
CSAIL at TREC 2007 Question Answering

Boris Katz, Sue Felshin, Gregory Marton, Federico Mora, Yuan K. Shen,
Gabriel Zaccak, Ammar Ammar, Eric Eisner, Asli Turgut, L. Brown Westrick

MIT Computer Science and Artificial Intelligence Laboratory
Cambridge, MA 02139

1 Introduction

MIT CSAIL’s entries for the TREC 2007
question answering track built on our sys-
tems of previous years, updating them for
the new corpora. Our greatest efforts went
into the system that handles the ‘other’
questions, looking for new descriptive in-
formation about the topic. We noticed in
our experiments with Nuggeteer (Marton
and Radul, 2006)1 that some of the param-
eters made a big difference in the results,
and decided to restructure our scoring to
be able to tune its parameters. This rep-
resents the first such use of the Nuggeteer
software that we are aware of, and yielded
excellent results.

2 Approach and Results

We discuss our approaches and results
for each system component, from prelim-
inary steps including document retrieval
and question analysis, to the final systems
that answered each kind of question.

2.1 Question Analysis

We used the START natural language ques-
tion answering system (Katz, 1988; Katz,
1997) for question analysis. For each ques-
tion, START identifies a question focus or
answer type, and transforms the question
into an assertion. In our evaluations last
year, these had accuracies near 52% and
63% respectively, with correct resolution

1http://csail.mit.edu/∼gremio/code/Nuggeteer

of all referent phrases occurring in 32% of
questions. Our system this year added only
bugfixes.

We notice that some of the question sets
this year used entirely or almost entirely
explicit references to the topic. When the
exact list of such questions is published, we
look forward to comparing our overall per-
formance on the resolved and unresolved
subsets.

Question analysis affects list questions
primarily by specifying the expected an-
swer type. The list processor then decides
whether each candidate string is of that
type, as described in Section 2.4. For fac-
toid questions, the second output of ques-
tion analysis, the question transformed into
assertion, is used to match the environ-
ments that candidate answers appear in.
Question analysis can affect ‘other’ ques-
tions by identifying the portions of the
topic as being synonyms (as in the case of
abbreviations) or else by separating nomi-
nal parts from actions for events.

2.2 Document Retrieval

We used Lucene2 for indexing and retrieval
on the AQUAINT2 corpus, and BLOG06
corpus, though we chose not to incorpo-
rate results from the BLOG corpus in most
of our systems. Unlike in previous years,
question analysis did not affect document
retrieval, because we did not try any query
expansion.

2lucene.apache.org

2.3 Factoid Question Answering

Our factoid question answering component,
Aranea, remained much the same system
as has been used in previous years. The
minimum changes made, reflected in our
csail1 entry, included adapting special-
ized extractors to recent changes in the web
site layouts from which they gathered data,
and updating the IDFs to reflect the new
AQUAINT2 corpus. We did not use the
BLOG corpus for factoid answering.

We had also noticed that we would have
benefitted in previous years from disregard-
ing one of the Aranea components, and we
ran this ablated system as csail2. For this
data set, the component turned out to help
by 2% (p < 0.05).

In the third entry, we made the csail2

scoring modification, and we also experi-
mented with an aggressive filtering mecha-
nism based on answer type. We got six of
the 16 NIL answers correct, compared to
zero in the other runs. While this raised
our score, the final score was not differ-
ent from either the immediate csail2 base-
line or the cross-year csail1 baseline (both
p > 0.2).

2.4 List Question Answering

Our baseline list question answering strat-
egy was the same as in previous years:
we look for phrases which match the ex-
pected answer type, and are near question
keywords or their synonyms (Katz et al.,
2006). The csail2 list system was the
same system as last year’s, with new ques-
tion analysis and bugfixes. For our csail1
entry this year, we added Wikipedia cate-
gories3 to the set of answer types with lists
of known members.

