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Abstract

Contemporary spammers commonly seek to defeat statistical spam filters through the use of word
obfuscation. Such methods include character level substitutions, repetitions, and insertions to
reduce the effectiveness of word-based features. We present an efficient method for combating ob-
fuscation through the use of inexact string matching kernels, which were first developed to measure
similarity among mutating genes in computational biology. Our system avoids the high classifica-
tion costs associated with these kernel methods by working in an explicit feature space, and employs
the Perceptron Algorithm using Margins for fast on-line training. No prior domain knowledge was
incorporated into this system. We report strong experimental results on the TREC 2006 spam data
sets and on other publicly available spam data, including near-perfect performance on the TREC
2006 Chinese spam data set. These results invite further exploration of the use of inexact string
matching for spam filtering.

1. Introduction

Effective spam filtering – automatically blocking unwanted email from the user – is now widely
recognized as one of the most important problems in electronic communication. In recent years,
statistical spam filters, based on techniques from the field of machine learning, have achieved
significant progress. However, as seen in the 2005 TREC Spam Filtering Competition (Cormack
and Lynam, 2005b), even state of the art methods yield imperfect results.

Traditional statistical spam filters are built on a foundation of Naive Bayes classification on
word-level features (Graham, 2002; Metsis et al., 2006), a combination that has proven efficient and
reasonably effective. Recently, character-level features, such as those used by the PPM classifier
(Bratko and Filipic, 2005), have improved performance. Character level features offer resistance to
standard spam attacks such as obfuscation, the practice of intentionally misspelling words to defeat
word-based spam filters (Wittel and Wu, 2004). In this paper, we extend character-level features to
include methods of inexact string matching with the goal of further combating obfuscation attacks.
These methods have been applied in computational biology, in the form of inexact string matching
kernels with support vector machines on genomic data (Leslie et al., 2002a,b; Leslie and Kuang,
2004), and have also been used for text classification (Lodhi et al., 2002).

Naive application of these methods carries a high computational cost, which is problematic
for industrial-scale spam filtering. Our approach reduces this cost in three ways. First, we use
fixed variants of the wildcard and gappy inexact string matching kernels, and conflate the ideas of
wildcards and gaps. Second, we map inexact string matching features into an explicit feature space,
enabling fast classification. Finally, we use an on-line linear classifier, the Perceptron Algorithm
with Margins (PAM) (Krauth and Mézard, 1987; Li et al., 2002), which has fast training time and
good resistance to noise (Khardon and Wachman, 2005).

The remainder of this paper provides details on the methods of efficient inexact string matching
(Section 2) and the PAM classifier (Section 3). Experimental results in Section 4 show that this
approach has given top level results on the public Chinese email data set from the 2006 TREC
Spam Filtering competition.



Viagra VIAGRA Viiagrra viagra visagra

Vi@gra Viaagrra Viaggra Viagraa Viiaagra

Via-ggra Viia-gra V1AAGRRA Viiagra Via-gra

Vi graa V iagra via gra Viagrra V&Igra

VIAgra V|agra Viaaggra vaigra V’iagra

Figure 1: Obscured Text. These are the 25 most common variants of the word ‘Viagra’ found in the
2005 TREC spam data set, illustrating the problem of word obfuscation and tokenization.
There are hundreds of other variants for this word alone.

2. Inexact String Matching

Inexact string matching offers one possible solution to the problem of filtering obscured text. Spam
filters that rely on traditional word-based features may be defeated by the spam attack of ob-
fuscation, in which words are intentionally obscured through the use of misspellings, character
substitutions, insertions, and deletions (Wittel and Wu, 2004). While a case has been made that
statistical spam filters will learn to recognize common obfuscations over time, given enough training
data (Graham, 2002), there are a very large number of possible obfuscations for any given word,
each of which may appear infrequently. Furthermore, consider the effect of joining two words by
removing their intervening space: likethis. The brute force approach to learning variations is
now responsible for a feature space that is suddenly quadratic in the number of dictionary entries,
and the combinatorics of this problem quickly grow as more substitutions, insertions, and deletions
are employed. Indeed, obfuscations altering of several characters are already common. Evidence
for this can be found in the TREC 2005 spam data set (see Figure 1.)

