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1 Introduction

The paper reports on the work conducted by
the BioText team at UC Berkeley for the TREC
2006 Genomics track.

Our approach had three main focal points:
First, based on our successful results in the
TREC 2003 Genomics track [1], we emphasized
gene name recall. Second, given the structured
nature of the Generic Topic Types (GTTs), we
attempted to design queries that covered every
part of the topics, including synonym expan-
sion. Third, inspired by having access to the full
text of documents, we experimented with iden-
tifying and weighting information depending on
which section (Introduction, Results, etc.) it
appeared in. Our emphasis on covering the dif-
ferent pieces of the query may have helped with
the aspects ranking portion of the task, as we
performed best on that evaluation measure.

We submitted three runs: Biotext1, Biotex-
tWeb, and Biotext3. All runs were fully au-
tomatic. The Biotext1 run performed best,
achieving MAP scores of .24 on aspects, .35 on
documents, and .035 on passages.

2 Biotext1: Main Run

Our first run produced results that were re-
ranked by the other two runs. We used the open
source Lucene search engine (lucene.apache.org)
for indexing, querying, and producing the initial
ranking of the full text.

2.1 Pre-Processing of the Full Text

The pre-processing step stripped out all of the
HTML markup, and identified the boundaries
of the legal spans. Although we realized it might
be important to convert the various Greek let-
ters and other markup characters to plain text,
we did not have time to do this conversion.

The pre-processing also attempted to iden-
tify the sections and their boundaries, using the
markup in the section headings and defining a
set of 16 different section types:

title, references, abstract, abbrevia-
tions, conclusions, results, introduc-
tion, methods, footnotes, acknowledg-
ments, appendix, future, cases, grants,
main, not-categorized
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We have not evaluated the accuracy of this
analysis, and without training data it was not
possible to assess how best to weight the differ-
ent sections. As described below, we did make
some attempts to weight spans depending on
which section they came from.

2.2 Analyzing the Topic Description

As mentioned above, our main strategy was
to try to maximize recall for gene and protein
names, and to try to be sure that every con-
tent word in the query was represented in the
retrieved documents.1

Thus, for each topic description, we identified
the terms within it that might be a gene name,
and developed a set of synonyms for those
names. We made a distinction between strongly
matched and weakly matched gene names, de-
scribed below.

For each term that was not a gene name or
a stop word, we attempted to match it against
a term from MeSH, and produced a set of syn-
onyms for that term as well.

Given a topic description, we created two sets
of synonyms. S contained all possible variants
of any gene names found in the topic descrip-
tion, using EntrezGene, UniProt and OMIM as
resources. M contained the variants of any term
in the topic description that was found to match
a MeSH term.

For example, for a topic like “How do HMG
and HMGB1 interact in hepatitis?”, the code
recognizes two gene names, HMG and HMGB1,
and one MeSH term, hepatitis.2

1Since gene names and protein names are often in-
terchangeable, below when we refer to gene names we
implicitly mean gene and/or protein names.

2We developed a small number of topics of our own
and used them during system development.

Looking up the corresponding variants in
the different data sources yields the following
sets of synonym candidates (here converted to
lowercase):

S = {ac2 008, clb, columbus, cg10367,
dkfzp686a04236, dmhmg coar, fb23c02, hmgcr,
hmg, hmg1, hmg2, hmg coar, hmg alpha,
hmg coa reductase, hmg3, hmgb1, hmgcoar,
hmgcoarr, mgc103168, mgc103169, mgc117896,
mgc117897, mgc64255, mgc93598, mgc93599,
nfd1, sbp 1, hbp1, hmg 11, hmg 12, hmg 3, hmg
4, hmg 5}

M = {hepatitis, hepatitides}

Gene terms and MeSH labels were indexed
in Lucene as separate fields and were queried
using Lucene’s fielded query facility. Below we
describe in detail the gene name recognition and
normalization, the MeSH term recognition and
the query generation process.