The csail1 entry, using Wikipedia, per-
formed better than the baseline by 1.4%,
but not statistically significantly. It influ-

3http://en.wikipedia.org/wiki/Category

enced 18 questions, and certainly enabled
us to answer some questions we would oth-
erwise not have been able to answer, such
as about names of ships. In a pairwise t-
test on those 18 questions, however, the
score improvement remained shy of statis-
tical significance (0.050 < p < 0.053).

We did not use the BLOG corpus in an-
swering list questions, but excluding BLOG
data did not significantly affect our score.

2.5 “Other” Question Answering

Our system for answering “Other” ques-
tions, seeking new information about the
topic of the question series, closely follows
previous year’s systems, but adds major
infrastructural improvements to response
ranking, and redefines and improves our
ability to project descriptions from trusted
sources onto the collection of interest.

The system has a candidate generation
and a candidate ranking phase. Candi-
date generation aims to include all relevant
nuggets among the available response snip-
pets, and candidate ranking is responsible
for selecting the most salient snippets and
for minimizing redundancy.

2.5.1 Candidate Generation

In candidate generation, response snip-
pets can come from two sources: direct key-
word search and pre-extracted definitional
contexts. Documents retrieved through di-
rect keyword search are segmented into
paragraphs and sentences, and both para-
graphs and sentences become candidate
snippets.

Pre-extracted definitions were generated
using our ColForbin (Fernandes, 2004) sys-
tem, which uses manually defined sur-
face syntactic patterns to extract defini-
tional text snippets from documents anno-
tated with BBN IdentiFinder named en-
tity tags (Bikel et al., 1999). Exam-
ples of extraction patterns include: copula

that describe is-relationships: “[Named-
Entity: Ur] is [Definition: the home of cap-
ital of Sumeria]”; appositives that describe
additional facts about the target entity:
“[Named-Entity: Archimedes], [Definition:
a philosopher and a mathematician], was
celebrated in Ancient Greece”. We identi-
fied approximately 1.25 million definitional
snippets from the AQUAINT2 corpus, and
did not run ColForbin on the BLOG06 cor-
pus.

2.5.2 Candidate Ranking:
Projection

Projection is the process of finding an an-
swer in one source and then locating sup-
port for it in another. In the case of ‘other’
questions, the intuition is that others have
put effort into compiling the most ’vital’
nuggets of information about many top-
ics in sources like Wikipedia and Google
Timelines4, so we would like to find the
same nuggets in our corpus of interest. We
looked for similarity between the trusted
sources and the candidate snippets using
the BLEU similarity metric (Papineni et
al., 2001).

For Wikipedia, we used as “trusted text”
the contents of the top Wikipedia page in
a Google search on the topic (as opposed
to just the first paragraph, as in previous
years). For Google Timelines, we used the
text from the first page of responses.

2.5.3 Candidate Ranking:
Redundancy

For redundancy elimination, we have
experimented with a word-based edit-
distance metric to prune near-identical re-
sponses, and with complete-link hierar-
chical agglomerative clustering (both de-
scribed in (Katz et al., 2006)). These were

4Google Timelines is a recent Google Labs’ prod-
uct that returns a set of chronological facts for
a given topic. See http://www.google.com/views?
q=thomas+jefferson%20view%3Atimeline

incorporated as the novelty feature, avail-
able to the final scorer.

2.5.4 Candidate Ranking:
Parameters

Our ranking system uses machine learn-
ing to train parameters for the five features
described in Table 1. The first four fea-
tures, topic match, informativeness, source,
and novelty, are carried over from the old
system, whereas the projection feature is
new—projection had been applied by mod-
ifying the keyword weights to be used in
other parts of scoring. The features are
real-valued functions over the query and
response snippet, and the score function
combined these features into a boolean rel-
evance judgement.

We trained scoring function weights on
data from previous years using the Nugge-
teer program to assign likely nuggets to
each of our generated responses. Nugge-
teer memorizes all human-judged responses
exactly, and uses a keyword-based similar-
ity metric with the known answers to es-
timate nugget judgements for previously-
unseen responses. Unlike other systems,
it provides a likelihood for the presence of
each nugget in each proposed response. We
used TREC2006 as the training set, but did
not use a validation set.