Intuitively, it seems reasonable to expect that successful methods for genomic data would also
have success in the domain of spam, as these domains have similar characteristics. Genomic data
are represented as strings in which character level substitution, insertion, and deletion are common
for evolutionary reasons. The use of inexact string matching kernels with Support Vector Machines
has proven effective for learning from genomic data (Leslie et al., 2002a,b; Leslie and Kuang, 2004).
However, industrial spam filtering (and the 2006 TREC Spam Filtering Track) has severe limits on
computational cost that precludes the direct application of inexact string matching kernels.

To address this cost, we first propose efficient fixed variants of two inexact string matching
methods, the wildcard kernel and the gappy kernel, both of which are built off a foundation of
k-mers. We map these kernels to explicit feature space to allow fast classification with the PAM
classifier described in Section 3.

2.1 k-mers

The use of character level k-mers is one basic method of inexact string matching (Leslie et al.,
2002a). A k-mer is a sequence of k contiguous characters drawn from the alphabet Σ. The set S

of all possible k-mers in Σ defines a space X with |Σ|k dimensions, with each unique k-mer a ∈ S

indexing a unique dimension in X. A string s may be represented as a vector x ∈ X by mapping
∀a ∈ S, xa = c(s, a), where c(s, a) returns the number of times that the k-mer a appears in string
s, with overlaps allowed.

In spam filtering, there have been several results showing that binary features may be more
effective than count-based features (Drucker et al., 1999; Metsis et al., 2006), perhaps because
binary features offer greater resistance to the good word attack (Wittel and Wu, 2004). A string



may be represented as a binary k-mer vector x ∈ X, by mapping ∀a ∈ S, xa = b(s, a), where
b(s, a) = 1 if a appears anywhere in s, and b(s, a) = 0 otherwise.

Even this simple feature space allows powerful inexact string matching. By removing position
information, the k-mer feature space allows the insertion or deletion of any number of characters
between k-mers. Furthermore, because the k-mers are overlapping, they implicitly capture some
level of sequence information that is lost with the standard bag of words model.

The choice of k is an important parameter. Too small a value of k creates ambiguous features,
while too high a value of k makes the chance of finding exact matches between strings improbable.
Indeed, in a spam classification setting, the optimal value of k may be language dependent, or may
vary with the amount of expected obfuscation within the text. Thus, in our model, we choose to
focus on a range of k values. An (i, j) k-mer mapping creates a space in which there is a dimension
for all possible k-mers, where i ≤ k ≤ j. Indeed, the best spam filter from the 2005 TREC Spam
Filtering Track was a PPM -filter (Bratko and Filipic, 2005), which implicitly uses a feature space
of (i, j) k-mers (Sculley and Brodley, 2006).

2.2 Wildcards and Gaps

In computational biology, it has been found that k-mers alone are not expressive enough to give
optimal classification performance on genomic data. For example, a k-mer feature space will have
reduced effectiveness on substrings in which at least two character substitutions, insertions, or
deletions occur no more than k positions apart. Two forms of inexact string matching kernels
address this issue: wildcard kernels and gappy kernels (Leslie and Kuang, 2004), which allow k-mers
to match even if there have been a small (specified) number of insertions, deletions, or substitutions.

Wildcards. The (k,w) wildcard kernel maps each k-mer to a set of k-mers in which up to
w “wildcard” characters replace the characters in the original k-mer (Leslie and Kuang, 2004).
For example, the (3, 1) wildcard mapping of the k-mer abc is the set {abc, *bc, a*b, ab*}. The
wildcard character is a special symbol that is allowed to match with any other character. Naturally,
allowing wildcards increases computational cost. In our testing with spam data, however, we
have found that allowing a fixed wildcard variant gives equivalently strong results to the standard
wildcard kernel. A fixed (k, p) wildcard mapping maps a given k-mer to a set of two k-mers: the
original, and a k-mer with a wildcard character at position p. Note that we designate the first
position in a string as position 0. Thus, the fixed (3, 1) wildcard mapping of abc is {abc, a*c}.
This fixed mapping gives more flexibility to the k-mer feature space, but only increases the size of
the feature space by a constant factor of 2.

