. Assuming

that the random variables corresponding to the normal and
exponential are uncorrelated, the variance of the normal is
≥ σ2

s−λ−2
init which, depending on how λ is initialized, could

take values≤ 0. To avoid this, we take the max with the con-
stant. For an insignificantly truncated normal, c1 ≈ 0, while
in general c1 > 0, because the variance of the corresponding
full normal is larger than what is observed in the truncated
data. We set c1 = 2, however, we found its usable range to
be [0.25, 5].

4.3.2 Update Equations

For t ≤ n observed scores s1 . . . st, and neither truncated
nor shifted normal and exponential densities (i.e. for the
original model), the update equations are

Gt,new =

P
i Pold(1|si)

t
λnew =

P
i Pold(0|si)P

i Pold(0|si)si

µnew =

P
i Pold(1|si)siP
i Pold(1|si)

σ2
new =

P
i Pold(1|si)(si − µnew)2P

i Pold(1|si)

P (j|s) is given by Bayes’ rule P (j|s) = P (s|j)P (j)/P (s),
P (1) = Gt, P (0) = 1−Gt, and P (s) by Equation 3.1.

We initialize those equations as described above, and iter-
ate them until the absolute differences between the old and
new values for µ, λ−1, and

√
σ are all less than .001 (s1 −

smin), and |Gt,new − Gt,old| < .001. Like this we target an
accuracy of 0.1% for scores and 1 in a 1,000 for documents.
We also tried a target accuracy of 0.5% and 5 in 1,000, but it
did not seem sufficient.

4.3.3 Correcting for Truncation

If we use the truncated densities (Equations 9 and 10) in
the above update equations, the µnew and σ2

new calculated
at each iteration would be the expected value and variance
of the truncated normal, not the µ and σ2 we are looking
for. Similarly, 1/λnew + st would be equal to the expected
value of the shifted truncated exponential. Instead of looking
for new EM equations, we rather correct to the right values
using simple approximations.

Using Equation 26, at the end of each iteration we correct
the calculated λnew as

λnew ←
„

1

λnew
+ st +

smax exp(−λold(smax − st))− st

Ψ(smax − st;λold)

«−1

(12)
using the λold from the previous iteration as an approxima-
tion. Similarly, based on Equations 24 and 25, we correct
the calculated µnew and σ2

new as

µnew ← µnew −
φ(α′)− φ(β′)
Φ(β′)− Φ(α′)

σold (13)

σ2
new ← σ2

new

"
1 +

α′ φ(α′)− β′ φ(β′)

Φ(β′)− Φ(α′)
−

„
φ(α′)− φ(β′)

Φ(β′)− Φ(α′)

«2
#−1

(14)
where

α′ =
st − µold√

σ2
old

β′ =
smax − µold√

σ2
old

again using the values from the previous iteration.
These simple approximations work, but sometimes they

seem to increase the number of iterations needed for con-
vergence, depending on the accuracy targeted. Rarely, and
for high accuracies only, the approximations possibly hand-
icap EM convergence; the intended accuracy is not reached
for up to 1,000 iterations. Generally, convergence happens
in 10 to 50 iterations depending on the number of scores
(more data, slower convergence), and even with the approx-
imation EM produces considerably better fits than when us-
ing the non-truncated densities. To avoid getting locked in
a non-converging loop, despite its rarity, we cap the num-
ber of iterations to 100. The end-differences we have seen
between the observed and expected numbers of documents
due to these approximations have always been less than 4 in
100,000.

4.3.4 Multiple Runs

We initialize and run EM as described above. After EM
stops, we apply the χ2 goodness-of-fit test for the observed
data and the recovered mixture (see Appendix A). If the null
hypothesis H0 is rejected, we randomize again the initial val-
ues and repeat EM for up to 100 times or until H0 cannot be
rejected. If H0 is rejected in all 100 runs, we just keep the
best fit found. We run EM at least 10 times, even if we can-
not reject H0 earlier. Perhaps a maximum of 100 EM runs is
an overkill, but we found that there is significant sensitivity
to initial conditions.