2.3 Gene Name Recognition and
Normalization

In our earlier Genomics Track work [1], we de-
veloped an in-house gene recognizer and nor-
malizer tool. This original tool looked for gene
names in raw text and mapped each identified
instance to one or more possible correspond-
ing unique identifiers from the then LocusLink
(which has subsequently been superseded by
EntrezGene). Multiple LocusLink identifiers
can be found for a given gene name, because
(a) the same gene has different IDs in different
organisms, and (b) the gene name itself may
be ambiguous, especially for short 3-4 charac-
ter names.

The original tool used a set of normaliza-
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tion and expansion rules in order to allow for
some variations in form, including token re-
arrangement, and removal of whitespace, com-
mas, parentheses, and numerals. All possible
normalizations and expansions of all known Lo-
cusLink gene names and their synonyms were
generated offline and then matched against a
normalized version of the input text using an ex-
act, first-longest-string-matching measure. The
matches were then mapped back to the original
unnormalized text, and the corresponding IDs
were assigned.

For our participation this year, we signifi-
cantly modified this tool. First, we made a
clear separation between the normalization and
the expansion rules. We further revised the
expansion rules and split them into two sub-
groups: strong rules and weak rules, where the
terms indicate the confidence that the resulting
transformation reflects the original terms. The
strong rules allow only minor changes such as:

• removal of white space
(e.g., “BCL 2” → “BCL2”)

• substitution of non-alpha-numerical char-
acters with a space
(e.g. “BCL-2” → “BCL2”)

• concatenation of numbers to the preceding
token (e.g., “BCL 2” → “BCL2”).

The weak rules remove at least one alpha-
numeric token from the string. An example
weak rule is the removal of trailing numbers e.g.,
“BCL 2” → “BCL”.

As another example, treating a “/” as a
disjunction produces two new strings:

“aspartyl/asparaginyl beta-hydroxylase” →
“aspartyl beta-hydroxylase” or

“asparaginyl beta-hydroxylase”.

Another weak rule handles parenthesized
expressions, removing text before, within
and/or after the parentheses. For example,

“mitogen-activated protein (MAP) kinase” →
“mitogen-activated protein MAP”, or
“mitogen-activated protein kinase”, or
“MAP kinase”, or
“mitogen-activated protein”, or
“MAP”, or
“kinase”.

Unlike in the original tool, the new rules have
no priorities and are applied in parallel and re-
cursively, trying all feasible sequences. For each
resulting expanded variant, we record the ID of
the source gene synonym and whether a weak
rule was used at least once in the derivation.
For a given variant, there are multiple possi-
ble IDs, some of which used strong rules only
and others that used at least one weak rule.
The strong variants are meant to be very ac-
curate and used for gene name matching, while
the weak ones are suitable for query expansion,
as they conflate related genes.

In our experiments, we downloaded and used
the latest versions of EntrezGene, UniProt and
OMIM. Because mapping among their IDs is
complicated, we extracted the sets of expansion
variants for each of them separately and applied
each rule set in isolation.

In order to save time and storage space, we in-
dexed information only about those genes that
occurred in the TREC topics. We first ran the
recognizer/normalizer over the topics and we
then determined which of the IDs they mapped
to for each database, using only strong trans-
formation rules for the matching. Each gene
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name found in a topic was assigned an identi-
fier, which associated it with the correspond-
ing IDs from the different databases (e.g., bcl2
might be the identifier for BCL-2). We did the
same separately for the variants found with the
weak transformation rules.

2.4 Analysis of the Gene Transforma-
tion Strategy

Upon reflection, we think that the aggressive
expansion of gene names may have negatively
impacted our results.

For example, looking back at the example
topic “How do HMG and HMGB1 interact in
hepatitis?”, we can see that the set S contains
a number of terms that introduce noise. Some
candidates, although listed in databases as syn-
onyms of either HMG or HMGB1, come from or-
ganisms that cannot possibly be associated with
hepatitis directly. For instance HMG2 is found
in Arabidopsis thaliana, a plant, and fb23c02 is
found in Danio rerio (zebrafish), a fish.

