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ABSTRACT
In TREC 2006, we participate in three tasks of the Terabyte and En-
terprise tracks. We continue experiments using Terrier1, our modu-
lar and scalable Information Retrieval (IR) platform. Furthering our
research into the Divergence From Randomness (DFR) framework
of weighting models, we introduce two new effective and low-cost
models, which combine evidence from document structure and cap-
ture term dependence and proximity, respectively. Additionally,
in the Terabyte track, we improve on our query expansion mech-
anism on fields, presented in TREC 2005, with a new and more
refined technique, which combines evidence in a linear, rather than
uniform, way. We also introduce a novel, low-cost syntactically-
based noise reduction technique, which we flexibly apply to both
the queries and the index. Furthermore, in the Named Page Finding
task, we present a new technique for combining query-independent
evidence, in the form of prior probabilities. In the Enterprise track,
we test our new voting model for expert search. Our experiments
focus on the need for candidate length normalisation, and on how
retrieval performance can be enhanced by applying retrieval tech-
niques to the underlying ranking of documents.

1. INTRODUCTION
The research scope underlying our participation in TREC 2006

has been to extend our current robust weighting models and re-
trieval performance enhancing techniques, in novel ways that are
theoretically-sound, modular, low-cost, and most importantly, ef-
fective. In terms of weighting models, we present two new Di-
vergence From Randomness (DFR) models. The first model aims
at combining evidence from document structure, and we test it in
the Named Page Finding task of the Terabyte track. The second
model aims at modelling term dependence and proximity, and we
test it in the Named Page Finding task of the Terabyte track and
the Expert Search task of the Enterprise track. In terms of retrieval
performance enhancing techniques, we present (i) a refined query
expansion mechanism on fields, which combines document field
evidence in a linear way, and (ii) a novel noise reduction mecha-
nism for long queries and the index, which uses syntactically-based
evidence (parts of speech). We test these two techniques in the Ad-
hoc task of the Terabyte track. We also present a new technique for
combining query-independent evidence, in the form of prior prob-
abilities. We test this technique in the Named Page Finding task of

1Information on Terrier can be found at:
http://ir.dcs.gla.ac.uk/terrier/

the Terabyte track.
In the Enterprise track, we test our novel voting model for expert

search. Firstly, we experiment on how candidate length normalisa-
tion can be used in the voting model to prevent candidates with too
much expertise evidence from gaining an unfair advantage in the
voting model. Secondly, we examine how a selection of state-of-
the-art retrieval techniques, such as a field-based weighting model,
query expansion and term dependence and proximity, can be used
to enhance the retrieval performance of the expert search system,
by enhancing the quality of an underlying ranking of documents.
Conclusions are drawn across two ways of associating documents
with candidates to represent their expertise.

The remainder of this paper is organised as follows. Section 2
presents the weighting models used in the Terabyte and the En-
terprise tracks. Section 3 presents the hypotheses tested and tech-
niques applied in the Adhoc and Named Page Finding tasks of the
Terabyte track, with a discussion of the results. Section 4 presents
the hypotheses tested and techniques applied in the Enterprise track,
with a discussion of the results. Section 5 summarises our overall
participation in TREC 2006.

2. MODELS
Following from previous years, our research in Terrier centres in

extending the Divergence From Randomness framework (DFR) [1].
In TREC 2006, we have devised novel, information-theoretic ways
of combining evidence from document structure (or fields, such as
the title and anchor text), and in modelling term dependence and
proximity. Both proposed models are based on the DFR frame-
work, and they are applied very effectively and with little compu-
tational overhead.

The remainder of this section is organised as follows. Section 2.1
presents existing field-based DFR weighting models. Section 2.2
introduces our new field-based DFR weighting model, while Sec-
tion 2.3 presents our new DFR model, which captures term depen-
dence and proximity.

2.1 Field-based Divergence From Randomness
(DFR) Weighting Models

Document structure (or fields), such as the title and the anchor
text of incoming hyperlinks, have been shown to be effective in
Web IR [4]. Robertson et al. [23] observed that the linear com-
bination of scores, which has been the approach mostly used for
the combination of fields, is difficult to interpret due to the non-
linear relation between the scores and the term frequencies in each



of the fields. In addition, Hawking et al. [5] showed that the length
normalisation that should be applied to each field depends on the
nature of the field. Zaragoza et al. [25] introduced a field-based ver-
sion of BM25, called BM25F, which applies length normalisation
and weighting of the fields independently. Macdonald et al. [11]
also introduced Normalisation 2F in the DFR framework for per-
forming independent term frequency normalisation and weighting
of fields.

In this work, we use two field-based models from the DFR frame-
work, namely PL2F and InL2F. Using the PL2F model, the rele-
vance score of a document d for a query Q is given by:

score(d,Q) =
X

t∈Q

qtw ·
1

tfn + 1

`

tfn · log2

tfn

λ
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where λ is the mean and variance of a Poisson distribution, given
by λ = F/N ; F is the frequency of the query term t in the whole
collection, and N is the number of documents in the whole col-
lection. The query term weight qtw is given by qtf/qtfmax; qtf
is the query term frequency; qtfmax is the maximum query term
frequency among the query terms.

For InL2F, the relevance score of a document d for a query Q is
given by:

score(d,Q) =
X
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´

(2)

where nt is the number of documents term t occurs in.
In both PL2F and InL2F, tfn corresponds to the weighted sum

of the normalised term frequencies tff for each used field f , known
as Normalisation 2F [11]:

tfn =
X

f

„

wf · tff · log2(1 + cf ·
avg lf

lf
)

«

, (cf > 0) (3)

where tff is the frequency of term t in field f of document d;
lf is the length in tokens of field f in document d, and avg lf is
the average length of the field across all documents; cf is a hyper-
parameter for each field, which controls the term frequency normal-
isation; the importance of the term occurring in field f is controlled
by the weight wf .

Note that the classical DFR weighting models PL2 and InL2 can
be generated by using Normalisation 2 instead of Normalisation 2F
for tfn in Equations (1) & (2) above. Normalisation 2 is given by:

tfn = tf · log2(1 + c ·
avg l

l
)(c > 0) (4)

where tf is the frequency of term t in the document d; l is the
length of the document in tokens, and avg l is the average length
of all documents; c is a hyper-parameter that controls the normali-
sation applied to the term frequency with respect to the document
length.

Note that, following [23], we have also devised a simplified vari-
ant of Normalisation 2F, which normalises the sum of the weighted
term frequencies from different fields, instead of normalising the
term frequencies on a per-field basis. Indeed, this simplified vari-
ant of Normalisation 2F allows us to reduce training time, because
it has less hyper-parameters to train. The simplified Normalisation
2F, which we denote as Normalisation 2FS, is given as follows:

tfn =
X

f

`

wf · tff · log2(1 + c ·
avg l

l
)
´

, (c > 0) (5)

Normalisation 2F in Equation (3) has a hyper-parameter cf for each
indexed document field. Unlike Normalisation 2F, Normalisation
2FS has only a single hyper-parameter c for all the indexed doc-
ument fields. Therefore, we can benefit from having less hyper-
parameters to train. In our previous experiments for Adhoc re-
trieval, we found no significant difference between the retrieval per-
formance obtained using PL2F and PL2FS. For example, for the
TREC-9 Web Adhoc task, using title-only queries, the optimised
mean average precision (MAP) of PL2F and PL2FS is 0.2071 and
0.2062, respectively. The p-value is 0.07858 using the Wilcoxon
matched-pairs signed-ranks test, which indicates an insignificant
difference at 5% confidence level.