4.3.5 Rejecting Fits on IR Grounds

Some fits, irrespective of their quality, can be rejected on IR
grounds. Firstly, it should hold that R ≤ n, however, since
each fit corresponds to t (1−Gt) non-relevant documents,
we can tighten the inequality somewhat to:

R ≤ n− t (1−Gt) (15)

This is a very light condition, which should handle a few
extremities. Secondly, concerning the random variables Srel

and Snrel, one would expect:

E(Srel) > E(Snrel) (16)

This is rather only a hypothesis—not a requirement—that
good systems should satisfy and there are no guarantees. We
have not been able so far to motivate any inequality on score
variances.

We are still experimenting with such conditions, and we
have not applied them for producing any of the end-results
reported in this paper.



Table 1: The effects of sampling and binning on fitting quality, and convexity of fits.

run fM M > 190 H0 no reject kc > 1 ekc kc > eR comments
2007-default 56.5 4 (8%) 2 (4%) 33 (66%) 29 5 (10%) no smth or sampling

2007-A 37 1 (2%) 32 (64%) 40 (80%) 34 5 (10%) smth + 1/3 strat. sampl.
2007-B 36 1 (2%) 30 (60%) 32 (64%) 61.5 1 (2%) smth + 1/3 strat. sampl.

2008-default 93 6 (13%) 0 (0%) 29 (64%) 89 0 (0%) no smth or sampling
2008-A 63 1 (2%) 5 (11%) 30 (67%) 98 0 (0%) smth + 1/3 strat. sampl.
2008-B 66 4 (9%) 9 (20%) 31 (69%) 45 1 (2%) smth +1/3 strat. sampl.

4.4 Fitting Results and Analysis

While the s-d method is non-parametric, there are several pa-
rameters in recovering the mixture of the densities: smooth-
ing and sampling (both optional), binning, EM initialization
and targeted accuracy, rejection conditions, and maybe oth-
ers. Table 1 provides some data on the fits resulting from the
above procedure. The default and A runs use the theoreti-
cal truncation of Section 3.3.1; the B runs use the technical
truncation of Section 3.3.2.

4.4.1 Sampling, Binning, and Quality of the Fits

Down-sampling has the effect of eliminating some of the
right tails, leading to fewer bins when binning the data.
Moreover, the fewer the scores, the less EM iterations and
runs are needed for a good fit (data not shown). Down-
sampling the scores helps supporting the H0. At 1 out of
3 stratified sampling, the H0 cannot be rejected at a signif-
icance level of 0.05 for 60-64% of the 2007 topics and for
20% for the 2008 topics. Non-stratified down-sampling with
0.1 probability raises this to 42% for the 2008 topics. Ex-
treme down-sampling to keep only around 1,000 to 5,000
scores supports the H0 in almost all fits.

Consequently, the number of scores and bins plays a big
role in the quality of the fits according to the χ2 test; there is
a positive correlation between the median number of bins M̃
and the percentage of rejected H0. This effect does not seem
to be the result of information loss due to down-sampling;
we still get more support for the H0 when reducing the
number of scores by down-truncating the rankings instead
of down-sampling them. This is an unexpected result; we
rather expected that the increased number of scores and bins
is dealt with by the increased degrees of freedom parameter
of the corresponding χ2 distributions. Irrespective of sam-
pling and binning, however, all fits look reasonably well to
the eye.

4.4.2 A Score Continuity Problem?

In all runs, for a small fraction of topics (2-13%) the opti-
mum number of bins M is near (< 5% difference) to our
capped value of 200. For most of these topics, when looking
for the optimal number of bins in the range [5, 1000] (num-
bers are tried with a step of 5%) the binning method does
not converge. This means there is no optimal binning as the
algorithm identifies the discrete structure of data as being
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Figure 4: The optimal number of bins does not seem to converge,
so it is capped at 200. Due to the high number of bins, the best
fit found has a large χ2 = 2231.4. Combining bins with expected
frequency< 5 on the right tail, minus 4 the parameters we estimate,
gives 84 degrees of freedom for the χ2 distribution and a critical
value of 106.4 at .05 significance. The upper-probability of the fit
is practically 0, nevertheless, it looks reasonably well to the eye.

a more salient feature than the overall shape of the density
function. Figure 4 demonstrates this.

