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Abstract

Aslam, Pavlu, and Savell [3] introduced the Hedge
algorithm for metasearch which effectively combines
the ranked lists of documents returned by multiple re-
trieval systems in response to a given query and learns
which documents are likely to be relevant from a se-
quence of on-line relevance judgments. It has been
demonstrated that the Hedge algorithm is an effec-
tive technique for metasearch, often significantly ex-
ceeding the performance of standard metasearch and
IR techniques over small TREC collections. In this
work, we explore the effectiveness of Hedge over the
much larger Terabyte 2006 collection.

1 Introduction

Aslam, Pavlu, and Savell introduced a unified frame-
work for simultaneously solving the problems of
metasearch, pooling, and system evaluation based on
the Hedge algorithm for on-line learning [3]. Given
the ranked lists of documents returned by a collection
of IR systems in response to a given query, Hedge is
capable of matching and often exceeding the perfor-
mance of the best underlying retrieval system; given
relevance feedback, Hedge is capable of “learning”
how to optimally combine the input systems, yield-
ing a level of performance which often significantly
exceeds that of the best underlying system.

In previous experiments with smaller TREC collec-
tions [3], it has been shown that after only a handful
of judged feedback documents, Hedge is able to sig-
nificantly outperform the CombMNZ and Condorcet
metasearch techniques. It has also been shown that
Hedge is able to efficiently construct pools contain-
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ing significant numbers of relevant documents and
that these pools are highly effective at evaluating
the underlying systems [3]. Although the Hedge al-
gorithm has been shown to be a strong technique
for metasearch, pooling, and system evaluation using
the relatively small or moderate TREC collections
(TRECs 3, 5, 6, 7, 8), it has yet to be demonstrated
that the technique is scalable to corpora whose data
size is at the terabyte level. In this work, we assess the
performance of Hedge on a terabyte scale, summariz-
ing training results using the Terabyte 2005 queries
and data and presenting testing results using the Ter-
abyte 2006 queries and data.

Finally, we note that in the context of TREC, the
Hedge algorithm is both an automatic and a manual
technique: In the absence of feedback, Hedge is a fully
automatic metasearch algorithm; in the presence of
feedback, Hedge is a manual technique, capable of
“learning” how to optimally combine the underlying
systems.

1.1 Metasearch

The problem of metasearch [2, 7, 10, 9, 11, 12, 4]
is to combine the ranked lists of documents output
by multiple retrieval systems in response to a given
query so as to optimize the quality of the combina-
tion and hopefully exceed the performance of the best
underlying system. Aslam, Pavlu, and Savell [3] con-
sidered two benchmark metasearch techniques for as-
sessing how well their Hedge algorithm performed:
(1) CombMNZ, a technique which sums the (appro-
priately normalized) relevance scores assigned to each
document by the underlying retrieval systems and
then multiplies that summation by the number of
systems that retrieved the document and (2) Con-
dorcet, a technique based on a well known method for
conducting a multicandidate election, where the doc-
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uments act as candidates and the retrieval systems
act as voters providing preferential rankings among
these candidates. In experiments using the TREC 3,
5, 6, 7, and 8 collections, Aslam et al. demonstrated
that, in the absence of feedback, Hedge consistently
outperforms Condorcet and at least equals the perfor-
mance of CombMNZ; in the presence of even modest
amounts of user feedback, Hedge significantly outper-
forms both CombMNZ and Condorcet, as well as the
best underlying system.

In this work, we discuss our experiments with the
Hedge algorithm in the Terabyte track at TREC
2006, and we also compare to those results obtained
by using the Hedge algorithm run over the data
from the Terabyte track at TREC 2005. In the sec-
tions that follow, we begin by briefly describing our
methodology and experimental setup, and we then
describe our results and conclude with future work.

2 Methodology

We implemented and tested the Hedge algorithm for
metasearch as described in Aslam et al. [3]. While
the details of the Hedge algorithm can be found in
the aforementioned paper, the relevant intuition for
this technique, as quoted from this paper, is given
below.

Consider a user who submits a given query
to multiple search engines and receives a
collection of ranked lists in response. How
would the user select documents to read in
order to satisfy his or her information need?
In the absence of any knowledge about the
quality of the underlying systems, the user
would probably begin by selecting some doc-
ument which is “highly ranked” by “many”
systems; such a document has, in effect, the
collective weight of the underlying systems
behind it. If the selected document were rel-
evant, the user would begin to “trust” sys-
tems which retrieved this document highly
(i.e., they would be “rewarded”), while the
user would begin to “lose faith” in systems
which did not retrieve this document highly
(i.e., they would be “punished”). Con-
versely, if the document were non-relevant,
the user would punish systems which re-
trieved the document highly and reward sys-
tems which did not. In subsequent rounds,
the user would likely select documents ac-

cording to his or her faith in the various sys-
tems in conjunction with how these systems
rank the various documents; in other words,
the user would likely pick documents which
are ranked highly by trusted systems.