2.2 Multinomial Divergence From Random-
ness (DFR) Weighting Model

In TREC 2006, we re-investigate the use of document structure
(or fields) in the DFR framework. In both BM25F and the DFR
models that employ Normalisation 2F (e.g. PL2F, InL2F), it is as-
sumed that the occurrences of terms in the fields follow the same
distribution, because the combination of fields takes place in the
document length normalisation component, and not in the proba-
bilistic model [18].

In TREC 2006, we take a different approach by considering that
the term occurrences in the fields of documents follow a multino-
mial distribution. In this way, the combination of the term occur-
rences from the different fields is modelled in a probabilistic way,
and is not part of the document length normalisation.

We introduce a new DFR weighting model, which employs a
multinomial randomness model, as follows. The weight of a term in
a document (score(d, t)) is equal to the product of the information
content of two probabilities. Therefore, the relevance score of a
document d for a query Q is computed as follows:

score(d,Q) =
X

t∈Q

qtw · score(d, t)

=
X

t∈Q

`

qtw(− log2(P1)) · (1 − P2)
´

(6)

P1 corresponds to the probability that there is a given number of
term occurrences in the fields of a document. P2 corresponds to the
probability of having one more occurrence of a term in a document,
after having seen it a given number of times. The probability P1 is
computed using a multinomial randomness model:

P1 =

 

F
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tfnk
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The probability P2 is computed using the Laplace after-effect model.

P2 =

P

f tfnf

1 +
P

f tfnf

(8)

In the above equations, k is the number of fields, tfnf is the nor-
malised frequency of a term in the field f , which is given by apply-
ing Normalisation 2 from Equation (4) to that field. F and N are as
defined in Section 2.1. tfn′ = F −

P

f
tfnf ; pf is the prior prob-

ability of having a term occurrence in the field f of a document,
and it is equal to pf = 1

k·N
; p′ = 1 −

P

f
pf = N−1

N
.

The final score of a document d for a query Q is computed as
follows:
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We refer to the multinomial DFR model described in Equation (9)
as ML2. In the above equation, the logarithm of the factorial is
computed using the Lanzcos approximation of the Γ function [21,
p. 213]. The Lanzcos approximation is preferred over the Stirling
approximation because it results in lower error [18].

2.3 Term Dependence in the Divergence From
Randomness (DFR) Framework

We believe that taking into account the dependence and proxim-
ity of query terms in documents can increase retrieval effectiveness.
To this end, we extend the DFR framework with models for captur-
ing the dependence of query terms in documents. Following [2],
the models are based on the occurrences of pairs of query terms
that appear within a given number of terms of each other in the
document. The introduced weighting models assign scores to pairs
of query terms, in addition to the single query terms.

The score of a document d for a query Q is given as follows:

score(d, Q) =
X

t∈Q

qtw · score(d, t) +
X

p∈Q2

score(d, p) (10)

where score(d, t) is the score assigned to a query term t in the
document d; p corresponds to a pair of query terms; Q2 is the set
that contains all the possible combinations of two query terms. In
Equation (10), the score

P

t∈Q
qtw · score(d, t) can be estimated

by any DFR weighting model, with or without fields. The weight
score(d, p) of a pair of query terms in a document is computed as
follows:

score(d, p) = − log2(Pp1) · (1 − Pp2) (11)

where Pp1 corresponds to the probability that there is a document in
which a pair of query terms p occurs a given number of times. Pp1

can be computed with any randomness model from the DFR frame-
work, such as the Poisson approximation to the Binomial distribu-
tion. Pp2 corresponds to the probability of seeing the query term
pair once more, after having seen it a given number of times. Pp2

can be computed using any of the after-effect models in the DFR
framework. The difference between score(d, p) and score(d, t)
is that the former depends on counts of occurrences of the pair of
query terms p, while the latter depends on counts of occurrences of
the query term t.

For example, applying term dependence and proximity with the
weighting model InL2 (see Equations (2) and (4)), results in a new
version of InL2, which we denote by pInL2, where the prefix p
stands for proximity. pInL2 estimates score(d, p) as follows:

score(d, p) =
1

tfnp + 1

`

tfnp · log2

N + 1

np + 0.5

´

(12)

where np corresponds to the number of documents in which the
pair of query terms p appear within dist terms of each other. tfnp

is the normalised frequency of a query term pair p in document d,
which can be obtained from applying Normalisation 2 from Equa-
tion (4).

A different randomness model, which does not consider the col-
lection frequency of pairs of query terms, is based on the binomial

randomness model, and computes the score of a pair of query terms
in a document as follows:

score(d, p) =
1

tfnp + 1
·
“

− log2 (l − 1)! + log2 tfnp!
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where pp = 1
l−1

and p′

p = 1 − pp. We refer to this binomial DFR
model described in Equation (13) as pBiL2.

3. TERABYTE TRACK
In the TREC 2006 Terabyte Track, we participate in the Adhoc

and Named Page Finding tasks.
We index the .GOV22 collection using Terrier [16], in seven parts

(each part having an average size of 3.6 million documents). To
support our investigation into the use of document field evidence in
retrieval, each of the seven parts consists of three inverted files, one
for each of the following document fields: body, title, and anchor
text. Standard stopwords are removed from each index. We ap-
ply Porter’s full stemming for our Adhoc experiments, and Porter’s
weak stemming for our Named Page Finding experiments. Our
choice of stemming is justified by the observation that weak stem-
ming, being less aggressive than full stemming, is better suited for
high-precision tasks, such as Named Page Finding.

Following our experiments in the TREC 2005 Terabyte track
[10], we use a distributed version of Terrier to reduce up retrieval
time. In TREC 2006, we use one broker, and seven query servers,
each serving one index part. Moreover, a global lexicon is created
in order to speed up the retrieval process, particularly for query ex-
pansion.

In the Adhoc task, we adopt a dual approach that generally aims
to boost query informativeness on one hand, and reduce noise on
the other hand. We boost query informativeness by incorporating
different combinations of document field evidence into our query
expansion mechanism. We reduce noise using part-of-speech evi-
dence. Specifically, we investigate the following hypotheses:

H1 For the query expansion mechanism on fields, the linear com-
bination of fields can provide a better retrieval performance,
than the uniform combination of fields (Section 3.1.1).

H2 In a collection of documents, low frequency part-of-speech
n-grams correspond to noisy sequences of words, which if
removed, can enhance retrieval performance (Section 3.1.2).

In the Named Page Finding task, we investigate a new way of
modelling term occurrence in document fields, and a novel theore-
tically-founded approach for combining multiple sources of query
independent evidence. More specifically, we test the following hy-
potheses:

H3 Modelling the distribution of term occurrences in document
fields as a multinomial distribution is a theoretically-sound
and robust approach, which performs at least comparably to
other field-based weighting models (Section 2.2).

H4 Modelling the dependence and proximity of query terms in
documents can enhance retrieval effectiveness (Section 2.3).

2Information on .GOV2 can be found from
http://ir.dcs.gla.ac.uk/test collections/gov2-summary.htm



H5 Using the conditional combination of multiple sources of
query independent evidence, in the form of prior probabil-
ities, can improve retrieval performance over using either
source of evidence alone (Section 3.2.1).