Since the scores are already randomized to account for
rounding (Section 4.2), the discrete structure of the data is
not a result of rounding but it rather comes from the retrieval
model itself. Internal statistics are usually based on doc-
ument and word counts; when these are low, statistics are
“rough”, introducing the discretization effect.

4.4.3 Convexity of Fits

Concerning the theoretical anomaly of the normal-
exponential mixture, we investigate the number of fits pre-
senting the anomaly within the observed score range, i.e. at
a rank below rank-1 (kc > 1).6 We see that the anomaly
shows up in a large number of topics (64-80%). The impact
of non-convexity on the s-d method is that the method turns
“blind” at rank numbers < kc restricting the estimated op-

6In our context we re-formulated the recall-fallout convexity hypothesis
as a condition on smoothed precision. So there is no issue of convexity
but rather the issue of the precision monotonically declining with the score.
However, we stick to using the term “convexity” in describing the problem.
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Figure 5: For topic 91 (top plot), the fit looks good but has a con-
vexity problem in the whole ranking (kc ≥ 25, 000), indicated by
having to flatten its precision in the whole range. Alternatively, the
fit could have been rejected on IR grounds. By enabling the con-
dition of Equation 16, i.e. the expected relevant score should be
larger than the expected non-relevant, the method would have re-
jected the fit and produce another one (bottom plot) with a slightly
larger χ2 but no convexity problem. (Both datasets are downsam-
pled; the slight variation of the observed data across the plots are
due to different samples used.)

timal thresholds wtih K ≥ kc. However, the median rank
number k̃c down to which the problem exists is very low
compared to the median estimated number of relevant docu-
ments R̃ (7,484 or 32,233), so K < kc is unlikely on aver-
age anyway and thresholding should not be affected. Conse-
quently, the data suggest that the non-convexity should have
an insignificant impact on s-d thresholding.

For a small number of topics (0-10%), the problem ap-
pears for kc > R̃ and non-convexity should have a signifi-
cant impact. Still, we argue that for a good fraction of such
topics, a large kc indicates a fitting problem rather than a
theoretical one. Figure 5 explains this further.

4.4.4 Ranking-length Bias

Since there are more data at lower scores, EM results in pa-
rameter estimates that fit the low scores better than the high
scores. This is exactly the opposite of what is needed for
IR purposes, where the top of rankings is more important.
It also introduces a weak but undesirable bias: the longer
the input ranked list, the lower the estimates of the means
of the normal and exponential; this usually results in larger
estimations of R and K.

Trying to neutralize the bias without actually removing
it, input ranking lengths can better be chosen according to
the expected R. This also makes sense for the estimation
method irrespective of biases: we should not expect much
when trying to estimate, e.g., an R of 100,000 from only the
top-1000. As a rule-of-thumb, we recommend input ranking
lengths of around 1.5 times the expected R with a minimum
of 200. According to this recommendation, the 2007 rank-
ings truncated at 25,000 are spot on, but the 100,000 rank-
ings of 2008 are falling short by 20%.

4.5 Summary and Future Improvements

Recovering the mixture with EM has been proven to be
“tricky”. However, with the improvements presented in this
paper, we have reached a rather stable behavior which pro-
duces usable fits.

EM’s initial parameter settings can further be tightened
resulting in better estimates in less iterations and runs, but
we have rather been conservative in order to preserve the
generality.

As a result of how EM works—giving all data equal
importance—a weak but undesirable ranking-length bias is
present: the longer the input ranking, the larger the R esti-
mates. Although the problem can for now be neutralized by
choosing the input lengths in accordance with the expected
R, any future improvements of the estimation method should
take into account that score data are of unequal importance:
data should be fitted better at their high end.

