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Abstract

Relaxed Online Support Vector Machines (ROSVMs) have recently been proposed as an
efficient methodology for attaining an approximate SVM solution for streaming data such
as the online spam filtering task. Here, we apply ROSVMs in the TREC 2007 Spam
filtering track and report results. In particular, we explore the effect of various sliding-
window sizes, trading off computation cost against classification performance with good
results. We also test a variant of fixed-uncertainty sampling for Online Active Learning.
The best results with this approach give classification performance near to that of the fully
supervised approach while requiring only a small fraction of the examples to be labeled.

1. Introduction

It has been nearly ten years since Support Vector Machines (SVMs) were shown to give
state of the art performance on high-dimensional classification problems in general, and
text classification in particular [11, 12].1 In that time, the machine learning community
has repeatedly suggested that SVMs are a strong choice for content-based spam filtering
[7, 13, 18]. However, to our knowledge SVM methodology has yet to be applied in a large-
scale spam filtering application, such as an industrial scale email system. Spam filtering
practitioners have preferred to apply other machine learning techniques. These methods
include several variants of the Naive Bayes classifier [1, 9, 10, 16], linear classifiers such as
Logistic Regression [8] and Perceptron Algorithm variants [22], compression-based methods
[2, 3], and ensemble methods [15].

Anti-spam practitioners have avoided SVMs for two reasons. First, until recently it was
considered unclear whether SVMs actually gave state of the art performance on online spam
filtering tasks [4, 5]. However, experiments on the benchmark spam filtering data sets from
TREC 2005 and TREC 2006 have been reported that show SVMs indeed give state of the
art classification performance on these tasks, exceeding that of all other single classifiers,
and well within confidence bounds of the mark set by ensemble methods [21].

Second, SVMs carry high training cost that make them impractical in large-scale set-
tings. Relaxed Online SVMs (ROSVMs) have been proposed that compute an approximate
SVM solution at greatly reduced expense [21]. ROSVMs use a sliding window to cap the
size of the classical SVM optimization problem for streaming data, such as a (potentially
limitless) series of messages to be classified. ROSVMs further reduce cost by updating
their model less frequently than classical SVMs, and by allowing early termination by the

1. Space restrictions preclude a general discussion of SVMs in this paper. Those wishing a general review
of SVM methods are referred to the excellent text by [19].



iterative SVM solver. ROSVMs have given near state of the art performance on the TREC
2005 and 2006 public data sets; we now test them on TREC 2007 data and tasks.

In the remainder of this paper, we review the ROSVM algorithm and its implementation.
We detail the Online Active Learning approach used by our ROSVM in the current tests.
We report results on the TREC 2007 Spam Filtering tasks on the trec07p data set, and
compare these to baseline results given by one standard open-source spam filter. Our
concluding discussion focuses on identifying open questions in spam filtering research.

2. Relaxed Online SVMs

The ROSVM methodology gives an approximate Online SVM solution at much reduced
cost that does not grow with the amount of data that has been encountered [21]. This is
accomplished with three base strategies, which we review briefly in this section.

Sliding Window. Recall that SVMs classify a new example x with the function:

f(x) =

m∑

i

αiyi < xi,x > +b

Here, each of the n training examples xi has an associated label yi and weight αi. An
SVM solver such as Platt’s SMO finds optimal values for each of the n alpha values by
solving a now classic quadratic optimization problem [17, 19]. As the number of examples
in the training data grows, the number of weights to set also grows and the cost of training
increases.

In the sliding window strategy, we restrict the size of the optimization problem by only
optimizing the weights for the p most recent examples. That is, at step n (where n > p)
we treat the set of examples {xn−p+1, ..,xn} as our set of training data, and only optimize
the values for {αn−p+1, .., αn}. Each weight value αi ∈ {α1, .., αn−p} associated with an
example outside the sliding window is fixed at the value it was most recently given when
xi was still in the sliding window. This reduces the size of the optimization problem from
one that increases with n to one that is bound by p. Experiments reported in [21] showed
that near state of the art results can be produced with a relatively small lookback buffer of
size 5000 or less, dramatically reducing computational cost.

Our submissions to TREC 2007 explore three sizes of lookback buffer, with p set to
500, 1000, and 5000, in order to explore the tradeoff between computational cost and
classification performance.

Redefining Well Classified. For Online SVMs, it is only necessary to update the model
when an example is encountered that is not well classified. The formal definition of well
classified in this setting is defined by the Karush-Kuhn-Tucker (KKT) conditions, which will
be satisfied by an Online SVM on all new examples xi except those for which yif(xi) ≤ 1.
Intuitively, we must re-train an Online SVM whenever we encounter an example that lies
within the margins or which is mistakenly classified. This will guarantee that our model is
consistent with all the data seen so far.

