
FSC at TREC

Stephen Taylor Orlando Montalvo-Huhn Nikhil Kartha

January 26, 2008

1 Introduction

This is the �rst time that Fitchburg State College
has entered the competition and the �rst project
that the students had worked on of this sort. We
decided that we would split our time between build-
ing an infrastructure and on speci�c techniques for
information processing, and to use the project to
help us understand the problem better for subse-
quent years. Because of the time we needed to
research and understand the problem and when we
started we had a real time constraint. We decided
to do some fast prototyping and use simple infor-
mation processing techniques to test the basic in-
frastructure. To allow for easier insertion of more
complex methods we decided on a layered approach
to the information processing. A three layer ap-
proach seemed to make the most sense. The �rst
layer would �nd the document that may have the
answer. The second would try to �nd the sentence
that answered the question. And the third would
try to extract the answer from the sentence. We
wanted to try a number of di�erent approaches to
processing information at each layer. However be-
cause of lack of time, we only got a chance to try
a few. We spent much of time experimenting with
the document retrieval portion. Even when you
�nd a method, you need time to play with the pa-
rameters with the weight multiplier and any num-
ber of tweaks. Unfortunately, we didn't get much
time to do that.

2 Approach

We decided on a quick prototyping development
approach. This would allow us to have something
up and running very quickly. We would also be
able to stop development at anytime and have a
working system (even if it doesn't work very well).
We thought this approach would be the one that
would most likely give us time for tweaking.

2.1 Brute Force

Brute force as �rst pass, didn't want to get bogged
downWe started with a brute force approach, using
regular expressions and hand parsers. Since we did
not know which areas would be the most likely to
be the most important, we decided that we should
create a system quickly and then concentrate on
the areas that seem like they would be most likely
to produce the best results.

2.2 Use packages

Use packages when we could We wanted to be able
to build on previous work when possible, so we tried
to �nd a package that would give us plenty of things
to play with. For this reason we chose the Python
natural language toolkit (nltk)1 . We were very
pleased with its interface to WordNet2 .

1nltk.sourceforge.net
2wordnet.princeton.edu

1

2.3 Use proximity in sentence

searches

Although we did not know what document query
approach we would be using for searching for the
documents, we decided early to use sentence prox-
imity as a way to identify sentences that may con-
tain the answer to questions. We tried a couple of
di�erent home grown methods counting the num-
ber of words in common and using synonyms. We
also attempted a home grown distance method, but
�nally decided on the cosine distance method.

2.4 Word Types and Tagging

Use word types and tagging, depending on ques-
tion It seemed to us that the quickest way to get
results where you recognize sentence types and cer-
tain word patterns was to use regular expressions.
Regular expressions can be used to recognize cer-
tain text such as dates and numbers, without a lot
of work. It can be di�cult to cover all cases, but
you can get many fairly easily. You can also use
regular expressions for recognizing types of ques-
tions. We divided the questions in basic types:
who, when, how many, etc. Then we developed
RE patterns for recognizing these types. We knew
that we would only be able to tag a limited num-
ber of words using regular expressions and that it
would be di�cult to �nd phrases this way, so we
use the nltk to help us tag part-of-speech and chunk
phrases.

3 Structure

3.1 Deployment diagram

Here is a high level diagram of the whole system.
The blogs and website data is used to create an
index.

There is a question parser that provides a query
for the index and information for �nding sentences
and answers. The query is used to �nd the

documents that contain the information we need.
Those documents are then passed to the sentence
�nder which �nds the sentences that contain the
answers. Once we have the sentences that may
contain the answer, we still need to extract the
answers. The answer �nding component looks
through each of the sentences and picks out the
phrase or word that could be the answer. The
answer chooser then looks for the phrase that
appears most often and uses that for the output
answer.

We built a layered system for �nding answers. The
idea was to look for documents which may have
the answer, then narrow it down to the sentences
and �nally extracting the answers from those
sentences.

3.2 Layers

3.2.1 Search for docs

The �rst step was to �nd the documents. Before we
do this we need to know for what we are searching.
This required us create queries.

3.2.1.1 Creating queries

To create queries we decided on a simple method.
We create a list of words contained in the question.
We remove the stopwords, then we look for syn-
onyms using WordNet. In creating the search we
use the words in the topic, the words in the sen-
tence, and the synonyms, attempting to give words
from the di�erent lists di�erent weights. The way
the query is created depends on the type of search.
This means that the query creation code needed to
be part of the query module. We pass the word lists
to a method in the module to perform the query
creation.

3.2.1.2 Web searches

2

We built an internet search module which not used
used in the �nal QA processing. We created a mod-
ule that would take a website and create a query
speci�c to that site. The query would be sent, and
the returned html would be scrubbed for the list
of websites. Once we got the list of websites, we
would asynchronously look up the web pages. This
process turned out to be quite easy. Much more
di�cult was �nding the real content on the web
pages. Writing this from scratched turned out to
be di�cult as web pages can have very di�erent for-
mats. We created a table of all the text elements
in the document with a count of words in each ele-
ment. The one with the most words was used. We
�ddled with this ignoring some elements like

and <p> until we found a combination that seemed
to work best. This actually gave us pretty good
results.

3.2.1.3 Indexing

For the workshop, what we really needed was to
search the documents given to us by the the com-
petition, so we needed to index the TREC docu-
ments. We used Lucene3 since it's been out in the
in the �eld for a while. After trying a couple of
di�erent distributions, we settled on PyLucene4 .
It was not as fast as some others, but it seemed
quite stable. An unexpected result of our going to
using an index of the TREC documents, instead of
the web search, was the number of correct answers
we got dropped by half. We attributed this to the
theory that search sites have been tuned over sev-
eral years. Another issue we encountered was that
the synonyms returned by doing a synset closure
search gave us synonyms that increased our false
hits signi�cantly. On the other hand, not using
the synonyms meant that there were questions for
which we never got the documents containing the
correct answer. In the end, we weeded these out the
false hits during the sentence search, which will be
described below.