Whatever the estimation method, conditions for rejecting
fits on IR grounds such as those investigated in Section 4.3.5,
seem to have a potential for further considerable improve-
ments.

5 Experiments
In this section, we will conduct a range of experiments with
the truncated models of [5], which we discussed in great de-
tail above. Since our focus is the thresholding problem, we
use an off-the-shelf retrieval system: the vector-space model
of Apache’s Lucene.

More information about the collection, topics, and evalu-
ation measures can be found in the overview paper in this
volume, and at the TREC Legal web-site.

5.1 Runs

For TREC Legal 2007 and 2008 we created the following
runs:



Legal07 Off-the-shelf LUCENE using the RequestText as
query, on a stemmed index, using the generic SMART
stoplist. The 2007 rankings are truncated at 25k results.

This run is the run labeled catchup0701t in [4].

Legal08 Same as above, but in pre-processing this year’s
topics, we used the RequestText field stop-listed by
an extended list in which we manually included low-
content words based on the topics of 2006 and 2007.
All 2008 rankings are truncated at 100k items.

This runs is the basis for the official submissions la-
beled uva-xcons, uva-xb, and uva-xk.

For the threshold optimization, we first apply the original
version of the score-distributional threshold optimization as
it has been used, for example, in the Filtering track [2, 3]:

sd original First fitting a mixture of normal (for relevant)
and exponential (for non-relevant) to the score distri-
bution, and then calculate the rank that maximizes the
F1 measure. Note that the fit may indicate an optimal
rank threshold beyond the run’s length (25k in 2007 and
100k in 2008), in which case we simply select the final
rank.

This run corresponds to our official submission labeled
uva-xk.

In this paper, we presented an improved version of the sd
method in Section 3. The improvements that have the great-
est impact on end-user effectiveness are:

1. Use of truncated distributions [5] to account for natural
score bounds or truncations.

2. EM is run with different initial parameters, and better
termination methods. We also now run it up to 100
times instead of 10.

3. We used the square error before to select the best fit;
we replaced this with the χ2 which is more suitable for
distributions.

4. Optimal binning. Before, we used a fixed number of
max(5, t/200) bins, which gave 500 bins (or a bit less
after a left-truncation of the data) for the 2008 rankings.

Consequently, we provide here additional runs:

Theoretical Truncation Runs using the theoretical trunca-
tion of Section 3.3.1. The B runs is down-sampled (a
stratified sample of 1/3).

Theoretical Truncation Runs using the technical trunca-
tion of Section 3.3.2. The A runs are down-sampled (a
stratified sample of 1/3). Details of the effect of sam-
pling and binning on the fits are in Table 1.

Table 2: Ranking quality for the Legal 2007 & 2008. The highest,
lowest, and median are of the 23 submissions in 2008 using the
RequestText field only.

Run Prec@5 Recall@B F1@R
Legal07 0.3302 0.1548 0.1328
Legal08 0.4846 0.2036 0.1709
highest 0.5923 0.2779 0.2173
median 0.4154 0.2036 0.1709
lowest 0.0538 0.0729 0.0694

Table 3: Estimating cut-off K for the Legal 2007 & 2008. The
highest, lowest, and median are of the 23 submissions using the
RequestText field. Statistical significance (t-test, one-tailed) at
95% (◦) and 99% (•) against the original sd method.

2007 2008
Run Truncation F1@K F1@K
sd original None – 0.0681 -

B Theoretical 0.0984 0.1361◦

A Technical 0.1011 0.1284◦

highest – 0.1848
median – 0.0974
lowest – 0.0051

5.2 Results and Discussion

We first discuss the overall quality of the rankings, and then
the main topic of this paper—estimating the cut-off K.

The top half of Table 2 shows several measures on the two
underlying rankings, Legal07 and Legal08. We show preci-
sion at 5 (all top-5 results were judged by TREC); estimated
recall at B; and the F1 of the estimated precision and recall
at R (i.e. the estimated number of relevant documents).