The remainder of Section 3 is organised as follows. Section 3.1
presents the linear combination of fields for query expansion (Sec-
tion 3.1.1), and syntactically-based noise reduction (Section 3.1.2).
Section 3.1.3 presents our Adhoc experiments. Section 3.2 presents
our participation in the TREC 2006 Named Page Finding task, with
an introduction of the techniques tested in Section 3.2.1, and a
discussion of the experiments in Section 3.2.2. Section 3.3 sum-
marises our participation in the TREC 2006 Terabyte Track, with
conclusions and lessons learnt.

3.1 Adhoc Task
In TREC 2006 we extend our Terrier retrieval platform and im-

plement two retrieval performance enhancing techniques, namely
(i) query expansion, which combines document fields in a linear
way, and (ii) syntactically-based noise reduction, which is applied
to long queries and the index. We experiment with short (Title),
and long (Title + Description + Narrative) queries, and report on
our results.

3.1.1 Query Expansion on Document Fields
Continuing our experimentation in the TREC 2005 Terabyte Ad-

hoc task, we aim to further improve our query expansion mech-
anism on document fields, by appropriately combining field evi-
dence available in corpora (hypothesis H1, Section 3). This fine-
grained query expansion mechanism uses statistics from various
document fields, such as the title, the anchor text of the incoming
links, and the body of documents. In TREC 2005, we applied a
uniform combination of evidence from different document fields
(QEFU) [10]. In TREC 2006, we replace this uniform combination
with a more refined linear combination of evidence from different
weighted fields (QEFL).

Our query expansion mechanism on document fields is built on
top of the Bo1 term weighting model [1], which is based on the
Bose-Einstein statistics. Using this model, the weight of a term t in
the exp doc top-ranked documents is given by:

w(t) = tfx · log2

1 + Pn

Pn

+ log2(1 + Pn) (14)

where exp doc usually ranges from 3 to 10 [1]. Another parameter
involved in the query expansion mechanism is exp term, the num-
ber of terms extracted from the exp doc top-ranked documents.
exp term is usually larger than exp doc [1]. Pn is given by F

N
; F

is the frequency of the term in the collection, and N is the number
of documents in the collection; tfx is the frequency of the query
term in the exp doc top-ranked documents.

We extend the above Bo1 term weighting model to deal with
document fields by a linear combination of the frequencies of the
query term in different fields:

tfx =
X

f

wqf · tfxf (15)

We call the term weighting model in Equation (14), where tfx is
given by Equation (15), the Bo1F term weighting model. In Equa-
tion (15), wqf is the weight of a field f in the exp doc top-ranked
documents, which reflects the relative importance of the associated
field in the top-ranked documents. tfxf is the frequency of the
query term in field f of the exp doc top-ranked documents.

Terrier employs a parameter-free function to determine qtw, the
query term weight of a query term, which is given as follows:

qtw =
qtf

qtfmax

+
w(t)

limF→tfx
w(t)

(16)

= Fmax log2

1 + Pn,max

Pn,max

+ log2(1 + Pn,max)

where qtf is the query term frequency of term t, and qtfmax is the
maximum qtf among all the query terms in the expanded query;
limF→tfx

w(t) is the upper bound of w(t); Pn,max is given by
Fmax/N , where Fmax is the F value of the term with the max-
imum w(t) in the exp doc top-ranked documents. If a query term
does not appear in the most informative terms from the top-ranked
documents, its query term weight remains equal to the original one.
The above formula is parameter-free in the sense that the parameter
in Rocchio’s query expansion function [24] has been omitted.

Using a field-based weighting model, e.g. PL2F (Equations (1)
and (3)), together with Bo1F, there are six field weights involved,
namely the weights (wf ) of the three document fields in the weight-
ing model, and the weights (wqf ) of the three document fields in
Bo1F. Since it would be very time-consuming to optimise all of
these six field weights, we make the following assumptions to re-
duce the number of field weights to two:

1. For a given field f , we assume that wf = wqf . This is rea-
sonable because the weight of a field reflects the contribution
of the field to the document ranking, which should be con-
sistent in both retrieval and query expansion.

2. Following [10] and [23] , we set the weight of the body field
to 1.

By making the above two assumptions, we reduce the number of
field weights from six to two, namely the weights of the anchor text
and title fields. In addition, we apply the simplified Normalisation
2FS in Equation (5), instead of Normalisation 2F in Equation (3),
so that we have only one c hyper-parameter.

In order to train the hyper-parameter c, the field weights, and the
parameters exp doc and exp term, we adopt two different training
strategies. The first training strategy (T1) optimises the parameters
over all the 100 old topics used in the TREC 2004 and 2005 Ter-
abyte Adhoc tasks. The parameter values that give the best MAP
are used. The second training strategy (T2) splits these 100 old top-
ics into two parts. Each part consists of the 50 topics used in the
TREC 2004 or 2005 Terabyte Adhoc task. T2 optimises the param-
eters over each of the two parts of the old topics. The average of
the optimised parameter values for the two parts of the old topics is
used. We expect T2 to result in a better retrieval performance than
T1 because T2 prevents the training process from being biased to-
wards the set of topics that performs better. Indeed, on the TREC
2005 topics it is easier to achieve high retrieval performance than
for the TREC 2004 topics.

3.1.2 Syntactically-based Noise Reduction
This section describes our technique for reducing estimated noise

from long queries and documents. We use part-of-speech (POS) n-
grams [3, 7] to detect noise in text.

POS n-grams are n-grams (or blocks) of parts of speech, which
are extracted from a POS-tagged sentence in a recurrent and over-
lapping way. For example, for a sentence ABCDEFG, where parts
of speech are denoted by the single letters A, B, C, D, E, F, G,
and where POS n-gram length l = 4, the POS n-grams extracted
are ABCD, BCDE, CDEF, and DEFG. The order in which the POS



Noise Reduction θ
POS n-grams Reductionextracted from

NRq uniform 50 WT10G 47.22%†
10 .GOV2 63.13%†

NRq: query length ≤ 40 50 .GOV2
63.69%†NRq: query length 50 − 100 10 .GOV2

NRq: query length > 100 5 .GOV2
NRiindex 17,070 WT10G 9.39%‡

Table 1: Syntactically-based Noise Reduction Settings. θ dis-
plays the value of the threshold in the POS n-gram ranking
used. † and ‡ denote reduction in query length (in tokens) and
in document pointers in the postings list, respectively.

n-grams occur in the sentence is ignored. For each sentence, all
possible POS n-grams are extracted.

Our technique is based on the fact that high-frequency POS n-
grams correspond mostly to sequences of words that include rela-
tively little noise, whereas low-frequency POS n-grams correspond
mostly to sequences of words that include relatively more noise [7].
To test the hypothesis that reducing noise from text using POS n-
grams can enhance retrieval performance (H2, Section 3), firstly
we reduce estimated noise from long queries in order to enhance
retrieval performance by providing more informative queries [9].
We refer to this as NRq . Secondly, we reduce estimated noise from
the collection before it is indexed, in order to improve retrieval pre-
cision, at no detrimental cost to retrieval recall [8]. We refer to this
as NRi. The only resources needed are a POS tagger and a col-
lection of documents. This can be any collection of documents of
a reasonable size [9], not necessarily the collection from which we
retrieve relevant documents.