We used the Weka toolkit (Witten and
Frank, 2005) to create classifiers in sev-
eral families, including support vector ma-
chines, logistic regression, radial basis func-
tion, and decision trees. We used the out-
put of a logistic function over the binary
classifiers to obtain a score between zero
and one, which we then used to rank the
responses. We simultaneously also com-
puted the score using the method in our
TREC2006 system, and used that score to
break ties.

Feature Description

Ftopic The topic should be mentioned in each response, but may
not match exactly. Ftopic approximates the overlap between
the actual topic (or synonyms) and words in the response.
If we consider the set of unique terms in the topic Q (or a
synonym), and the terms in the best named entity and key-
word matches in the response R, and the exactly matching
set between them M , then Ftopic is an F-measure: F (p, r, 2),
of the topic precision and recall

p =

∑
w∈M t(w)∑
w∈R t(w)

r =

∑
w∈M t(w)∑
w∈Q t(w)

Here t(w) is the term weighing function, in this case IDF.
As an example, if the topic were “Warren Moon retires”
and the candidate: “Fred Moon is 52.”, then Ftopic would
be close to F(0.5,0.33,2) (modulo term weights). The third
value is the beta, weighting recall as more important than
precision. In a future version, we will try separating the
precision and recall portions of this into two features.

Finform IDF captures the observation that words that occur less
frequently in the corpus are generally more informative.
Finform approximates the “informativeness” of a response
by comparing their combined idf score with the corpus av-
erage idf, idfavg. For a response R,

Finform =

∑
w∈R idf(w)

idfavg · |w ∈ R|

Fsource While we have only two main response sources, the re-
sponses from pre-extracted definition source can vary in
quality depending on the pattern type. Fsource is an enu-
meration of the possible sources, 15 sources are from the
definition extraction source e.g. def:appositive (apposi-
tive pattern), and 2 are from the lucene source (whether it
was a paragraph or sentence.)

Fnovelty If an answer is similar to another one already given, then it is
unlikely to yield previously unseen nuggets. Our approaches
to novelty scoring are described in (Katz et al., 2006)

Fprojection This feature quantifies the ngram distributional similarity
between a response d and a set of sentences from a trusted
source about the topic T (q). The trusted source could be the
Wikipedia article for the given topic, or the Google Time-
lines result. The similarity metric we used was BLEU (Pa-
pineni et al., 2001).

Table 1: A summary of features for ranking candidate responses

2.5.5 Results

Our submitted responses to ‘Other’ ques-
tions consisted of two successful runs:
csail2 included projection (on both
Wikipedia and Google Timelines) but not
the new scoring, and csail3 included pro-
jection and a ranking function trained us-
ing logistic regression. Our csail1 submis-
sion, meant as a baseline without either the
new projection or the new scoring, unfortu-
nately had errors that made it unusable for
comparison.

In addition to the two successfully sub-
mitted runs, we also conducted several in-
ternal experiments on previous years’ data.
In our experiments, we varied: 1. pro-
jection sources: Google Timelines (gtl) or
Wikipedia (wiki) or both; 2. sources of
candidate responses: search (luc) or pre-
extracted definitions (db) or both. 3.
methods for tuning the score function. The
baseline runs consisted of best settings for
TREC 2006. Evaluation was done using
Nuggeteer (Marton and Radul, 2006). Ta-
ble 2 summarizes our experiments, and in-
cludes the F-measures for previous years
and pyramid scores for the current year.

The projection feature alone improved
performance significantly. Experiments on
previous years’ data showed a remarkable
gain of 3-5% in F-measure (and a gain of 7-
10% in recall) as compared to our baseline.
Experiments varying the source of projec-
tion showed that using Wikipedia alone re-
sulted in a better performance (17.0%) ver-
sus using Google Timelines alone (14.7%).

In some examples, we noticed that
Google Timelines mix references to various
items with the same name, whereas the top
Wikipedia page is either on topic, or badly
off topic, so the projected data will be con-
sistent.