The ROSVM approach relaxes this requirement by re-defining what it means to be well
classified. We set a parameter m, where 0 ≤ m ≤ 1, and only re-train when we find an
example for which yif(xi) ≤ m. That is, we allow a model to continue classifying so long as



it has been shown to be only slightly inconsistent with the data seen so far. This approach
reduces cost by reducing the number of times we update the model. Experiments reported
in [21] show that, for spam data, a value of m = 0.8 gives results indistinguishable from
state of the art results at half the cost, and values as low as m = 0 performs nearly as well
with additional savings. In our submissions, we use m = 0.8

Reducing Iterations Platt’s SMO is an iterative solver, making repeated passes over
the data set to find optimal alpha values [17]. The third cost-reducing strategy is to en-
force a maximum number of iterations in the outer loop of the SMO algorithm (complete
SMO pseudo-code is given in [17]), limiting the total number of passes over the training
data for each update. This is similar to setting a loose tolerance for convergence, but is
perhaps a more Draconian approach. Our previous tests have shown that restricting the
maximum number of iterations to even very low values has negligible effect on classification
performance for online spam filtering tasks [21]. This is because there are many successive
training updates over the course of online filtering. In our submissions, we set the maximum
number of SMO outer-loop iterations to 1.

3. Implementation Issues

In this section, we explore some of the implementation issues involved in making the
ROSVMs run fast enough to participate in the TREC spam filtering task.

Binary 4-mer Feature Space. Our tests have found that a binary 4-mer feature space
gives consistently best results on spam data. This is a high dimensional feature space,
containing a dimension for each possible substring of length exactly 4 drawn from the
alphabet of all possible single-byte characters. This approach allows inexact string matching
[14], which provides a measure of robustness against spammer techniques such as word
obfuscation [23]. This feature space gives significantly improved performance over a more
traditional word-based feature space [21]. This choice of feature space also allows the
filtering method to be language-independent, and to learn from non-textual data such as
attachments.2 Our tests have agreed with results reported by [7] and [16], finding that
binary valued features out-perform count-based and TFIDF-based feature scoring methods
on the spam filtering data sets that we have tested. We map binary 4-mer features for the
first 3000 characters of a given message string. The feature vectors are normalized using
the Euclidian norm during classification and training.

The drawback to this representation is the dimensionality is even higher than standard
text-classification problems. In the worst case, there could be 232 unique features present
in the data. In practice, we have found 3,700,809 unique 4-mers in the trec07p data set,
3,332,440 unique 4-mers in the trec05p-1 data set, and 1,424,606 unique 4-mers in the
trec06p data set when considering the first 3,000 characters of each message.3 Thus, the
feature space remains sparse – the vast majority of possible 4-mers features do not occur.

2. Interestingly, we have also found that using additional inexact-string matching features, such as gappy
features and wildcard features [22] do not give added performance over the simpler 4-mers with ROSVMs
on spam data.

3. Gordon Cormack has suggested hashing these features to reduce the dimensionality of this problem,
which is a suggestion we will explore in upcoming work.



Sparse Binary Inner Products For a linear SVM, computing inner products for two
vectors is the core task in an SVM solver such as Platt’s SMO [17]. We optimize our
ROSVM for the special case of computing inner products on sparse binary vectors, allowing
several optimizations over the traditional linked-list implementation of sparse vectors. The
inner products are fast enough that a cache of inner-product values [19] is not required,
greatly reducing the memory footprint of the system.

In our implementation, each example is stored as an array of integers, each integer
indexing a particular non-zero feature. The array of feature indices is stored in sorted
order, from lowest to highest. This allows a binary inner product to be computed with
no pointer-redirects (as occur with linked-list implementations), excellent memory locality,
and using only comparison and increment operators.

Alpha Seeding. As reported by [6], alpha seeding can speed up the training time of
SVMs considerably. The main idea is that starting with a good initial guess α′

i that is
close to the optimal value αi for each example xi dramatically reduces the amount of work
required for an iterative SVM solver, such as SMO, to converge to the optimal solution.
Because we are working in an online setting where updates happen incrementally, we use
the assumption that the set of alpha values found in the previous update is a good initial
starting point for the next update. In practice, this means that we can simply keep the
alpha values in memory after the SVM solver has finished updating its hypothesis.

Sliding Window. We use a ring buffer store the p most recent examples in the data
stream. Each time we encounter a new example, it takes the place of the oldest example in
the buffer. The alpha value of the new example is initially set to 0. All SVM updates are
done using this buffer as the training data set.