Our methodology is as follows. We extract POS n-grams from
a collection of documents and count their frequency. We refer to
these POS n-grams as global POS n-grams. We rank these global
POS n-grams according to their frequency in the collection (in de-
creasing order). We refer to this ranked list as global list. We em-
pirically set a cutoff threshold θ of POS n-gram rank in the global
list and we assume that everything below this threshold corresponds
to estimated noise (Figure 1). We extract POS n-grams from the
text we wish to process, i.e. a long query (for NRq), or a docu-
ment from the collection to be indexed (for NRi). For each POS
n-gram drawn from the text, we determine its position in the global
list. Whenever this rank is below the threshold, we remove the POS
n-gram and its corresponding sequence of words from the query or
the document, regardless of any other POS n-grams that overlap it.

most frequent POS n-grams
rank 1

least frequent POS n-grams
rank n

threshold θ

ranked
PO

S
n-gram

s

?

Figure 1: POS n-grams ranked by frequency.

In NRq , we reduce estimated noise from long queries in two
ways: firstly, uniformly for all queries (NRqU ); and secondly, in-

dividually on a per query basis (NRqL). For NRqU , we use the
same threshold θ for all queries. For NRqL, we use different val-
ues of θ according to query length. The intuition behind varying
noise reduction according to query length is that the shorter the
query, the less noise it is likely to contain. The values of θ accord-
ing to different query lengths used are displayed in Table 1.

In NRi we reduce estimated noise from the index from which
relevant documents are retrieved. Again, we set the threshold θ,
so that everything below θ is considered noisy and removed. We
remove POS n-grams in a uniform way, i.e. by setting θ to the
same value for all documents (Table 1).

After noise has been reduced using either of the noise reduc-
tion techniques described above, we treat the query or index as we
would normally treat them. We use the TreeTagger3 for the POS
tagging of WT10G and .GOV2. The POS n-grams extracted from
these collections provide us with two separate global lists of POS
n-grams. Overall we extract 25,070 POS n-grams from WT10G
and 47,018 POS n-grams from .GOV2. We use the POS n-grams
extracted from WT10G or .GOV2 to reduce noise from the queries,
and the POS n-grams extracted from WT10G to reduce noise from
the index of .GOV2. We note that there is not much difference in
the POS n-gram ranking between the two collections.

3.1.3 Experiments and Results
We submitted five runs to the Adhoc task. The first two submit-

ted runs test the query expansion mechanism on fields with two dif-
ferent training strategies, respectively (as described in Section 3.1.1).
The third submitted run tests the query expansion mechanism on
fields with the first training strategy (T1), as well as noise reduc-
tion from long queries. The last two submitted runs test the query
expansion mechanism on the body of documents only, with noise
reduction from long queries and the index. Our collective submit-
ted runs, and their salient features, are summarised in Table 2. The
parameter values used in our submitted runs are given in Table 9.
A full description of the submitted runs follows.

• uogTB06QET1 uses the PL2FS weighting model with the
simplified Normalisation 2FS; applies query expansion on
fields (QEFL) using the Bo1F term weighting model, with
training method T1, on short queries.

• uogTB06QET2 uses the PL2FS weighting model with the
simplified Normalisation 2FS; applies query expansion on
fields (QEFL) using the Bo1F term weighting model, with
training method T2, on short queries.

• uogTB06S50L uses the PL2FS weighting model with the sim-
plified Normalisation 2FS; applies query expansion on fields
(QEFL) using the Bo1F term weighting model, with training
method T1, on long queries; applies uniform noise reduction
from the queries (NRqU ), with POS n-grams drawn from
WT10G, and θ = 50.

• uogTB06SS10L uses the PL2 weighting model with Normal-
isation 2; applies query expansion on the documents (QE)
using the Bo1 term weighting model, on long queries; applies
uniform noise reduction from the queries (NRqU ), with POS
n-grams drawn from .GOV2, and θ = 10; applies noise re-
duction in the index (NRi), with POS n-grams drawn from
WT10G, and θ = 17, 070.

• uogTB06SSQL uses the PL2 weighting model with Normal-
isation 2; applies query expansion on the documents (QE)

3Details on the tagger parameters and tagset used can be found
in [7]



Run Weighting Model Retrieval Features Settings Topic Fields

uogTB06QET1 PL2FS (Eq. 1 & 5) Bo1F (Eq. 14 & 15) QEFL: Training T1 T
uogTB06QET2 PL2FS (Eq. 1 & 5) Bo1F (Eq. 14 & 15) QEFL: Training T2 T
uogTB06S50L PL2FS (Eq. 1 & 5) Bo1F (Eq. 14 & 15), query noise reduction QEFL: Training T1, NRqU TDN
uogTB06SS10L PL2 (Eq. 1 & 4) Bo1 (Eq. 14), query & index noise reduction NRqU, NRiU TDN
uogTB06SSQL PL2 (Eq. 1 & 4) Bo1 (Eq. 14), query & index noise reduction NRqL, NRiU TDN

Table 2: Salient features of submitted Adhoc runs.

using the Bo1 term weighting model, on long queries; ap-
plies noise reduction per query length (NRqL), with POS
blocks drawn from .GOV2. For queries of less than 40 words
θ = 50; for queries of 41 - 100 words, θ = 10; for queries
of more than 100 words, θ = 5 (see Table 1). Applies noise
reduction in the index (NRi), with POS n-grams drawn from
WT10G, and θ = 17, 070.

For our query expansion mechanism on fields, Table 3 compares
the use of the linear combination of fields (QEFL) with the use
of the uniform combination of fields (QEFU). The related addi-
tional runs corresponding to training method T1 (resp. T2) use
the same parameter values applied in run uogTB06QET1 (resp.
uogTB06QET2) (see Table 9). In Table 3, we see that the two
different training methods have little impact on retrieval perfor-
mance. Both training methods result in similar MAP performances
for both QEFL and QEFU. Moreover, we observe that QEFL out-
performs QEFU for both the 50 new topics, and all the 150 topics
used. This indicates that our newly proposed linear combination
of fields achieves a better retrieval performance than the uniform
combination of fields.

In Table 4 we see that reducing estimated noise from the queries
improves retrieval performance, compared to using no noise reduc-
tion, without query expansion (top part of Table 4, first row). The
parameter values of the related additional runs are the same as those
used in run uogTB06S50L (see Table 9). With query expansion
on the body of documents only, query noise reduction results in
slightly worse retrieval performance, compared to using query ex-
pansion without noise removal (second part of Table 4, first row).
This could be due to the fact that we have trained our query expan-
sion mechanism on long queries before noise reduction, but not on
long queries after noise reduction. Query noise reduction reduces
query length (from 47.22% to 63.69%, Table 1, column Reduc-

Training QEFU QEFL diff. (%) p-value
50 New topics

T1 0.3220 0.3459 +7.42 0.3396
T2 0.3248 0.3456 +6.40 0.1549

All 150 topics
T1 0.3335 0.3558 +6.69 3.756e-04
T2 0.3338 0.3594 +7.67 9.001e-03

Table 3: MAP of the linear combination of fields vs. the uni-
form combination of fields. Title-only queries. The weight-
ing model used is PL2F, with Bo1F for query expansion on
fields. QEFL+T1 (resp. QEFL+T2) corresponds to our official
run uogTB06QET1 (resp. uogTB06QET2). Submitted runs are
in boldface. QEFU+T1 and QEFU+T2 are baselines for com-
parison with QEFL. p-values are computed by the Wilcoxon
matched-pairs signed-ranks test.

tion, marked †). Retraining the query expansion mechanism on the
reduced queries could provide fairer grounds for comparing the ef-
fect of query noise reduction with query expansion. Additionally,
in Table 4, we see no marked difference between using query noise
reduction with query expansion on the body of the documents only,
and using query noise reduction with query expansion on more doc-
ument fields. Finally, we observe that removing noise from the
index slightly damages MAP. However, it appears to benefit high-
precision retrieval, as it provides the 2nd highest P@10 score of all
official runs of all groups, namely P@10 = 0.6720.