3lucene.apache.org
4pylucene.osafoundation.org

3.2.1.4 File Searches

It was our plan to use the PyLucene indexing for
the �nal project, however, when we got the trec
documents and began to run tests with them, we
found that python xml/html parsers were choking
on some of the documents. This was especially
true with the blog data. We made changes to the
PyLucene modules which �xed a number of prob-
lems, but progress really slowed down while we
�xed these. In the end, we decided to put aside
the indexing and use the top docs, the �fty top
documents for each question as provided by the
workshop organizers. This required us to create a
new module that just to handle the top docs.

3.2.2 Search for sentences

The second layer is the sentence search. After �nd-
ing the documents, we need to pick out the sen-
tences that contain the answer to the question.
Finding the (one) sentence with the answer would
be highly unlikely. Instead, we pick out a set of sen-
tences which might have the answer and choose the
answer that appears the most often. Since we may
have had false positive hits in the document search,
a decent method here can cull those documents by
not having good sentence matches. We need the
sentence search to be fast since we could be looking
through a large number of large documents. This
could mean a large number of sentences, which we
do not want to compare to each other. Instead, we
need a way to calculate a suitability number which
can then be used to sort the sentences. We use two
methods for the calculation. The �rst method is a
word match count. We mentioned earlier that we
keep the search words in 3 lists: One for words in
the topic, one for words in the question, and one
for synonyms of words in the question. Each one of
these gets a di�erent weight. So, for each word in
the current sentence that matches one of the words
in the list, we add a certain amount. In general,
the words from the question get the highest weight.
The second method was to calculate a sentence dis-
tance. After several tries, we settled on using cosine
distance. Unfortunately, we did not include syn-

3

onyms for cosine distance, which meant we would
lose the synonym information. We wanted to use
both, so we combined the two methods into one
number. Once each sentence has a weight or score,
we look at the top sentences. The number of sen-
tences can vary, and was set using a parameter. We
planned to tweak this number was a last step.

3.2.3 Look for answer

Now that we have a list of sentences that may con-
tain the answers, we'll need to extract the answer
from the sentences. For this version, we decided
that we would answer with just a factoid; we would
not worry about lists. The type of answer we give,
depends on the type of question asked. The list of
questions can be divided into types. We examine
the list of sentences in the found list, and attempt
to extract an answer depending on the question
type. How we do this for each question type will
be discussed below, but for now, let's just assumed
that we have extracted a list of answers from the
sentences. The code simply counts the number of
times each 'answer' appears. The answer with the
highest count is the one we use. The most obvious
type of question is 'who'. This take a number of
forms, not always looking like just a who question.
'Who is ...', 'What person...' are of this type, but
there are other forms too, some more di�cult to
see. Besides who, there are where, when, which,
and how questions. We'll discuss each one of the
question types. We used a very simple method for
determining types. Using lists of sentence begin-
nings with associated question type, we just check
the beginning of the question, if we �nd a match, we
set the it to the question type. If we did not �nd a
type we set it to a default, which is 'who'. The who
questions are any question that require a name as
an answer. So, for each sentence in our found sen-
tence list, we look for what looks like a proper noun.
We look for proper nouns with regular expressions.
The code searches for all the proper nouns in the
sentences. It then returns the proper noun
that appears the most number of times. The

when answers are found by looking for dates.
Again, we used regular expressions to look for any-

thing that looks like a date and return a normalized
form as the possible answer. The regular expres-
sion is pretty complicated, but it still doesn't deal
with dates like 'last week', 'next Friday' and so
on. Nevertheless, it seems quite good at being able
to pick up many dates. The normalized form for
dates is formatted as follows: <year><era> <month>
<day>. <era> may be BCE or CE. The where an-
swers are treated just like the who questions, except
that the answers are checked against a gazetteer.
Anything in the gazetteer gets a higher score, after
that the names are treated just like those in who.
The which answers are found quite di�erently. The
code looks for the category name. For example, a
'which color' question would use the category color.
Once we have the category we do a hypernym clo-
sure search. The code then searches for those words
in the sentences. The words found are then picked
out and counted. Unfortunately, this did not seem
to work. Although our analysis included other cat-
egories, our code did not deal with them.

3.3 Quick
ow diagram

4 Conclusions

The layered approach allowed us to make quick
changes and also allowed us to test at each layer.
We had the ability to work one question at a time,

4

and to quickly switch out one scheme for another.
On the other hand, even a layered approach has its
limits to
exibility. There were changes we could
not make easily, such as trying now completely new
approaches such as using ontologies and it was not
easy to share information between the layers.

5 Ideas for future

There are several things we would like to investi-
gate for the future. Going along a similar approach
to what we currently have, we want to try better
parsing and tagging. Better REs may help us to
better identify dates, proper
nouns, numbers, etc. Places in the text where

calculations regarding dates are possible need to
be recognized and handled. One example is using
the document date with relative date information
within the document. Another example is using
the phrase 'next Friday'. So far, we have made no
real attempt to deal with grammar and grammati-
cal elements. Approaches using lemmatization and
basic elements seem to hold some promise. Along
these same lines, we need to look at handling nega-
tion and tenses. We'd also like to look at some
very di�erent options like ontologies, datalogs and
semantic spaces.

5