3.1 Linear Hypothesis.

Because we deal only with the linear kernel, we follow the suggestion of [17] and rewrite the
dual form SVM classification function to the primal form, using a single aggregate weight
vector to store the hypothesis:

f(x) =< w,x > +b

Naturally, w =
∑m

i αiyixi. Because the SMO algorithm uses the current hypothesis to
determine convergence and to select candidates for optimization, it is necessary to maintain
a current aggregate weight vector at all times. Thus, every time an alpha value αi for an
example xi is changed during training to a new value α′

i, the weight vector is updated with:

w = w + (α′

i − αi)yixi

When an example xj leaves the sliding window of examples, we do not alter the weight
vector w, but we do remove the example from the ring buffer of examples and no longer
update its alpha value. Thus, αj is fixed permanently at its most recent optimal value.

4. Online Active Learning

This year’s TREC Spam Filtering track included an Online Active Learning task, rather
than the previous pool-based Active Learning task from 2006. The structure of this task was



filter sliding window update margin max iters cost C wall clock (full)
tftS1F 500 0.8 1 100 224s
tftS2F 1000 0.5 1 100 214s
tftS3F 5000 0.8 1 100 3087s

Table 1: Parameter settings and wall-clock computation time on full task for tftS filters.

similar to the setting explored in [20] – a filter was shown one message at a time and asked to
make a classification prediction. After prediction, the filter was allowed to request a ground-
truth label for that message, with the goal of achieving strong classification performance
with as few label requests as possible. The TREC scenario added two additional factors:
the maximum amount of label requests a filter could make was fixed in advance by a label
quota, and the filter was told how many messages remained in the online filtering task at a
given point.

Our approach to the active task is based on the fixed margin sampling method proposed
in [20]: a threshold t was fixed, and label requests were made whenever a message was
classified with |f(x)| < t until the label quota was exhausted. We used a slight variant of
this idea: when there were at least 50 label requests available, we set t = 0.8, and when
there were fewer than 50 remaining, we set t = 0.2. The goal of this heuristic was to reserve
some label requests for particularly difficult messages appearing later in the data stream.
However, our results show that this approach was not ideal, as in two cases not all the labels
were used.

5. Experiments

The experiments we report here are all performed on the trec07p data set of 50,199 spam
emails and 25,220 ham emails, and the private mrx3 corpus of 8082 ham and 153893 spam,
each set in a canonical ordering for online evaluation. We applied three filters, all of which
were ROSVM-based filters with parameter settings as shown in Table 1, which were fixed
before any tests were run on this data set. For a rough estimate of speed, Table 1 also
shows wall-clock times for a complete run on the trec07p full task, using a Sunfire x86 64
machine with 8G RAM with no other load. Note that these timing results were performed
using a pre-tokenized form of this data set, in order to remove overhead common to all
filtering systems. All other results in this paper were found using the interface from the
TREC Spam toolkit, which was significantly slower.

There were four main tasks for each of our three filters on these data sets. The full

task gave supervised feedback to the filter after every prediction. The delay task gave
supervised feedback to the filter for only the first 10,000 messages in the corpus. The
partial task provided feedback for 30,388 messages in the corpus that belong to a subset
of users. Finally, the active task allowed the filter to request a label for any message
immediately following classification during online filtering. A maximum of 1000 labels were
provided; all other messages were unlabeled for this task. Further details of the experimental
design are available in the TREC 2007 Spam Track overview.

Results on full task. The results for all three ROSVM filters were quite strong on the
full feedback tasks, with (1-ROCA)% scores of about 0.01 on trec07p and as low as 0.0042
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Figure 1: Learning curves for tftS1F, tftS2F, and tftS3F on full, delay, partial, and
active tasks using trec07p data set.



trec07p trec07p trec07p trec07p mrx3 mrx3

filter full partial delay active full delay

tftS1F 0.0099 0.0878 0.0214 0.0413 0.0166 0.0685
tftS2F 0.0103 0.0858 0.0225 0.0144 0.0054 0.0683
tftS3F 0.0093 0.0919 0.0226 0.0476 0.0042 0.0568
spamprobe 0.0617 0.4870 0.1373 - - -

Table 2: Summary of Results on (1-ROCA)% measure for experiments on trec07p data set
with full feedback, partial feedback from one user only, delay feedback with
labels provided only for the first 10,000 messages, and active learning selection
of 1000 labels. Results for spamprobe are included for comparison.

partial feedback partial feedback full feedback
filter partial users only all others partial users only
tftS1F 0.0167 1.8239 0.0171
tftS2F 0.0190 1.7506 0.0180
tftS3F 0.0100 1.9411 0.0117

Table 3: Summary of Results on (1-ROCA)% measure for experiments on trec07p data set
with three partial evaluations. The first column gives results on partial feedback
evaluating only those messages that belong to the partial users. The second column
shows results on partial feedback for all messages other than those of the partial
users. In the third column, we report results evaluating those messages that belong
to the partial users when full feedback is given on all messages in the corpus.

on mrx3 (see Table 2). We were surprised to see that on trec07p, using a lookback buffer
of size 5000 did not give significantly better results than the buffer of size 500. This is in
contrast to the results on mrx3 and previous results on the trec06p and trec05p-1 data
sets, where the larger lookback buffer gave improved performance.