Experiments in varying the algorithm
for optimizing the ranking function showed
that simple methods such as logistic regres-

sion gave significant improvements, a 2% F-
measure gain for 2004, and a 3.7% improve-
ment in this year’s submissions (csail2 vs.
csail3). The more sophisticated methods
did worse, but this may be due to the deci-
sion tree’s overfitting. For example decision
trees are known to often overfit the train-
ing data, and indeed, examination of the
generated decision trees (for TREC 2006)
pointed to an overly complex (multi-level)
rule, that clearly indicated overfitting as a
problem.

Lastly, experiments comparing our two
response sources, pre-extracted definitions
(db) and Lucene search engine results
(luc), showed that the Lucene source was
predominant in returning valid responses.
Lucene-only results provided the system
with much needed answer recall. The
combination of the two sources (db+luc)
perform slightly better than Lucene-alone
but not by any large margin. While pre-
extracted definitions were of higher qual-
ity, its low recall, greatly diminished its
usefulness as a source of descriptive re-
sponses. This confirms our analyses from
last year (Katz et al., 2006).

3 Contributions

Our TREC-2007 baselines for factoid and
list made minimal modifications from last
year, but one cannot immediately conclude
that the questions were harder, because we
did not use the BLOG06 corpus. In closer
analysis for list questions, excluding an-
swers that were listed with BLOG support-
ing documents, our systems gained about
0.6% across the board, indicating that at
least the newspaper part of the list ques-
tion answering is more difficult than last
year, where our scores with the same sys-
tem were some 6% higher.

A common thread was that using
Wikipedia in both list and ‘other’ questions
seemed to improve our performance, and

TREC 2007: 70 topics
Pyramid score

csail2 gtl+wiki 0.198
csail3 logistic gtl+wiki 0.235

F(β=3) Precision Recall
TREC 2006: 75 topics (Vorhees, 2006)
gtl+wiki1 0.1718 ±0.0404 0.0457 ±0.0081 0.3342 ±0.0790

wiki1 0.1702 ±0.0387 0.0450 ±0.0081 0.3360 ±0.0761

gtl1 0.1474 ±0.0371 0.0405 ±0.0080 0.3007 ±0.0754

db+luc2 0.1308 ±0.0351 0.0380 ±0.0076 0.2586 ±0.0712

luc only2 0.1225 ±0.0347 0.0382 ±0.0075 0.2351 ±0.0655

db only2 0.0625 ±0.0256 0.0243 ±0.0105 0.1336 ±0.0553

baseline 0.1233 ±0.0386 0.0415 ±0.0094 0.2382 ±0.0749

TREC 2005: 75 topics (Voorhees and Dang, 2005)
logistic3 0.2445 ±0.0408 0.0692 ±0.0126 0.4131 ±0.0738

linear3 0.2253 ±0.0391 0.0589 ±0.0116 0.3984 ±0.0763

svm3 0.2052 ±0.0395 0.0556 ±0.0119 0.3539 ±0.0712

rbfnetwork3 0.2048 ±0.0399 0.0580 ±0.0111 0.3643 ±0.0725

j483 0.2016 ±0.0357 0.0535 ±0.0111 0.3751 ±0.0742

gtl+wiki† 0.2282 ±0.0383 0.0573 ±0.0113 0.4111 ±0.0758

baseline 0.1906 ±0.0345 0.0509 ±0.0102 0.3463 ±0.0689

TREC 2004: 65 topics (Voorhees, 2004)
logistic3 0.3522 ±0.0564 0.0920 ±0.0193 0.5905 ±0.0886