Gaps. The (g, k) gappy kernel (where g ≤ k), allows g-mers to match with k-mers by inserting
k− g gaps into the g-mer (Leslie and Kuang, 2004). Note that this is equivalent to allowing k-mers
to match with g-mers by deleting up to k − g characters from the k-mer. Thus, the (2, 3) gappy
mapping of the string acbd includes positive values for features indexed by {acb, cbd, ac, ab,

cb, cd, bd} . As with the wildcard mappings, we reduce computational cost with a fixed (k, p)
gappy variant, in which a k-mer is is mapped to a set of k-mers: the original k-mer, and a k-mer in
which the character at position p has been removed. For clarity, we define a function remove(a, p)
which removes a single character from string a at position p. Thus, if a is a k-mer, remove returns
a (k − 1)-mer.

Merging Gaps and Wildcards. The function of gaps and wildcards are similar, with the
difference that implementing the gappy mappings with the remove function changes the length
of the k-mers. However, our (i, j) k-mer space contains k-mers of different lengths. This allows
us to reduce computational cost by defining the wildcard character as a character of length zero.
Furthermore, we used the fixed variants, and only allow wildcard replacement and gaps to occur at



Given (i, j, p) map string s to vector x:

For k from i to j do:
Find set K of all k-mers in s

For each k-mer a ∈ K do:
xa := 1
b := remove (a,p)
xb := 1

done
done
Normalize: x := x

‖x‖

Figure 2: Pseudo code for fixed (i, j, p) inexact string feature mapping.

position p in all k-mers. We call this a fixed (i, j, p) inexact string feature mapping, pseudo-code
for which is given in Figure 2. The resulting feature space has the following properties:

• k-mers may match other k-mers exactly

• (k + 1)-mers may match other (k + 1)-mers with a mismatch at position p.

• k-mers may match (k + 1)-mers with a gap at position p.

Thus, this feature space has a measure of robustness to a number of obfuscation attacks, in-
cluding character substitution, insertion, and deletion.

Normalization. Because email messages may be of varying lengths, we normalize all data
vectors using the Euclidean norm. Additionally, normalizing provides some resistance to the sparse
data attack (Wittel and Wu, 2004), which attempts to defeat a spam filter using very short messages.

2.3 Explicit Feature Mapping

For efficient classification, we represent the features in the inexact feature space explicitly, using a
sparse feature/value representation. This approach is similar to that recommended by Sonnenburg
et al. (2005), who show that explicit feature mapping is preferable to implicit feature mapping (us-
ing, for example, suffix trees) for support vector machine training and classification of strings, when
using small k-mers. This allows the PAM classifier to classify a new data example by computing
a single (sparse) inner product. On-Line training is equally fast, requiring only a single (sparse)
vector addition. Thus, although the feature space is of high dimensionality, the sparsity of the
explicit feature vectors allows fast training and classification with manageable space cost.

3. On-Line Linear Classifiers

In the previous section, we showed an efficient method for mapping email messages to explicit
vectors in an (i, j, p) inexact string feature space. Because the vast majority of machine learning
methods are designed to accept explicit feature vectors as input, we have a wide range of training
and classification methods at our disposal, including Naive Bayes classifiers and support vector
machines. In this competition, we choose to classify the data with the PAM classifier (Krauth and
Mézard, 1987; Li et al., 2002), which learns a linear classifier with tolerance for noise (Khardon and
Wachman, 2005).