Our Hedge algorithm for on-line metasearch pre-
cisely encodes the above intution using the well stud-
ied Hedge algorithm for on-line learning, first pro-
posed by Freund and Schapire [8]. In our generaliza-
tion of the Hedge algorithm, Hedge assigns a weight
to each system corresponding to Hedge’s computed
“trust” in that system, and each system assigns a
weight to each document corresponding to its “trust”
in that document; the overall score assigned to a
document is the sum, over all systems, of the prod-
uct of the Hedge weight assigned to the system (a
quantity which varies given user feedback) and the
system’s weight assigned to that document (a fixed
quantity which is a function of the rank of that doc-
ument according to the system). The weights Hedge
assigns to systems are initially uniform, and they are
updated given user feedback (in line with the intu-
ition given above), and the document set is dynami-
cally ranked according to the overall document scores
which change as the Hedge-assigned system weights
change.

Initially, Hedge assigns a uniform weight to all sys-
tems and computes overall scores for the documents
as described above; the ranked list of documents or-
dered by these scores is created, and we refer to this
system and corresponding list as “hedge0.” A user
would naturally begin by examining the top docu-
ment in this list, and Hedge would seek feedback
on the relevance of that document. Given this feed-
back, Hedge will assign new system weights (reward-
ing those systems that performed “well” with respect
to this document and punishing those that did not),
and it will assign new overall scores to the documents
based on these new system weights. The remaining
unjudged documents would then be re-ranked accord-
ing to these updated scores, and this new list would
be presented to the user in the next round.

After k documents have been judged, the perfor-
mance of “hedge k” can be assessed from at least
two perspectives, which we refer to as the “user ex-
perience” and the “research librarian” perspectives,
respectively.

• User experience: Concatenate the list of k
judged documents (in the order that they were
presented to the user) with ranking of the
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unjudged documents produced at the end of
round k. This concatenated list corresponds to
the “user experience,” i.e., the ordered docu-
ments that have been examined so far along with
those that will be examined if no further feed-
back is provided.

• Research librarian: Concatenate the relevant
subset of the k judged documents with the rank-
ing of the unjudged documents produced at the
end of round k. This concatenated list corre-
sponds to what a research librarian using the
Hedge system might present to a client: the rel-
evant documents found thus far followed by the
ordered list of unjudged documents in the collec-
tion.

Note that the performance of the “research librar-
ian” is likely to exceed that of the “user experience”
by any reasonable measure of retrieval performance
since judged non-relevant documents are eliminated
from the former concatenated list. In what follows,
“hedge k” refers to the system, concatenated list, and
performance as defined with respect to the “research
librarian” perspective.

3 Experimental Setup and Re-
sults

We tested the performance of the Hedge algorithm by
using the queries from TREC 2005 Terabyte Track.
Then we run Hedge for Terabyte06 track, using real
user feedback (we judged 50 documents per query).
Both Terabyte05 and Terabyte06 use the GOV2 col-
lection of about 25 million documents. We indexed
the collection using the Lemur Toolkit; that pro-
cess took about 3 days using a 2-processor dual-core
Opteron machine (2.4 GHz/core).

3.1 Underlying IR systems

The underlying systems include: (1) two tf-idf
retrieval systems; (2) three KL-divergence retrieval
models, one with Dirichlet prior smoothing, one with
Jelinek-Mercer smoothing, and the last with absolute
discounting; (3) a cosine similarity model; (4) the
OKAPI retrieval model; (5) and the INQUERY
retrieval method. All of the above retrieval models
are provided as standard IR systems by the Lemur
Toolkit [1].

These models were run against a collection
(GOV2) of web data crawled from web sites in the
.gov domain during early 2004 by NIST [6]. The
collection is 426GB in size and contains 25 million
documents [6]. Although this collection is not a
full terabyte in size, it is still much larger than the
collections used at previous TREC conferences.

For each query and retrieval system, we consid-
ered the top 10,000 scored documents for that re-
trieval system. Once all retrieval systems were run
against all queries, we ran the Hedge algorithm de-
scribed above to perform metasearch on the ranked
lists we obtained.

3.2 Results using Terabyte 2005
queries and qrel

We used the TREC 2005 qrel files to provide Hedge
with relevance feedback. If one of our underlying
systems retrieved a document that was not included
in the qrel file, we assumed the document to be
non-relevant.