We should have addressed this issue by check-
ing which organisms are associated with the
terms in set M , and then used these organ-
isms to filter out the unrelated terms from set
S. We did something similar to this in the
2003 Genomics track. This time however, we
decided to keep all gene homologs, since they
often offer valuable information on the gene’s
function across all species, but that might have
hurt more than helped.

We could also have used the various fields
of EntrezGene, UniProt and OMIM more care-
fully. In S we can see the term columbus, which
comes from the description field of UniProt for
the entry HBG2 HUMAN and refers to a posi-
tion variant. The whole description field is: D
→ N (in Columbus-Ga) /FTId=VAR 003167.

Since we were aiming for high recall, we did
not consider problems generated by homonyms.
For instance, SBP-1 (Sterol regulatory element
Binding Protein) is listed in EntrezGene as an
alias for HMGB1 (High-Mobility Group Box 1),
but it also stands for Sulfate-Binding Protein.

2.5 Strong vs. Weak Mapping Rules

We ran the gene recognition tool against the
entire text collection, using EntrezGene, Lo-
cusLink and OMIM, retaining only the matches
corresponding to an ID that was recognized in
some of the TREC topics. When a match was
found, we included the corresponding identifier
in the gene field for that document; the gene
field could contain a bag of identifiers.

Each identifier name was prefixed with one
of four codes: ss, sw, ws, or ww. The first
letter corresponds to the gene found in the
TREC topic, where s means it was derived by
strong transformation rules, and w means weak
rules. The second letter corresponds to what
was found in the full text of the documents.

Suppose for example, that the TREC topic
contained the string BCL. Strong rules map this
only to BCL, but weak rules will also map it to
BCL 1 (numeral removal). The IDs correspond-
ing to BCL will be considered strong IDs and
the ones mapping it to BCL 1 will be weak IDs.
When indexing the full text documents, BCL
would be found using strong rules, and and so
this term would be marked as ssbcl.

Weak and strong labels were combined de-
pending on the origin of the term. Finding
BCL-1 in the text via a weak rule for the topic
transformation, and a strong rule converting
from BCL 1 to BCL-1, would result in assign-
ing it the label wsbcl. BCL-2 will be marked as
swbcl as it is derived from a weak rule for BCL.
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Finally, cyclin will be marked as wwbcl as it is
obtained from cyclin D1, a synonym of BCL 1,
using a weak rule, and BCL 1 is derived from
the topic using a weak rule.

2.6 Recognizing MeSH Terms

For marking MeSH terms, we used the same rec-
ognizer/normalizer tool as for gene names, but
used MeSH terms and their synonyms rather
than gene databases, and limited transforma-
tions to strong rules only. Again, only those
MeSH term IDs recognized in the TREC topics
were identified and indexed in Lucene for the
documents of the collection. MeSH terms were
stored in a separate field in the Lucene index
but did not use the strength prefixes.

2.7 Generating Queries

Our strategy was to issue a series of queries,
starting with stricter constraints to achieve high
precision, and then loosening constraints and is-
suing additional queries until the target number
of documents (2000) was retrieved. The order of
retrieved documents was retained; that is, the
first set of results were kept at the top of the
list, the next set appended on to the end (after
removing duplicates), and so on. Only the top
1000 documents were returned to NIST for the
Biotext1 run, as required by TREC rules, but
the deeper set was retained for the Biotext3 run
described below. (The Biotextweb run used the
top 1000 documents, but reordered them.) For
every query, we added the Boolean restriction
“NOT section:references” to remove reference
sections from consideration, as the Genomics
Track guidelines stated that references were not
valid results. The standard Lucene ranking al-
gorithm was used as the rank order for the re-

sults of each query.
For the first query, for a given TREC topic,

we first removed stopwords and then identified
the gene names and the MeSH terms that we
could extract from the topic, either directly or
through synonym expansion as described above.
If no gene names were found, the first query
was simply a query on an OR of the MeSH
terms (plus the modifier removing reference sec-
tions from consideration). If gene names were
found, the first query was an OR of the gene
names ANDed with an OR of the MeSH terms.
Some gene names are part of MeSH, so we took
care not to double-count gene names within the
MeSH terms.