Given: set of examples and their labels
Z = ((x1, y1), . . . , (xm, ym)) ∈ (Rn × {−1, 1})m, τ

Initialize w := 0n

for every (xj , yj) ∈ Z do:
if yj(〈w, xj〉) < τ

w := w + ηyjxj

done

Figure 3: The On-Line Perceptron Algorithm with Margins

We chose to use PAM for several reasons. First, it offers fast on-line training and classification.
Second, strong performance has been achieved by other linear classifiers on spam such as a variant
of logistic regression (Goodman and Yin, 2006) and linear support vector machines (Drucker et al.,
1999; Rios and Zha, 2004); since Khardon and Wachman (2005) demonstrate experimentally that
PAM is competitive with SVM on many data sets, it is reasonable to expect PAM to perform
well on spam. Third, it has been shown that while generative models such as Naive Bayes may
have steeper (faster) learning curves, discriminative models such as linear classifiers have lower
asymptotic error (Ng and Jordan, 2002). In the remainder of this section, we will review the basic
Perceptron Algorithm, and explore relevant features of the PAM variant that makes it an attractive
choice for on-line spam filtering.

3.1 The Perceptron Algorithm

The perceptron algorithm (Rosenblatt, 1958) takes as input a set of training examples in R
n with

labels in {−1, 1}. Using a weight vector, w ∈ R
n, initialized to 0n, it predicts the label of each

training example x to be y = sign(〈w, x〉). The algorithm adjusts w on each misclassified example
by an additive factor.1 An upper-bound on the number of mistakes committed by the perceptron
algorithm can be shown both when the data are linearly separable (Novikoff, 1962) and when they
are not linearly separable (Freund and Schapire, 1999).

3.2 Perceptron Algorithm with Margins (PAM)

The classical perceptron attempts to separate the data but has no guarantees on the separation
margin obtained. The Perceptron Algorithm with Margins (PAM) (Krauth and Mézard, 1987; Li
et al., 2002) attempts to establish such a margin, τ , during the training process. Following work
on support vector machines (Boser et al., 1992) one may expect that providing the perceptron with
higher margin will add to the stability and accuracy of the hypothesis produced (Cristianini and
Shawe-Taylor, 2000).

To establish the margin, instead of only updating on examples for which the classifier makes
a mistake, PAM also updates on xj if yj(〈xj, w〉) < τ . When the data are linearly separable, the
margin of the classifier produced by PAM can be lower-bounded (Krauth and Mézard, 1987; Li
et al., 2002). The algorithm is summarized in Figure 3.

It is important to select a reasonable value for τ . If τ is too large, the algorithm will not be
able to find a stable hypothesis until the norm of w grows large enough at which point individual
updates will have little effect; if τ is too small, the margin of the hypothesis will be small and the
performance may suffer.

1. The classical perceptron includes a bias term θ. In our preliminary experiments, we found our simplified version
to perform as well as the classical one on spam data.



Table 1: Parameter settings for tufS filters.

filter (i, j, p) τ

tufS1F (2, 4, 1) 100
tufS2F (2, 5, 1) 100
tufS3F (2, 6, 1) 100
tufS4F (2, 7, 1) 100

The learning rate, η, controls the extent to which w changes on a single update; too large of
a value causes the algorithm to make large fluctuations, and too small of a value results in slow
convergence to a stable hypothesis and hence many mistakes. Note that we can eliminate η in our
case by scaling τ by 1

η
, but we leave it in for discussion as it is part of the classical algorithm.

PAM enables fast classification and on-line training. The classification time of PAM is dom-
inated by the computation of the inner product 〈w, x〉. A naive inner product takes O(m) time,
where m is the number of features. When x is sparse, containing only s ≪ m non-zero features, we
can compute this inner product in O(s) time. Similarly, the time for an on-line update is dominated
by updating the hypothesis vector w, which can be done in O(s) time as well. Moreover, PAM
does not require training updates for well-classified examples. Thus, the total number of updates
is likely to be significantly less than the total number of training examples.