To determine the quality of our rankings in comparison
to other systems, we show the highest, lowest, and median
performance of all submissions in the bottom half of Ta-
ble 2. As it turns out, Legal08 obtains exactly the median
performance for Recall@B and F1@R when using all rele-
vant documents in evaluation. Both rankings fare somewhat
better than the median at Prec@5 and in evaluating with the
highly relevant documents only. It is clear that our rankings
are far from optimal in comparison with the other submis-
sions. On the negative side, this limits the performance of
the s-d method. On the plus side, it makes our rankings good
representatives of the median-quality ranking.

Table 3 shows the results for the various thresholding
methods. We see that the original s-d method stays well be-
hind the F1@R in Table 2. Although this comparison is
unfair, the mean estimated number of relevant items is gen-
erally not known, we expected the original s-d method to do
better.

All runs with the improved version of the s-d method lead
to significantly better results. The B run use the theoretical
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Figure 6: F1@R versus F1@K as estimated by s-d method for
all 26 topics of TREC Legal 2008.

truncation of Section 3.3.1, whereas the A runs use the tech-
nical truncation of Section 3.3.2. For 2007, the technically
truncated model A is superior to the theoretically truncated
model B. For 2008, the technically truncated A model lags
somewhat behind the theoretically truncated B model. In
comparison with the ‘old’ non-truncated model, correspond-
ing to our official TREC 2008 submission, both the truncated
models obtain significantly better results.

We also show the highest, lowest, and median perfor-
mance over the 23 submissions to TREC Legal 2008 (recall
that the thresholding task is new at TREC 2008, so there is
no comparable data for 2007). Note that the actual value
of F1@K is a result of both the quality of the underlying
ranking and choosing the right threshold. As seen earlier,
our ranking has the median Recall@B and F1@R. With the
estimated threshold of the s-d model, the F1@K is 0.1374,
well above the median score of 0.0974.

There is still amble room for improvement. The F1@R
in Table 2 is 0.1328 for 2007 and 0.1709 for 2008, and we
obtain 75-80% of these scores. Obviously, R is not known
in an operational system, and F1@R serves as a soft upper-
bound on performance.

5.3 Further Analysis

Figure 6 show the F1 scores of the Legal 2008 B run, plotted
against the “ceiling” of F1 at the estimated R. We will look
in detail at some of the topics from 2007 and 2008 B runs:

Topic 73 B = 4,085; est.R = 31,894; Kopt = 22,091.

Topic 105 B = 36,549; est.R = 34,424; Kopt = 49,439.

Topic 124 B = 86,075; est.R = 20,083; Kopt = 44,524.

Topic 145 B = 40,315; est.R = 91,790; Kopt = 82,806.

Figure 7 compares the prediction of the s-d model with
the official evaluation’s estimated precision, recall, and F1.

Before discussing each of the topics in detail, an immediate
observation is that the estimated (non-interpolated) precision
is strikingly different from monotonically declining “ideal”
precision curves.

For Topic 73 (Legal 2007), the estimated R exceeds the
length of the ranking, and the Kopt corresponds to the last
found relevant document at rank 22,091. The s-d model is
clearly aiming too low and estimates R at 2,720 and K at
2,593.

Topic 105 (Legal 2008) has an R of 34,424, well within
the length of the ranking, and the s-d model estimates an R
of 36,503, near to the real R, and an estimated K of 28,952.
The divergence in the prediction of K may be explained,
in part, by the fact that Kopt always corresponds to a point
where a relevant document is retrieved, and judged docu-
ments are very sparse down at this rank.

Topic 124 (Legal 2008) has an R of 20,083 and the s-d
model predicts an R of 51,231 and a K of 43,597. Here,
the R is overestimated but the K is very close to the Kopt.
Topic 145 (Legal 2008) has an R of 91,790, very close to
the length of the ranking. The s-d model predict an R of
87,060 and aK of 91,590, both relatively close to the official
evaluation especially when bearing in mind that the Kopt is
again at the last relevant document in the whole ranking.