When analyzing the TREC topic, we checked
to see if more than one gene name was men-
tioned in the topic. If so, we found a different
set of synonyms for each gene name. For each
gene in the topic, we weighted its synonyms de-
pending on what kind of gene synonym it was.
We boosted genes labeled ss by 100, those la-
beled sw by 20, those labeled ws by 10 and those
labeled ww by 5. (These weights were entirely
ad hoc; a training set would have been a great
aid for setting these weights.) The weighted
synonyms for each gene were combined into an
OR; if the original topic contained more than
one gene, we combined the disjuncts for each
gene with an AND.

The second query took into account the fact
that some non-gene and non-MeSH terms in the
query might be useful for ranking. It built one
part which was an OR of all of the topic terms
that were neither stopwords nor gene names. It
then ANDed these terms with the original gene
part of the query, if gene names were found.

The third query started with the original gene
part of the query, and if it contained an AND
(meaning we detected more than one gene name

5



in the original TREC topic) we replaced this
AND with an OR, thus relaxing the requirement
that every gene from the topic appear in the
retrieved documents. Note that for most topics,
this query would not be run since we assume
most contained only one query.

The fourth query was an OR of the prior
parts: the gene part of the query, the MeSH
part of the query, and the other-query-words
part of the query.

3 BiotextWeb:
Using Web Statistics

The BiotextWeb run was inspired by [3], who
use the Web as an external thesaurus in order to
supplement the topic descriptions, thus achiev-
ing notable improvements on the TREC 2004
Robust Track.

The BiotextWeb run took the output of the
previous run (up to 1000 documents) and re-
ranked the documents using statistics derived
from the Web. It tried to identify which verbs
and noun compounds were associated with the
important entities in the target question.

So for the example topic “How do HMG and
HMGB1 interact in hepatitis?” for each pair
(s,m), s ∈ S, m ∈ M , we generate a query
using the Google search engine to determine
which terms are associated with these query
terms. Sample generated queries are:

"ac2 008" AND "hepatitis"
"clb" AND "hepatitis"
...

If the topic is missing a gene or a MeSH term,
we generated Google queries for only those en-
tities that were present.

Non-verbs 2-grams 3-grams
hepatitis hepatitis b hepatitis b virus
virus hepatitis c coa reductase inhibitor
hmg coa reductase hepatitis c virus
coa b virus high mobility group
reductase reductase inhibitor b virus x
protein c virus mobility group box
inhibitor mobility group hmg coa reductase
clb high mobility group box 1
hmgb1 virus x virus cellular receptor
high hmg coa mobility group protein
group group box cellular receptor 1
mobility chronic hepatitis virus x interact
hmg1 box 1 c virus core
columbus virus cellular hepatitis b surface
box cellular receptor hepatitis delta antigen
chronic hepatitis delta box transcription factor
antigen group protein chronic hepatitis c

Table 1: The most frequent non-verb unigrams,
bigrams and trigrams found from Web queries
for the example topic.

We collected all returned snippets for all
queries (Google returns up to 1000 results per
query), sentence-split and POS-tagged them us-
ing OpenNLP tools (opennlp.sourceforge.net),
and collected all word n-grams (n = 1, 2, . . . , 6).
For the unigrams, we collected separately the
verbs and the non-verbs, and for n = 2, 3, . . . , 6
the part-of-speech was limited to adjectives
(JJ), nouns (N), numbers (CD), foreign words
(FW), list elements (LS), and symbols (SYM).
The words were normalized using WordNet [2].
Table 1 shows the most frequent non-verb uni-
grams, bigrams and trigrams, and Table 2 lists
the most frequent verbs and tetragrams.