3.2 Named Page Finding Task
The objective of the Named Page Finding task is to find a particu-

lar page, given a topic that describes it. A high precision task such
as this can benefit from deploying a field-based weighting model
that takes into account document structure. For TREC 2006, we test
modelling the distribution of term occurrences in document fields
as a multinomial distribution (hypothesis H3), using our new multi-
nomial field-based DFR weighting model, ML2 (Section 2.2, Equa-
tion (9)). Furthermore, we model term dependence and proxim-
ity (hypothesis H4) using the pBiL2 binomial model (Section 2.3,
Equation (13)). Lastly, we investigate a novel approach for com-

NRq NRi Features MAP P@10 bPref
none none 0.3355 0.6240 0.3772

U-WT10G none 0.3613 0.6320 0.4023
U-GOV2 none 0.3409 0.6240 0.3813
L-GOV2 none 0.3485 0.6400 0.3891

none none QE 0.3966 0.6680 0.4446
U-WT10G none QE 0.3853 0.6640 0.4399
U-GOV2 none QE 0.3806 0.6460 0.4325
L-GOV2 none QE 0.3898 0.6540 0.4423
U-GOV2 WT10G QE⊕ 0.3686 0.6540 0.4290
L-GOV2 WT10G QE⊗ 0.3728 0.6720 0.4404

none none QEFL 0.3878 0.6560 0.4398
U-WT10G none QEFL� 0.3893 0.6580 0.4411
U-WT10G none QEFL 0.3770 0.6380 0.4177
L-WT10G none QEFL 0.3804 0.6460 0.4257

Table 4: MAP, P@10, and bPref of Adhoc runs with Title +
Description + Narrative queries. The weighting model is PL2
(PL2F with fields) and Bo1 for query expansion (Bo1F with
fields). ⊕ is our official submitted run uogTB06S50L. ⊗ is our
official submitted run uogTB06SS10L. � is our official submit-
ted run uogTB06SSQL. NRq and NRi denote noise reduction
in the query and the index, respectively. U and L denote uni-
form noise reduction and reduction per query length, respec-
tively. QE is query expansion on body only (QEFL is query
expansion on fields). Submitted runs are shaded and best scores
are in bold.



bining sources of query independent evidence, in the form of prior
probabilities (hypothesis H5), which is described in Section 3.2.1.
We describe and discuss our experimental runs in Section 3.2.2.

3.2.1 Query-Independent Prior Probabilities
Various sources of query-independent evidence, in the form of

prior probabilities, have been shown to be important for Web IR
[6]. In this paper, we consider the following three sources of query
independent evidence: (i) the information-to-noise ratio of a doc-
ument [26], (ii) the static absorbing model [20], which is a way
of providing authority to documents on the basis of their incoming
links, and (iii) the number of incoming links to each document (in-
links). When using query independent evidence for retrieval, the
relevance score of a retrieved document d for a query Q is altered
in order to take the document prior probability into account as fol-
lows:

score(d, Q) = score(d,Q) + log(P (E)) (17)
where P (E) is the prior probability of the query independent sour-
ce of evidence E in document d.

However, it is not clear how several document priors should be
combined in a principled way. In particular, some previous work
considered the priors to be independent [6], while other hand-tuned
linear combinations of priors [15]. Moreover, the independence as-
sumption does not always hold: For example, consider the absorb-
ing model and inlinks priors - while both of these priors increase
retrieval accuracy, they are likely to be correlated, because a docu-
ment with a high number of inlinks is likely to have a high absorb-
ing model score. Therefore, to combine several prior probabilities
in a principled manner, we propose a novel combination of prior
probabilities. The combination of prior probabilities is given by:

P (E1, E2) = P (E2|E1) · P (E1) (18)

where P (E1) is the prior probability of the query independent sour-
ce of evidence E1; P (E2|E1) is the conditional probability of the
query independent source of evidence E2, given E1; P (E1, E2) is
the probability that both E1 and E2 occur [17]. Naturally, we can
can extend this technique for more than two priors.

When using the combination of prior probabilities described in
Equation (18) for retrieval, the score of a retrieved document d for a
query Q is altered, in order to take the combined prior probabilities
into account as follows:

score(d, Q) = score(d,Q) + log(P (E1, E2)) (19)

3.2.2 Experiments and Results
We submitted three runs to the TREC 2006 Named Page Finding

task. The first run tests the effectiveness of the new ML2 field-
based DFR weighting model, described in Section 2.2. The sec-
ond run tests the effectiveness of the pBiL2 term dependence and
proximity model, described in Section 2.3. The third run tests the
combination of prior probabilities using the second run as baseline.
A full description of the submitted runs follows:

• uogTB06M uses the multinomial DFR weighting model ML2.

• uogTB06MP also uses the multinomial DFR weighting model
ML2, and adds the term dependence and proximity model
pBiL2.

• uogTB06MPIA uses the multinomial DFR weighting model
ML2 and the term dependence and proximity model pBiL2,
while also combining information-to-noise ratio and static
absorbing model prior probabilities.

After submitting the above official runs, we discovered that when
we approximated the ML2 field-based weighting model, we used
the natural logarithm, instead of the correct log2 in the Lanzcos
approximation of the Γ function. We retrained and repeated the
submitted runs with the correct logarithm. Table 10 gives the pa-
rameter settings applied in this task. Moreover, Table 5 displays the
Mean Reciprocal Rank (MRR) of the official submitted runs, and
their replacement runs with the corrected logarithm. In addition
to the runs submitted, we also experimented with using a differ-
ent field-based weighting model, namely PL2F, as well as apply-
ing each of the three sources of query independent evidence alone,
(using Equation (17)), instead of combined as per Equations (18)
& (19).

The conclusions we draw from Table 5 are as follows. Firstly, re-
garding our hypothesis H3, concerning modelling the distribution
of term occurrences in document fields as a multinomial distribu-
tion, we observe that ML2 (uogTB06M) performs comparably to
PL2F (uogTB06PL). This means that ML2 is not only an elegant
and theoretically-sound model, but also a readily deployable model,
on a par with existing state-of-the-art field-based weighting models,
such as PL2F, despite ML2 employing less parameters than PL2F.

Secondly, modelling term proximity appears to assist the retrieval
process. In particular, applying proximity to our baselines of uog-
TB06M and uogTB06PL increases MRR (see uogTB06MP with
MRR 0.466 and uogTB06PLP with MRR 0.478 respectively). This
validates our hypothesis H4 on the usefulness of term dependence
and proximity in the Named Page Finding task.

Thirdly, regarding the application of prior evidence, we see that
all three priors applied alone - namely information-to-noise, ab-
sorbing model and inlinks - decrease performance compared to the
baseline (comparing uogTB06MI, uogTB06MA and uogTB06ML
to uogTB06M respectively). However, regarding hypothesis H5 on
the combination of query-independent evidence, we observe that
retrieval performance can be improved if we choose appropriate
document priors (uogTB06MIL). In particular, MRR is improved
over the use of no priors (uogTB06M), as well as over the use of
any single prior alone (uogTB06MI or uogTB06ML).