6 Conclusions
We studied the problem of finding an “optimal” point to stop
reading a ranked list, by selecting thresholds that optimize
the F1-measure. The approach taken employs the score-
distributional threshold optimization (s-d), a non-parametric
method proven effective for binary classification in earlier
years. We made significant theoretical and computational
improvements over the original method, and identified room
for further improvements.

The method uses no other input than the document scores
of a standard retrieval run, fit a mixture of (possibly trun-
cated) normal and exponential distributions (normal for rel-
evant, and exponential for non-relevant document scores),
and calculate the optimal score threshold given the esti-
mated distributions and their contributing weight. The ex-
periments confirm that the s-d method is effective for deter-
mining thresholds, although there is still clear room for im-
provement: the effectiveness varies considerably per topic,
with an average performance of 75-80% of F1@R.

Assuming that a normal-exponential mixture is a good ap-
proximation for score distributions and that no relevance in-
formation is available, we believe that the improved meth-
ods described in this paper are a) as general as possible, b)
they deal with most known theoretical anomalies and prac-
tical difficulties, and consequently, c) they bring us closer to
the performance ceiling of s-d thresholding. If the effective-
ness is deemed unsatisfactory, further improvements of s-d
thresholding should come from using alternative mixtures
or training data. Nevertheless, some other mixtures may be
more difficult—or even impossible—to estimate.
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Figure 7: S-D model predictions (top plots) versus the official evaluation (bottom plots).
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A Chi-Square Goodness of Fit
To determine the quality of the fits, we bin the scores and calculate
the χ2 statistic

χ2 =
X

i

|Oi − Ei|2

Ei
(17)

whereOi andEi are the observed and expected frequencies respec-
tively for bin i. The expected frequency is calculated by

Ei = t (F (si,a)− F (si,b))

where si,a and si,b are respectively the lower and upper score limits
of bin i, and F (s) = (1−Gt)F (s|0)+GtF (s|1) is the cumulative
distribution function of the mixture under estimation.

The statistic follows, approximately, a χ2 distribution with M −
4− 1 degrees of freedom, where M is the number of bins and 4 is
the number of parameters we estimate. The null hypothesis H0 is
that the observed data follow the estimated mixture. H0 is rejected
if the χ2 of the fit is above the critical value of the corresponding
χ2 distribution at a significance level of 0.05 [15].

For the χ2 approximation to be valid, Ei should be at least 5,
thus we may combine bins in the right tail when Ei < 5. When
the last Ei does not reach 5 even for b = +∞, we only then apply
the Yates’ correction, i.e. subtract 0.5 from the absolute difference
of the frequencies in Equation 17 before squaring.

Different fits on the same data can result to slightly different de-
grees of freedom due to combining bins. To compare the qual-
ity of different fits, so we can keep track of the best one irrespec-
tive its H0 status, we use the χ2 upper-probability; the higher the

probability, the better the fit. As an initial upper-probability refer-
ence, we use the one of an exponential-only fit, produced by setting
λ = 1/(µs − st).

The χ2 statistic is sensitive to the choice of bins.

A.1 Score Binning
For binning, we use the optimal number of bins as this is given by
the method described in [12]. The method considers the histogram
to be a piecewise-constant model of the underlying probability den-
sity. Then, it computes the posterior probability of the number of
bins for a given data set. This enables one to objectively select an
optimal piecewise-constant model describing the density function
from which the data were sampled. For practical reasons, we cap
the number of bins to a maximum of 200.

B Formulas and Derivations
For completeness, we give here the rest of the formulas not given
throughout the paper, and the derivations of those not found in the
literature.

B.1 Density Functions
• standard normal distribution [16]:

φ(s) =
exp

`
−s2/2

´
√

2π
s ∈ R (18)

• exponential distribution [16]

ψ(s;λ) = λ exp(−λs) λ > 0, s ≥ 0 (19)

B.2 Cumulative Distribution Functions
• standard normal [16]:

Φ(s) =
1

2

»
1 + erf

„
s√
2

«–
s ∈ R (20)

where erf(.) is the error function.