Hedge was run as follows. In the first round
each of the underlying systems all have an equal
weight and the underlying lists are fused by ranking
documents according to highest weighted average
mixture loss [3]. The initial run of Hedge (hedge0)
will not acquire any relevance judgments and hence
can be compared directly to standard metasearch
techniques [3] (e.g. CombMNZ).

In the following round, the top document from
hedge0 is judged. In our case, we obtain the judg-
ment from TREC qrel file (0 if document not in
the qrel). If the document is relevant, it is put at
the top our metasearch list, and if it is not, it is
discarded. The judgment is then used to re-weight
the underlying systems. As described above, systems
are re-weigthed based on the rank of the document
just judged. Then a new metasearch list is produced,
corresponding to hedge1. The next round proceeds
in the same manner: the top unjudged document
from the last metasearch list is judged and then
used to: (1) identify where the document should
be placed in the list; (2) update the system weight
vector to reward the correct systems and punish
the incorrect systems; (3) re-rank the remaining
unjudged documents.
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In our experiments we had 50 rounds (relevance
judgments) and we note the results of hedge for 0, 5,
10, 15, 20, 30, and 50 judgments.

For comparison, we also ran Condorcet and
CombMNZ over the ranked lists generated by our un-
derlying systems. We then calculated mean average
precision scores for each of the three metasearch sys-
tems and compared the performance of the Hedge
system with the performance of the lists generated
by Condorcet and CombMNZ (see Figure 1.).
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Figure 1: Terabyte05: Hedge-m: metasearch perfor-
mance as more documents are judged.

We compare Hedge to CombMNZ, Condorcet, and
the underlying retrieval systems that were used for
our metasearch technique. Table 2 shows that Hedge,
in the absence of any relevance feedback (hedge0),
consistently outperforms Condorcet. The perfor-
mance of hedge0 is comparable with the performance
of CombMNZ.

Table 2 illustrates that both hedge0 and
CombMNZ are able to exceed the performance
of the best underlying system. This demonstrates
that Hedge alone, even without any relevance feed-
back, is a successful metasearch technique.

After providing the Hedge algorithm with only ten
relevance judgments (hedge10), Hedge significantly
outperforms CombMNZ, Condorcet, and the best un-
derlying system in terms of MAP (Table 1). Also
hedge50 more than doubles precision at cutoff 20 of
the top underlying system. This is in part because

System 2 4 6 8
CombMNZ 0.2332 0.2693 0.2715 0.2399
Condorcet 0.1997 0.2264 0.2302 0.2119
Hedge 0 0.2314 0.2641 0.2687 0.2297
Hedge 10 0.2579 0.2944 0.2991 0.2650
Hedge 50 0.3199 0.3669 0.3652 0.3493

Table 1: Terabyte05: Hedge vs. Metasearch Tech-
niques CombMNZ and Condorcet, combining 2 , 4,
6, 8 underlying systems.

System MAP p@20
Jelinek-Mercer 0.2257 0.3780
Dirichlet 0.2100 0.4200
TFIDF 0.1993 0.4250
Okapi 0.1906 0.4270
log-TFIDF 0.1661 0.4140
Absolute Discounting 0.1575 0.3660
Cosine Similarity 0.0875 0.1960
CombMNZ 0.2399 0.4550
Condorcet 0.2119 0.4200
hedge0 0.2297 0.4260
hedge10 0.2650 0.5270
hedge50 0.3493 0.8090

Table 2: Results for input and metasearch systems
on Terabyte05. CombMNZ, Cordorcet, and Hedge N
were run over all input systems.

documents that have been ranked relevant are placed
at the top of the list, whereas the documents that
have been judged non-relevant are discarded.

3.3 Results for Terabyte 2006 queries

For our Terabyte submission to TREC 2006, given
the lack of judgments, we manually judged several
documents for each query. We choose to run Hedge
for 50 rounds (for each query) on top of our under-
lying IR systems (provided by Lemur, as described
above). Therefore, in total, 50 rounds x 50 queries
= 2500 documents were judged for relevance.

As a function of the amount of relevance feedback
utilised, four different runs were submitted to Ter-
abyte 2006: hedge0 (no judgments), which is essen-
tially an automatic metasearch system; hedge10 (10
judgments per query); hedge30 (30 judgments per
query) and hedge50 (50 judgments per query). The
performance of all four runs are presented in Table 3.
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The table reports the mean average precision (MAP),
R-precison, and precision-at-cutoff 10, 30, 100 and
500. Against expectations, hedge30 looks slightly
better than hedge50 but this is most likely due to the
fact that hedge30 was included as a contributor to
the TREC pool of judged documents while hedge50
was not.