In comparison with Naive Bayes and linear support vector machines, PAM has the same clas-
sification cost O(m), but will have lower overall training time than either method. Naive Bayes
requires O(m)-cost updates on every example in the training set, while PAM does not train on
well classified examples. A linear support vector machine that trains in O(sn) time has recently
been proposed (Joachims, 2006), but in practice the constant is quite high and PAM training is
significantly faster.

4. Experimental Results

In this section, we report experimental results on spam classification for the 2006 TREC Spam
Filtering track. Our general approach was to map email messages to feature vectors, using the
fixed (i, j, p) inexact string feature space described in Section 2. On-Line training and classification
were performed using the PAM algorithm, as described in Section 3. We set η to 0.1, and τ to 100.

Experimental Setup. We tested this filter at four settings, as shown in in Table 1. Each filter
was given a unique setting of the maximum k-mer size, specified by j in the fixed (i, j, p) inexact
string feature space. The value of τ = 100 was chosen by parameter search, using the SpamAssassin
public corpus2 as a tuning set. No preprocessing of the email messages was performed. We sim-
ply used the first n characters from the raw text of the email (including any header information
and attachments) as an input string, and created a sparse feature vector from that string. Our
initial filters used a maximum of 200K characters, and performed successfully on initial tests for
the trec05p-1 data set (Cormack and Lynam, 2005a), and on all private data sets from the 2006
competition. However, two filters with larger maximum k-mer sizes failed to complete testing on
the pe{i,d} data set, due to lack of memory. When we reduced the maximum input string length
from 200K to the first 3000 characters, this problem was eliminated – and performance for all filters
improved. For example, on the pei tests, tufS1F improved from 0.062 to 0.040 on (1-ROCA)%
using the first 3000 characters. However, note that the official results for the 2006 competition were
with tufS filters using the first 200K characters.

2. http://spamassassin.apache.org/publiccorpus



filter pci pcd pei ped x2 x2d b2 b2d trec05p-1
best 0.003 0.01 0.03 0.1 0.03 0.03 0.1 0.3 0.019
tufS1F 0.002 0.008 0.060 0.211 0.095 0.199 0.390 0.836 0.020
tufS2F 0.003 0.010 0.060 0.203 0.069 0.145 0.338 0.692 0.018
tufS3F 0.004 0.012 0.042∗ 0.132∗ 0.063 0.126 0.335 0.614 0.018
tufS4F 0.005 0.011 0.041∗ 0.136∗ 0.075 0.131 0.320 0.570 0.017
median 0.03 0.3 0.3 0.3 0.1 0.1 0.3 1 0.4

Table 2: Summary of Results on (1-ROCA)% measure. Results are reported for the tests on TREC
2006 public Chinese corpus pci and pcd, public English corpus pei and ped, Mr. X
private corpus x2 and x2d, b2 private corpus b2 and b2d, and the 2005 TREC public
corpus trec05p-1. Results on sets ending in d are for delayed feedback experiments;
others are for incremental learning experiments. Results marked with ∗ were produced
using variant that only considered first 3000 characters, rather than the first 200K.

Results. For our initial tests, run before the 2006 competition, we tested our filters on the
trec05p-1 data set, and found that our filters were competitive with the best filters from the
TREC 2005 Spam Filtering track (see Table 2) (Cormack and Lynam, 2005b).

Our results from the TREC 2006 competition were strong (see Table 2). In particular, our
method achieved extremely strong performance on the public corpus of Chinese email, with a steep
learning curve and a 1−ROCA score of .0023 for tufS1F , and .0031 for tufS2F on the incremental
task, pci, which the initial report suggests are at or near the top level of performance for the 2006
competition, and are an order of magnitude better than the reported median. The results for the
delayed learning task on Chinese email, pcd, were also very strong. Although absolute performance
on the delayed task was reduced, due to the more difficult nature of training on delayed feedback,
our methods still gave top-level results. However, these results must be taken with a grain of salt.
At the TREC 2006 conference meeting, it was noted that results on this corpus of Chinese email
were very strong with many filters. This raises the possibility that this corpus may be a flawed
benchmark data set.