Lastly, using both term proximity and the appropriate document
priors, we see that retrieval performance is again enhanced com-
pared to the baseline and the combination of priors. In particular,
the unofficial run uogTB06MPIL achieves a 5% increase in MRR
over our best submitted run (uogTB06MP).

3.3 Terabyte Track Conclusions
In the 2006 Terabyte Track, we participated in the Adhoc and

Named Page Finding tasks. We extended our modular Terrier re-
trieval platform, and tested the following hypotheses. For the Ad-
hoc task, we hypothesised that, for query expansion on document
fields, the linear combination of fields can provide better retrieval
performance, than the uniform combination of fields. We tested this
hypothesis with short queries (Section 3.1.3, Table 3), and found
it to be valid. For the same task, we hypothesised that low fre-
quency part-of-speech n-grams found in text, correspond mostly to
noise, which if removed, can enhance retrieval performance. We
tested this hypothesis on long queries and on the test collection
to be indexed, and found it to be valid when query expansion is
not applied (Section 3.1.3, Table 4). Query expansion combined
with noise reduction lead to a small deterioration in retrieval per-
formance, which could be due to the effect of noise reduction on
query length (for noise reduction from the queries). For the Named
Page Finding task, we tested the hypotheses that: (i) modelling in a
refined way the distribution of term occurrences in document fields,
namely as a multinomial distribution, is a theoretically-sound and



Run Name Submitted Corrected log

Weighting model only
uogTB06M 0.448 0.449
uogTB06PL 0.454

Proximity
uogTB06MP 0.466 0.467
uogTB06PLP 0.478

Single Priors
uogTB06MI 0.440
uogTB06MA 0.431
uogTB06ML 0.422

Combined Priors
uogTB06MIA 0.413
uogTB06MIL 0.465

Proximity + Priors
uogTB06MPIA 0.463 0.454
uogTB06MPIL 0.489

best 0.7779
median 0.3706

Table 5: MRR of the Named Page runs. Submitted are the offi-
cial submitted runs. Corrected log are the same runs, using the
correct logarithm function. The field-based weighting models
used are ML2 (denoted by M ), and PL2F (denoted by PL).
Term dependence and proximity is denoted by P . I , A and L
denote the priors of information-to-noise ratio, static absorb-
ing model and inlinks, respectively. best and median are the
best and median runs submitted among all participants, respec-
tively. Submitted runs are shaded. Our best run is in boldface.

robust approach, which performs comparably to other field-based
weighting models; (ii) modelling the dependence and proximity of
query terms in documents can enhance retrieval performance; (iii)
using a conditional combination of multiple sources of query in-
dependent evidence, in the form of prior probabilities can improve
retrieval performance, over using a single source of such evidence.
We found hypotheses (i) and (ii) to be valid (Section 3.2.2, Table
5), while further work is needed to establish the best combination
of priors.

4. ENTERPRISE TRACK
In TREC 2006, we participate in the Expert Search task of the

Enterprise track, where we aim to develop and experiment using
our novel voting model for Expert Search [14]. Firstly, a set of
documents is associated with each candidate to represent the candi-
date’s expertise to the system. Then our voting model considers the
ranking of documents with respect to the query, in order to generate
an accurate ranking of candidates. For TREC 2006, we experiment
to validate the following hypotheses:

1. Candidate Length Normalisation: the profiles of candidates
can be of various lengths. We hypothesise that our voting
model requires to account for candidate profiles of varying
lengths.

2. Document Ranking: in our voting model, we hypothesise
that the accuracy of the candidate ranking model depends on
the extent to which documents retrieved by the underlying
document ranking represents the topic.

To validate our two hypotheses, our research is directed in two
areas: firstly, we propose and integrate into the voting model a new
theoretically-driven way of combining document votes for candi-
dates, that accounts for the length of each candidate’s profile; sec-
ondly, to test our document ranking hypothesis, we employ three
techniques, namely (i) the use of a field-based weighting model;
(ii) query expansion; and (iii) the term dependence and proximity
model. These techniques should increase the quality of the docu-
ment ranking, and we hypothesise that the accuracy of the gener-
ated candidate ranking will also be increased.

The remainder of this section is as follows: Section 4.1 describes
our voting approach for Expert Search; Section 4.2 discusses the
need for candidate profile length normalisation in Expert Search;
Section 4.3 describes the effect of the document ranking in the
voting approach, and defines techniques which can be applied to
increase the quality of the document ranking. In Section 4.4, we
present the experimental setup for our runs. We discuss the submit-
ted runs and their results in Section 4.5. We present additional runs
in Section 4.6, and give some closing comments in Section 4.7.

4.1 Voting Approaches for Expert Search
Our newly-proposed approach models Expert Search as a voting

process [14]. In our model, a candidate’s expertise is represented
by a profile, which is a set of documents associated with each can-
didate, to represent that candidate’s expertise.

In our voting model for Expert Search, instead of directly rank-
ing candidates, we consider the ranking of documents, with respect
to the query Q, which we denote R(Q). We propose that the rank-
ing of candidates can be modelled as a voting process, from the
retrieved documents in R(Q) to the profiles of candidates: every
time a document is retrieved and is associated with a candidate,
then this is a vote for that candidate to have relevant expertise to
Q. The votes for each candidate are then appropriately aggregated
to form a ranking of candidates, taking into account the number of
voting documents for that candidate, and the relevance score of the
voting documents. Our voting model is extensible and general, and
is not collection or topics dependent.

In [14], we defined eleven voting techniques for aggregating
votes for candidates, adapted from existing data fusion techniques.
For TREC 2006, we experiment using two voting techniques, namely
CombSUM and expCombMNZ. For CombSUM, the score of a
candidate C’s expertise to a query Q is given by:

score candCombSUM (C, Q) =
X

d ∈ R(Q)∩ profile(C)

score(d, Q) (20)

where score(d,Q) is the score of document d in the initial ranking
of documents R(Q), as given by a suitable document weighting
model. In all our runs, we use the DFR InL2 document weighting
model, or its field-based variant InL2F to generate score(d,Q) -
see Equations (2), (3) & (4).

Secondly, we apply the expCombMNZ voting technique. For
expCombMNZ, the score of a candidate C’s expertise to a query Q
is given by:

score candexpCombMNZ (C, Q) = ‖R(Q) ∩ profile(C)‖

·
X

d ∈ R(Q)∩ profile(C)

exp(score(d,Q)) (21)

where ‖R(Q) ∩ profile(C)‖ is the number of documents from
the profile of candidate C that are in the ranking R(Q). In the next
section, we introduce our candidate length normalisation technique
which can be applied to either the voting techniques.



4.2 Candidate Length Normalisation for Ex-
pert Search Voting approach

Document length normalisation has been studied in IR for some
time, in order to fairly retrieve documents of all lengths. State-of-
the-art document weighting models, such as BM25 [22] or those
from the DFR framework (for instance PL2 or InL2) [1], all in-
clude document length normalisation components. This normali-
sation component prevents long documents from gaining an unfair
advantage in the document ranking. However, our voting model
may be susceptible to favouring candidates which have a large pro-
file: consider a candidate with many associated documents in its
profile - this candidate has a higher chance of achieving a vote at
random from the document ranking, than another candidate that has
a smaller profile with fewer associated documents. Hence we hy-
pothesise that we should account for candidate length in our model,
so that candidates of all lengths are retrieved fairly.