• two-side truncated normal [10, pp.156–162]:

F (s|1) =
Φ

`
s−µ

σ

´
− Φ(α)

Φ(β)− Φ(α)
s ∈ [smin, smax] (21)

where α and β are given by Equation 11.

• exponential [16]:

Ψ(s;λ) = 1− exp(−λs) s ≥ 0 (22)

• shifted and right-truncated exponential:

F (s|0) =
Ψ(s− smin;λ)

Ψ(smax − smin;λ)
s ∈ [smin, smax] (23)

B.3 Moments of a Truncated Normal
These can be found in the literature, e.g. in [10]. Let S be a
normally-distributed random variable with mean µ and variance
σ2, which we left-truncate at smin and right-truncate at smax.

B.3.1 Expected Value

E(S|smin ≤ S < smax) = µ+
φ(α)− φ(β)

Φ(β)− Φ(α)
σ (24)

We do not us the ≤ sign at the upper limit of S here (and in the
equations below) to denote that the right-truncation is an option
(i.e. smax can be +∞) in the context of this paper.

http://arxiv.org/abs/physics/0605197v1
http://arxiv.org/abs/physics/0605197v1
http://www.itl.nist.gov/div898/handbook/


B.3.2 Variance
V(S|smin ≤ S < smax) =

= σ2

"
1 +

αφ(α)− β φ(β)

Φ(β)− Φ(α)
−

„
φ(α)− φ(β)

Φ(β)− Φ(α)

«2
#

(25)

B.4 Moments of a Shifted Truncated Exponential
We have not found those in the literature. Let S be an exponentially
distributed random variable with rate parameter λ, which we shift
by smin and right-truncate at smax.

B.4.1 Expected Value
From the definition of the expected value of a truncated distribu-
tion7 and Equation 19

E(S|smin ≤ S < smax) =

R smax
smin

sψ(s− smin;λ) ds

Ψ(smax − smin;λ)
=

=
λ exp(λsmin)

Ψ(smax − smin;λ)

smaxZ
smin

s exp(−λs) ds

where the shift of the exponential by smin is already taken into
account. From lists of integrals of exponential functions8

smaxZ
smin

s exp(−λs) ds =

»
exp(−λs)
−λ

„
s− 1

−λ

«–smax

smin

Putting the last 2 equations together and working out the calculation
leads to

E(S|smin ≤ S < smax) =
1

λ
−smax exp(−λ(smax − smin))− smin

Ψ(smax − smin;λ)
(26)

For only shift but no truncation (smin 6= 0, smax = +∞),
ψ(smax − smin;λ) = 0 and Ψ(smax − smin;λ) = 1, so Equa-
tion 26 becomes

E(S|smin ≤ S) =
1

λ
+ smin

which for a zero shift (smin = 0) it becomes E(S) = 1/λ, as
expected [16].

B.4.2 Variance
We can break down a shifted S to a mixture of its right-truncated
and left-truncated parts weighted by a and b where a+ b = 1. The
two parts are non-correlated, so for their variances it holds that

V(S|smin ≤ S) = a2V(S|smin ≤ S < smax)+b
2V(S|smax ≤ S)

⇒ V(S|smin ≤ S < smax) =
V(smin ≤ S)− b2V(S|smax ≤ S)

a2

7http://en.wikipedia.org/wiki/Truncated
distribution

8http://en.wikipedia.org/wiki/List of integrals
of exponential functions

Since shifts do not affect variances, V(S|smin ≤ S) =
V(S|smax ≤ S) = 1/λ2. Moreover, a = Ψ(smax−smin), leading
to

V(S|smin ≤ S < smax) =
1

λ2

„
2

1− exp(λ(smin − smax))
− 1

«
(27)

For only shift but no truncation (smin 6= 0, smax = +∞),
exp (λ (smin − smax)) = 0 and Equation 27 becomes

V(S|smin ≤ S) =
1

λ2
= V(S)

as expected; the shift does not affect the variance [16].
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