3.4 Judgment disagreement and im-
pact to Hedge performance

Hedge works as an on-line metasearch algorithm, us-
ing user feedback (judged documents) to weight un-
derlying input systems. It does not have a “search
engine” component; i.e., it does not perform tradi-
tional retrieval by analyzing documents for relevance
to a given query. Therefore the performance is heav-
ily determined by user feedback, i.e., the quality of
he judgments. In what follows, we discuss how well
our own judgments (50 per query) match those pro-
vided by TREC qrel file, released at the conclusion
of TREC 2006. Major disagreements could obviously
lead to significant changes in performance. First, we
note that there are consistent, large disagreements.
Mismatched relevance judgments for Query 823 are
shown below:

GX000-62-7241305 trecrel=0 hedgerel=1
GX000-14-5445022 trecrel=1 hedgerel=0
GX240-72-4498727 trecrel=1 hedgerel=0
GX060-85-9197519 ABSENT hedgerel=0
GX240-48-7256267 trecrel=1 hedgerel=0
GX248-73-4320232 trecrel=1 hedgerel=0
GX245-68-14099084 trecrel=0 hedgerel=1
GX227-60-13210050 trecrel=1 hedgerel=0
GX071-71-15063229 trecrel=1 hedgerel=0
GX047-80-14304963 trecrel=1 hedgerel=0
GX217-86-0259964 trecrel=1 hedgerel=0
GX031-42-14513498 trecrel=1 hedgerel=0
GX227-75-10978947 trecrel=1 hedgerel=0
GX004-97-14821140 trecrel=1 hedgerel=0
GX268-65-3825487 ABSENT hedgerel=0
GX029-22-6233173 trecrel=1 hedgerel=0
GX060-96-11856158 ABSENT hedgerel=0
GX269-71-3058600 trecrel=1 hedgerel=0
GX271-79-2767287 trecrel=1 hedgerel=0
823 19 mismatches

We examined a subset of the mismatched relevance
judgments and we believe that there were judgment
errors on both sides. Nevertheless all judgment dis-
agreements on judges affect measured hedge perfor-
mance negatively. For comparison we re-run hedge30
(30 judgments) using the TREC qrel file for relevance
feedback. In doing so, we obtained a mean average

precision of 0.33, consistent with performance on Ter-
abyte 2005. This would place the new hedge30 run
second among all manual runs, as ordered by MAP
(Figure 2).

We also looked at this new run (hedge30 with
TREC qrel file instead of user feedback) on a query-
by-query basis. Figure 3 shows a scatterplot com-
parison, per query, of the original hedge30 perfor-
mance and the performance using TREC judgments
for feedback. Note the significant and nearly uniform
improvements obtained using TREC judgments.
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Figure 3: Terabyte06: hedge30. Each dot corre-
sponds to a query; x-axis corresponds to hedge30 AP
values obtained with our judgments as user feedback;
y-axis corresponds to hedge30 AP values using TREC
qrel file for feedback. MAP vaues are denoted by “×”.

4 Conclusions

It has been shown that the Hedge algorithm for on-
line learning is highly efficient and effective as a
metasearch technique. Our experiments show that
even without relevance feedback Hedge is still able to
produce metasearch lists which are directly compara-
ble to the standard metasearch techniques Condorcet
and CombMNZ, and which exceed the performance
of the best underlying list. With relevance feedback
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System MAP R-prec p@10 p@30 p@100 p@500
hedge0 0.177 0.228 0.378 0.320 0.232 0.104
hedge10 0.239 0.282 0.522 0.394 0.278 0.118
hedge30 0.256 0.286 0.646 0.451 0.290 0.119
hedge50 0.250 0.280 0.682 0.470 0.279 0.115

Table 3: Results for Hedge runs on Terabyte06 queries.

Figure 2: Terabyte06: hedge30 with TREC qrel judgments. The shell shows trec eval measurements on top
of the published TREC Terabyte06 ranking of manual runs [5]; It would rank second in terms of MAP.

Hedge is able to considerably outperform Condorcet
and CombMNZ.

The performance shown when using TREC qrels
file was consistently very good; when using our judg-
ments the relatively poor performance was due to us-
ing a set of judgments for feedback and a different set
of judgments for evaluation. Ultimately we believe
that Hedge is somehow immune to judge disagree-
ment, as long us the feedback comes from the same
source (or judge or user) as the performance measure-
ment. Certainly, in practice, it is possible that two
users ask the same query but they are looking for dif-
ferent information; in this case user feedback would
be different which would lead to different metasearch
lists produced and eventually to a satisfactory per-
formance for each user.
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