For TREC 2006, we extend our model to introduce a new tech-
nique that explicitly accounts for candidate profile length while
ranking candidates. We supplement a voting technique (denoted
M), by adding a candidate length normalisation. This normalisa-
tion is an adaption of Normalisation 2 from the DFR framework
- see Equation (4). Normalisation 2 is used to control any bias
towards candidates with longer profile lengths. The combination
of a technique M with candidate length normalisation is denoted
MNorm2, and is calculated as follows:

score candMNorm2(C, Q) = score candM (C, Q) ·

log2(1 + cpro ·
avg len pro

lC
), (cpro > 0) (22)

where lC is the number in tokens in all the documents belonging to
the profile of candidate C, and avg len pro is the average length
of all candidate profiles, in tokens. cpro is a hyper-parameter, used
to control the influence of normalisation. For TREC2006, we test
the use of candidate length normalisation with both CombSUM
and expCombMNZ, denoted by CombSUMNorm2 and expComb-
MNZNorm2 respectively.

4.3 Effect of the Document Ranking
In our voting approach, the quality of the document ranking

R(Q) directly affects how well the approach performs. We hy-
pothesise that if we are able to produce a document ranking with
many on-topic documents at the top of the document ranking, then
we are able to accurately convert the ranking of documents into an
effective ranking of candidates. In TREC 2006, we test this hy-
pothesis, using three retrieval techniques to increase the quality of
the document ranking.

Firstly, we know that taking into account the structure of docu-
ments can allow increased precision for document retrieval, partic-
ularly on the W3C collection [12]. Hence, we apply a field-based
weighting model from the DFR framework, to take a more refined
account of each document field into account when ranking the doc-
uments. Namely, we experiment with applying the InL2F field-
based weighting model (see Equations (2) & (3)). Using this should
increase the number of on-topic documents at the top of the doc-
ument ranking, compared to using the InL2 model (Equations (2)
& (4)).

Secondly, we use the novel information theoretic model, based
on the DFR framework, for incorporating the dependence and prox-
imity of the query terms in the documents, as described in Sec-
tion 2.3. We apply the term dependence and proximity model to
improve the number of on-topic documents at the top of the doc-
ument ranking, as we believe that on-topic documents will have
term-dependencies between query terms, and by modelling these,

we can bring these to the top of the document ranking. In particu-
lar, we use the pInL2 term dependence and proximity model - see
Equation (12).

Thirdly, we investigate the use of query expansion (QE) in the
expert search setting. We assume that the top-ranked documents
in the document ranking are on-topic to the expertise query. By
performing query expansion using these top-ranked documents, we
aim to bring more on-topic documents into the document rank-
ing [13].

Query expansion is applied using Bo1 (Equation (14)) to weight
terms from the top exp doc ranked documents in R(Q). For Bo1,
tfx is the term frequency of term t in the top exp doc ranked doc-
uments. The exp term top-ranked terms are then added to query
Q and the document ranking R(Q) regenerated. We use the default
settings of exp term = 10 and exp doc = 3 [1].

4.4 Experimental Setup
We index the W3C collection using the Terrier IR platform [16],

by removing standard stopwords and applying Porter’s weak stem-
ming. Only documents which were associated with at least one
candidate were indexed, which leaves only 52,129 documents in
the index. We also index the anchor text of incoming hyperlinks
from the entire W3C collection and add these to the documents.

We used two techniques to identify documents from the W3C
collection to associate with candidates to represent each candidate’s
expertise. As described for the Occurrences profile sets of our
TREC 2005 participation [10], we generate queries which were
used to identify documents that mentioned each candidate, based
on the occurrences of variations of the candidate’s name and email
address in the collection. These documents form the OccurrencesA
profile set of each candidate. All our official runs use this profile
set.

Secondly, we use the Unix grep command to identify docu-
ments from the collection which contain an exact match of the can-
didate’s full name. Each matching document is added to the candi-
date’s profile, to form their OccurrencesB profile set. On average,
it appeared that the OccurrencesB profile set finds more documents
for each candidate than OccurrencesA. We note that this is counter-
intuitive, as OccurrencesB should be a subset of OccurrencesA, so
we theorise that a bug affected the creation of OccurrencesA for
TREC 2005. OccurrencesB is created using a simpler approach,
than OccurrencesA.

All our experiments were performed using Terrier. We trained
using the 50 TREC 2005 Enterprise track queries. Our optimisation
system uses simulated annealing processes to find settings for c and
cpro that maximise mean average precision (MAP). Table 11 details
the parameter values used for the Expert Search task in TREC 2006.

4.5 Experiments and Results
We submitted 4 runs to the Expert Search task of the Enterprise

track, which test our two hypotheses for this task. All official runs
used the OccurrencesA profile sets to represent the candidate ex-
pertise, and only the title field of the topics. The first three runs
test our candidate length normalisation technique. Moreover, they
each test a different way of increasing the topicality of the docu-
ment ranking. The fourth run is a baseline run. More specifically,
we submitted the following runs:

• uogX06csnP generates a document ranking using the InL2
document weighting model, and applies our CombSUMNorm2
expert search technique described above. Moreover, the pInL2
term dependence and proximity model is applied to increase
the topicality of the document ranking. This run tests the
candidate length normalisation technique, and uses term de-



Run Name MAP bPref P@10
Best 0.7507 0.7542 -
Median 0.3412 0.3602 -
uogX06csnP 0.2881 0.3120 0.4510
uogX06csnQE 0.3024 0.3292 0.4429
uogX06csnQEF 0.3011 0.3208 0.4551
uogX06ecm 0.2685 0.2991 0.4143
uogX06csn 0.2784 0.3222 0.4224
uogX06csnF 0.2830 0.3195 0.4306

Table 7: The mean average precision (MAP), binary preference
(bPref), and precision at 10 (P@10) of our submitted runs, as
well as that achieved by all participants, and two additional
runs. P@10 achieved by all participants is not available. All
runs use the OccurrencesA profile sets, and title only topics.

pendence to test the document ranking hypothesis.

• uogX06csnQE also applies InL2 and CombSUMNorm2, but
applies query expansion using Bo1 to increase the topicality
of the document ranking. This run also tests the candidate
length normalisation technique, but uses QE to test the doc-
ument ranking hypothesis.

• uogX06csnQEF is similar to uogX06csnQE, but instead the
document ranking takes document structure into account, by
using the field-based InL2F weighting model. This run tests
the candidate length normalisation technique, and also ap-
plies fields and QE to test the document ranking hypothesis.

• uogX06ecm uses the expCombMNZ expert search technique,
which applies no candidate length normalisation.

Table 6 summaries the salient features of each submitted run, and
some additional runs that we will describe in Section 4.6. Ta-
ble 7 shows the results of the submitted runs, in terms of Mean
Average Precision (MAP), binary Preference (bPref) and Precision
at 10 (P@10). We also show the overall best and median runs
achieved across all participants, as well as two additional base-
line runs, namely uogX06csn and uogX06csnF. uogX06csn is the
baseline run using InL2 and CombSUMNorm2; uogX06csnF uses
InL2F and CombSUMNorm2.

Adding term dependence to the baseline run (uogX06csn vs uog-
X06csnP) increases retrieval performance, as do fields (uogX06-
csnF). In particular, adding QE (uogX06csn vs uogX06csnQE) pro-
vides the best submitted run. Note that using QE and fields (uog-
X06csnQEF) does not increase MAP or bPref when compared to
QE alone (uogX06csnQE), though Precision at 10 is improved.