For all filters, there was a performance hit (evident as an upward spike in the learning
curves in Figure 1) just after 20,000 messages on trec07p. We found that this was caused
by message 23337 in the data set, which appeared to have a noisy label. The message is
a German-language stock-tip message in all capital letters – apparently spam. All of our
filters labeled this message as spam with high confidence, but it was given a ground truth
label of ham. The effect of this noisy label did not permanently degrade results, as all filters
recovered to the 0.01 (1-ROCA)% level over time.

Results on delay task. As shown in Table 2, our filters gave reduced (but still reasonably
strong) performance on the delay task for both trec07p and mrx3. This shows that while
a filter may be expected to generalize into the future, there is (at least in these data sets)
some amount of measurable concept drift associated with spam data.



filter active first 1000 uniform 1000

tftS1F 0.0413 0.1095 2.9636
tftS2F 0.0144 0.1105 2.9541
tftS3F 0.0476 0.1092 2.8670

Table 4: Active Learning Comparisons. Results for tests on trec07p with active learn-
ing with 1000 label requests, compared to scenarios where only the first 1000
messages were labeled, or 1000 were chosen uniformly at random for labeling.

Results on partial task Surprisingly to us, this setting proved the most difficult in the
group and our filters had far lower (1-ROCA)% scores on this task than even on the delay

task, despite getting feedback on more than three times as many messages. Examining
the results further shows that this degradation in performance is not due to overall lack
of labels, as the performance on the partial user’s own messages was very strong. Rather,
we find that the model trained specifically on the partial users’ messages does not transfer
well to messages sent to other people – as shown by the very poor (1-ROCA)% scores when
considering only these other messages. (See Table 3.)

Interestingly, we find that training on the other messages (in addition to the partial
user’s) does not significantly harm performance on the partial user’s messages. This suggests
that in a multi-user spam-filtering system, it may be equally good to have individual user
filters or a single system-wide filter. However, an individually trained filter may not be
expected to perform well for different users.

Results on active task Our results for the active task fall into two groups. The tftS1F
filter had a (1-ROCA)% score of roughly 0.014, which approaches the result for full feedback
while requesting labels for only one message in seventy-five. For tftS1F and tftS3F, results
were significantly worse than that of full feedback – in the 0.04 range on the (1-ROCA)%
score. The difference between these two groups was that the strong results were generated
by a filter that used its entire label quota, while the weaker results were given by filters that
did not exhaust their label quotas. This highlights one of the weaknesses of the fixed-margin
sampling method – it is difficult to determine a priori exactly how many labels the filter
will request for a given choice of t.

We considered the possibility that an optimal strategy would be to simply request many
labels at the beginning of the task, so that any learned knowledge would be applied for as
long as possible in the online setting. However, when we tested the effect of requesting labels
for the first 1000 examples, we found that these results were significantly worse than using
1000 labels selected with active learning. This was even true for the first 10,000 labeled
examples (as tested in the delay task) in comparison with the best of the three active

results using 1000 labels. For completeness, we also with 1000 labels sampled uniformly at
random, and found that these results were far worse than the active learners. These results
are summarized in Table 4.



6. Discussion: Future Directions

The top-level performance at TREC has consistently increased over the three years of
the spam filtering track, to the point where performance on the fully supervised online
filtering task is approaching perfection, with ROC areas greater than 0.9999 and messages
mis-classified at a rate of one in a thousand or better – even when starting from zero
knowledge. It seems unlikely that inter-annotator agreement would be high enough from
human evaluations to make further improvements measurable in this domain.

However, this scenario of full feedback on all messages is unrealistic in live settings.
The delay, partial, and active tasks from this year’s competition were all strong steps
towards addressing differences between laboratory and real-world settings. We plan to
continue work in this vein, especially with regard to noisy labels, malicious labels, and the
use of unlabeled data.

Additionally, there are a wide variety of spam domains that are, as yet, unexplored
on a TREC-level scale. These include detecting content-based spam in blogs, wikis, social
networking sites, SMS text messages, image sharing sites, and collaborative tagging efforts
– to name but a few. Continued work transferring and augmenting techniques from email
spam filtering to these domains is needed.
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