linear3 0.3432 ±0.0560 0.0869 ±0.0187 0.5840 ±0.0914

rbfnetwork3 0.3240 ±0.0544 0.0836 ±0.0187 0.5501 ±0.0894

svm3 0.3218 ±0.0566 0.0815 ±0.0190 0.5475 ±0.0911

j483 0.3138 ±0.0564 0.0836 ±0.0191 0.5327 ±0.0914

gtl+wiki† 0.3388 ±0.0557 0.0850 ±0.0186 0.5840 ±0.0914

baseline 0.2830 ±0.0503 0.0760 ±0.0152 0.4826 ±0.0881

Table 2: Summary of TREC 2007 results for ‘other’ questions and experimental results
on TREC 2004-2006 data. Reported are f-measure, precision, recall of responses from
Nuggeteer under differing system settings. baseline used only settings from previous
year.
1 Runs that varied projection sources, where gtl is using Google Timelines and wiki is using Wikipedia.
2 Runs that varied candidate generation strategies, where db is using the ColForbin database and luc is using

Lucene.
3 Runs that varied ranking methods. Training data was derived from TREC 2006 questions. Experiments used

gtl and wiki as projection sources, and both db and luc as candidate generation methods. Classifiers were

trained using default settings from Weka (Witten and Frank, 2005).
† Used both db and luc for candidate generation.

Factoid Lists ‘Other’ Per-Series

csail1 baseline wiki baseline
0.131 0.068 (0.076)** 0.093

csail2 scoring variant no-wiki projection
0.111 0.054 0.198 0.122

csail3 scoring variant and
filtering

wiki† projection and logis-
tic regression

0.119 0.067 0.235 0.142
Best 0.706 0.479 0.329 0.484
Median 0.131 0.085 0.118 0.108

Table 3: A summary of our TREC 2007 results, as compared with Best and Median values
for all participants.
† the second wiki run used a different question analysis input.

** the first “other” run used failed document retrieval, so the score should not be considered as a true baseline.

learning to make the best use of trusted
outside sources is a future priority.

Our greatest effort and best results this
year were in the ‘other’ questions, where a
more systematic approach to parameter es-
timation and better use of projection from
trusted descriptive sources raised our per-
formance significantly in a traditionally dif-
ficult task.

Our effort on ‘other’ questions was fu-
eled by our success with using Nuggeteer
as a tool for system performance estima-
tion and tuning. Our experiments using
Nuggeteer correlated with the eventual hu-
man judgements, validating the tool and
the approach.

References

Daniel M. Bikel, Richard L. Schwartz, and
Ralph M. Weischedel. 1999. An algorithm that
learns what’s in a name. Machine Learning,
34(1-3):211–231.

Aaron D. Fernandes. 2004. Answering definitional
questions before they are asked. Master’s thesis,
Massachussetts Institute of Technology.

Boris Katz, Gregory Marton, Sue Felshin,
Daniel Loreto, Ben Lu, Federico Mora, Ozlem
Uzuner, Michael McGraw-Herdeg, Natalie Che-
ung, Yuan Luo, Alexey Radul, Yuan Shen, and

Gabriel Zaccak. 2006. Question answering ex-
periments and resources. In Text Retrieval Con-
ference (TREC).

Boris Katz. 1988. Using English for indexing and
retrieving. In Proceedings of the 1st RIAO Con-
ference on User-Oriented Content-Based Text
and Image Handling (RIAO 1988).

Boris Katz. 1997. Annotating the World Wide
Web using natural language. In Proceedings
of the Conference on the Computer-Assisted
Searching on the Internet, (RIAO 1997).

Gregory Marton and Alexey Radul. 2006. Nugge-
teer: Automatic nugget-based evaluation using
descriptions and judgements. In HLT-NAACL.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2001. BLEU: a method for
automatic evaluation of machine translation.
In Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics
(ACL2002), July.

Ellen M. Voorhees and Hoa Trang Dang. 2005.
Overview of the trec 2005 question answering
track. In Text Retrieval Conference.

Ellen M. Voorhees. 2004. Overview of the trec
2004 question answering track. In Text Retrieval
Conference.

Ellen Vorhees. 2006. Trec 2006 question an-
swering overview. In Text Retrieval Conference
(TREC).

Ian H. Witten and Eibe Frank. 2005. Data Mining:
Practical machine learning tools and techniques.
Morgan Kaufmann, San Francisco, 2nd edition
edition.