4.6 Additional Runs
As explained in Section 4.4, it appears that our OccurrencesA

candidate profile sets was affected by a bug, and did not contain
as much expertise evidence for each candidate as OccurrencesB -
normally, OccurrencesB would be expected to be a subset of Oc-
currencesA.

For our additional runs, we use only the OccurrencesB candidate
profile sets, and perform a selection of runs using this, to allow
us to draw firm conclusions, especially concerning the usefulness
of candidate length normalisation. We also experiment across all
three topic lengths. The salient features of the additional runs are
also shown in Table 6.

The results in terms of MAP are shown in Table 84. From the
shown results, we can see that our MAP is markedly improved
4Note that all runs using OccurrencesB were made using a full in-
dex of all 331,037 documents in the W3C collection. This should

Run Name MAP
T TD TDN

uogX06cs 0.5319 0.5409 0.5491
uogX06csQE 0.5458 0.5435 0.5637
uogX06csF 0.5508 0.5394 0.5155
uogX06csQEF 0.5512 0.5564 0.5420
uogX06csn 0.4647 0.4747 0.4805
uogX06csnQE 0.4813 0.4842 0.4983
uogX06csnF 0.4994 0.5302 0.5115
uogX06csnQEF 0.5357 0.5405 0.5366
uogX06ecm 0.5430 0.5567 0.5746
uogX06ecmQE 0.5611 0.5511 0.5733
uogX06ecmF 0.5663 0.5628 0.5552
uogX06ecmQEF 0.5595 0.5634 0.5663
uogX06ecmn 0.5157 0.5264 0.5446
uogX06ecmnQE 0.5395 0.5337 0.5489
uogX06ecmnF 0.5469 0.5442 0.5285
uogX06ecmnQEF 0.5524 0.5595 0.5510
(Averages) 0.5341 0.5380 0.5400

Table 8: The mean average precision (MAP) of a selection of
additional runs using the OccurrencesB candidate profiles set,
across all three topic lengths.

by using the OccurrencesB candidates profiles set, compared to
the submitted runs in Table 7. In particular, the performance of
uogX06csn jumps to MAP 0.4647 using short topics, and uogX06-
ecm to 0.5430. Applying either QE or fields to either baseline
results in an improvement in terms of MAP. For example, com-
paring uogX06csn with uogX06csnQE; uogX06csn with uogX06-
csnF; and uogX06ecm with uogX06ecmQE. In each case, apply-
ing a technique resulted in an increase in MAP, which validates
our document ranking hypothesis. Moreover, in most cases, ap-
plying two techniques in runs uogX06csQEF, uogX06csnQEF, and
uogX06ecmnQEF improves over applying either QE or fields alone
(the exceptions here are uogX06ecmQEF on short and long queries,
and uogX06csQEF on long queries). This appears to validate our
document ranking hypothesis. Further improvements are obtain-
able if the exp doc and exp term parameters are varied [13].

Next, we examine the usefulness of candidate length normali-
sation. Comparing uogX06cs with uogX06csn, and uogX06ecm
with uogX06ecmn, shows a decrease in MAP across all three topic
types. This is mirrored across other runs - for instance, comparing
uogX06csQEF with uogX06csnQEF. Note however that decreases
in MAP are less marked when applying QE and fields.

Comparing CombSUM and expCombMNZ, we can see that exp-
CombMNZ is at least as good as, and usually better than Comb-
SUM. This mirrors our evaluation using TREC 2005 data [14].

Finally, we examine the effect of topic length on MAP. On aver-
age, using title description and narrative topic fields (TDN) is better
than title and description (TD), which is better than title only (T).
However, the margins between topic types are very narrow, so no
solid conclusions can be drawn.

4.7 Expert Search Task Conclusions
Overall, we demonstrated that our expert search model performs

in a stable manner.
With regard to our first hypothesis, we require further research to

establish the usefulness of candidate length normalisation in expert
search. Candidate length normalisation did not appear to be useful

have little effect on the results, as unassociated documents are not
considered by the voting techniques for ranking the experts.



Run Name Weighting Model Other Retrieval Techniques Voting Approach Topics Fields

Submitted
uogX06csnP InL2 (Eqs. (2)&(4)) Term Dependence pInL2 (Eqs. (12)&(4)) CombSUMNorm2 T
uogX06csnQE InL2 Query Expansion CombSUMNorm2 T
uogX06csnQEF InL2F (Eqs. (2)&(3)) Query Expansion CombSUMNorm2 T
uogX06ecm InL2 - expCombMNZ T

Additional
uogX06cs InL2 - CombSUM -
uogX06csQE InL2 Query Expansion CombSUM -
uogX06csQEF InL2F Query Expansion CombSUM -
uogX06csF InL2F - CombSUM -
uogX06csnF InL2F - CombSUMNorm2 -
uogX06ecmQE InL2 Query Expansion expCombMNZ -
uogX06ecmF InL2F - expCombMNZ -
uogX06ecmQEF InL2F Query Expansion expCombMNZ -
uogX06ecmn InL2 - expCombMNZNorm2 -
uogX06ecmnQE InL2 Query Expansion expCombMNZNorm2 -
uogX06ecmnF InL2F - expCombMNZNorm2 -
uogX06ecmnQEF InL2F Query Expansion expCombMNZNorm2 -

Table 6: Salient features of submitted and additional runs of the expert search task of the Enterprise track.

on the OccurrencesB set. Further experimentation using additional
candidate profile sets would provide solid conclusions.

With regard to our document ranking hypothesis, this seems to
be validated, because applying known techniques for increasing the
quality of the document ranking were shown to increase the re-
trieval performance of the ranking of candidates. Moreover, on the
OccurrencesB candidate profile sets, applying more than one tech-
nique (fields and query expansion) resulted in a improvement over
either technique alone in most cases.

Our results show that the exact technique applied to associate
documents to candidate to represent their expertise has a marked
effect on the retrieval performance of the system. Choosing the
correct candidate profile set results in a marked increase in perfor-
mance of our expert search system compared to our submitted run,
and the median run of all participants.

5. CONCLUSIONS
In TREC 2006, we participated in the Adhoc and Named Page

Finding tasks of the Terabyte track, and the Expert Search task of
the Enterprise track. Having such a variety of retrieval tasks to ad-
dress, ranging from classical adhoc retrieval, to enterprise-oriented
expert seach, we focussed on devising new, theoretically-driven,
and effective weighting models and retrieval boosting techniques,
which would be generic enough, so as to be easily and effectively
applied in as many retrieval tasks as possible. Specifically, we ex-
tended our Terrier Information Retrieval platform to accommodate
two new Divergence From Randomness (DFR) weighting models,
which combine evidence on document structure and capture term
dependence and proximity, respectively. We used these models in
the Terabyte and the Enterprise tracks, and found them to be ef-
fective. Additionally, we presented a new query expansion mech-
anism on fields, which successfully combines evidence in a linear,
rather than uniform way and a novel syntactically-based noise re-
duction technique for long queries and the index. We presented a
new theoretically-driven way of combining query independent evi-
dence, in the form of prior probabilities, which we tested in Named
Page Finding. In the Expert Search task, we further enhanced
our understanding of our model for expert search, and through

experimentation, generated some very promising results. Over-
all, our participation in TREC 2006 includes parts of our ongoing
research in weighting models and retrieval performance enhanc-
ing techniques, which are effectively combined as part of the DFR
framework, and easily implemented in our Terrier retrieval plat-
form. The good results reported in our participation pave the way
for further research.
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