For each candidate document, we calculated
the following score:

score =
6∑

n=1

e2n
∑

w∈W n

c(w) ln f(w) (1)

where n indicates the size of the n-gram (verbs
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Verbs Tetragrams
associate hepatitis b virus x
interact mobility group box 1
call hmg coa reductase inhibitor
include high mobility group protein
induce virus cellular receptor 1
cause high mobility group box
contain b virus x interact
use hepatitis c virus core
increase b virus x associate
inhibit hepatitis b surface antigen
relate box transcription factor 1
meet hepatitis b virus integration
mediate b virus integration site
report hepatitis c virus rna
activate virus cellular receptor 2
develop c virus core protein
work mobility group protein 1

Table 2: The most frequent verbs and tetra-
grams found from Web queries for the example
topic.

are considered as regular n-grams in this for-
mula), Wn is the set of all different n-grams ex-
tracted from the Web for the given topic, c(w) is
the frequency of the word w in the target doc-
ument, and f(w) is the frequency of w in the
Google snippets.

Surprisingly, the BiotextWeb run performed
rather poorly as compared to Biotext1. After
the evaluation, we analyzed the results and sur-
mise the following reasons for this. The score
computed totally ignored the original ranking,
that is, the documents containing actual topic
entities (genes and MeSH terms) or terms were
not given any preference. For example, Table 1
shows that, everything else being equal, a docu-
ment containing the non-query term virus is as
good as one containing the query term hepati-
tis. In fact, the former would be even better, as
the term virus is almost 7 times more frequent
on the Web than hepatitis, and therefore will be
weighted more highly in the formula. Another

problem is the exponential growth of the weight
of the n-gram for longer n-grams: we used e2n,
while in the BLEU score [4] (which partly in-
spired this formula) the weight is given by 1

n .
That is, it actually decreases, since in BLEU
the longer n-grams contain several shorter n-
grams for which they will be given extra weight.
Finally, as mentioned above, some of the syn-
onyms of the named entities are ambiguous
words, which are likely to refer to non-related
notions when used in a web query, as seen in
columbus in set S above.

4 Biotext3: Passage Ranking

This run was intended to address the passage
extraction portion of the task by honing in on
the best sentences. For each potentially rele-
vant legal text span, the algorithm examined
different combinations of passage lengths to de-
termine which would be the best subset to re-
turn. The algorithm began with the top 2000
documents retrieved for the Biotext1 run and
attempted to extract and rank the best sub-
parts of the best spans.

First, to determine which features might be
useful, we made up several queries in the GTT
(Generic Topic Type) format, and hand-labeled
documents with our own relevance judgements.
We also wrote code to identify which sentences
were from which sections, and by examining
our internally built relevance judgements, we
came up with a scoring system for passages that
promoted sentences from the Abstract, Intro-
duction, Conclusions sections, and to a lesser
degree from the Results section, and demoted
sentences from Footnotes, References, Appen-
dices, Abbreviation Lists, Acknowledgements,
and Methods sections. We also tried to deter-
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mine in advance (without looking at any TREC
topics) which subtrees of MeSH were most ap-
propriate for each GTT, and assigned weights
to the subtrees accordingly. Unfortunately, due
to the lack of training data, these weights had
to be set in an ad hoc manner.

For the Biotext1 run we had labeled gene syn-
onyms as strong or weak and MeSH labels ex-
tracted from the text as strong or weak indica-
tors for query terms. In the reranking step, we
gave more weight to occurrences of strong gene
names and MeSH labels than to weak ones. The
GTT-based MeSH subtree weighting was also
incorporated into the scoring of MeSH terms
found within the text passage. Again, the scores
combination methods were ad hoc.

Unfortunately, just before submission of this
run, we realized that our code that had removed
the HTML markup for the documents did not
properly align the sentence text with the orig-
inal position information. Therefore, all of our
character location calculations were off and we
couldn’t return precise span information. We
then had to adjust the code to return full le-
gal spans, and may have introduced an error at
this point. This algorithm was quite complex
and we have not yet assessed its behavior to
determine why the output was so much weaker
than for our base run.

5 Future Work

We look forward to next year’s track, which will
build on the dataset developed in the judging
process for this year’s track. Full text docu-
ments are an interesting challenge, and we be-
lieve that future bioscience journal search en-
gines will be built on these rather than on the
traditional PubMed abstracts.
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