In general, our results on other data sets were encouraging, giving second place aggregate results
in the 2006 TREC spam competition. On the public English corpus, our methods gave results well
above the median for both the incremental learning task pei and the delayed learning task ped.
Our results on the two private corpora, x2 and b2, were less strong. At present, we do not know
the nature of these data sets, and cannot yet speculate on the cause of the relative decrease in
performance on these data sets.

5. Discussion

These results raise a number of interesting questions. First, we would like to investigate the use
of our filter on other data sets of Chinese email. We believe our methods should be robust to the
several encoding schemes for Chinese email, each of which employs multiple characters per word.
Because Chinese does not employ a phonetic alphabet, short character-level sequences may carry
more information in this language than they do in English. We conjecture that it is this fact that
enables the strong results achieved by our methods. Indeed, one of the strengths of character-level
pattern recognition for spam filtering is that no assumptions are made about language or encoding
scheme. Future work should include additional experiments comparing performance on phonetic
and ideographic emails in a range of other languages, to ensure that this conjecture holds true.
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Secondly, we draw attention to the learning curve results for the pei and ped experiments, which
hit very low (i.e., good) levels of the 1−ROCA measure between 10,000 and 25,000 messages, and
then rises sharply to a plateau of lower performance for both the incremental and delayed learning
tasks. This is not the convergent behavior we would expect to see after many thousands of examples,
and requires investigation. For example, the problem could be caused by concept drift, an over-
correction for an anomalous email, or perhaps an email with a noisy label. These issues might be
addressed by varying the learning rate η or the margin τ as the number of seen training examples
increases as in Gentile (2001).

Third, we note that our initial choice of filtering based on the first 200K characters in the email
message was not optimal. Later tests using only the first 3,000 characters from each email not
only reduced both memory usage and computational cost, but also improved performance on all
versions of our filter.

Overall, the fixed (i, j, p) inexact string features, represented as sparse explicit feature vectors,
used in conjunction with the on-line linear classifier PAM has given strong performance on a number
of tests. These results were obtained using inexact string matching in a fairly naive way, without
taking domain knowledge into account. In the future, we plan on investigating the use of inexact
string matching on email specific features, such as the subject heading and sender information.
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W. Krauth and M. Mézard. Learning algorithms with optimal stability in neural networks. Journal
of Physics A, 20(11):745–752, 1987.

C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string kernel for svm protein
classification. In Pacific Symposium on Biocomputing, pages 566–575, 2002a.

C. Leslie, E. Eskin, J. Weston, and W. S. Noble. Mismatch string kernels for svm protein classifi-
cation. In Neural Information Processing Systems, pages 1417–1424, 2002b.

C. Leslie and R. Kuang. Fast string kernels using inexact matching for protein sequences. Journal
of Machine Learning Research, 5:1435–1455, 2004.

Y. Li, H. Zaragoza, R. Herbrich, J. Shawe-Taylor, and J. Kandola. The perceptrom algorithm with
uneven margins. In International Conference on Machine Learning, pages 379–386, 2002.

H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification using
string kernels. Journal of Machine Learning Research, 2:419–444, 2002.

V. Metsis, I. Androutsopoulos, and G. Paliouras. Spam filtering with naive bayes – which naive
bayes? Third Conference on Email and Anti-Spam (CEAS), 2006.

A. Ng and M. Jordan. On discriminative vs. generative classifiers: A comparison of logistic regres-
sion and naive bayes, 2002.

A. B. Novikoff. On convergence proofs on perceptrons. Symposium on the Mathematical Theory of
Automata, 12:615–622, 1962.

G. Rios and H. Zha. Exploring support vector machines and random forests for spam detection.
In Proceedings of the First Conference on Email and Anti-Spam (CEAS), 2004.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and organization in
the brain. Psychological Review, 65:386–407, 1958.

D. Sculley and C. E. Brodley. Compression and machine learning: A new perspective on feature
space vectors. DCC: Data Compression Conference, 0:332–332, 2006. ISSN 1068-0314.
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