
Fuzzy term proximity with boolean queries at 2006 TREC

Terabyte task

Annabelle MERCIER and Michel BEIGBEDER
Ecole Nationale Superieure des Mines de Saint Etienne (ENSM-SE)

158 cours Fauriel 42023 Saint Etienne Cedex 2 FRANCE
mercier@i3s.unice.fr,mbeig@emse.fr

October 24, 2006

Abstract

We report here the results of fuzzy term proximity method applied to Terabyte Task.
Fuzzy proxmity main feature is based on the idea that the closer the query terms are
in a document, the more relevant this document is. With this principle, we have a high
precision method so we complete by these obtained with Zettair search engine default
method (dirichlet). Our model is able to deal with Boolean queries, but contrary to
the traditional extensions of the basic Boolean IR model, it does not explicitly use a
proximity operator because it can not be generalized to nodes. The fuzzy term proximity
is controlled with an influence function. Given a query term and a document, the influence
function associates to each position in the text a value dependant of the distance of the
nearest occurence of this query term. To model proximity, this function is decreasing with
distance. Different forms of function can be used: triangular, gaussian etc. For practical
reasons only functions with finite support were used. The support of the function is
limited by a constant called k. The fuzzy term proximity functions are associated to
every leaves of the query tree. Then fuzzy proximities are computed for every nodes with
a post-order tree traversal. Given the fuzzy proximities of the sons of a node, its fuzzy
proximity is computed, like in the fuzzy IR models, with a mimimum (resp. maximum)
combination for conjunctives (resp. disjunctives) nodes. Finally, a fuzzy query proximity
value is obtained for each position in this document at the root of the query tree. The
score of this document is the integration of the function obtained at the tree root. For the
experiments, we modify Lucy (version 0.5.2) to implement our matching function. Two
query sets are used for our runs. One set is manually built with the title words (and
sometimes some description words). Each of these words is OR’ed with its derivatives like
plurals for instance. Then the OR nodes obtained are AND’ed at the tree root. An other
automatic query sets is built with an AND of automatically extracted terms from the title
field. These two query sets are submitted to our system with two values of k: 50 and 200.
The two corresponding query sets with flat queries are also submitted to zettair search
engine.

1 Introduction

In information retrieval domain, systems are founded on three basic ones models: The Boolean
model, the vector model and the probabilistic model which were derived within many varia-
tions (extended Boolean models, models based on fuzzy sets theory, generalized vector space

1



model,. . . ) [1]. Though they are all based on weak representations of documents: either sets
of terms or bags of terms. In the first case, what the information retrieval system knows about
a document is if it contains or not a given term. In the second case, the system knows the
number of occurence – term frequency, tf – of a given term in each document. So whatever
is the order of the terms in the documents, they share the same index representation if they
use the same terms. The worthy of note exceptions are most of the Boolean model imple-
mentations which propose a near operator [11]. This operator is a kind of and but with
the constraint that the different terms are within a window of size n, where n is an integral
value. The set of retrieved documents can be restricted with this operator, for instance, it
is possible to discriminate documents about ”data structures” and those about ”data about
concrete structures”. The result is an increase in precision of the system [5]. But the Boolean
systems that implement a near operator share the same limitation as any basic Boolean
system : These systems are not able to rank the retrieved documents because with this model
a document is or is not relevant to a query. In fact, different extensions were proposed to the
basic Boolean systems to circumvent this limitation. These extensions represents the docu-
ments with some kind of term weights most of the time computed on a tf basis. Then they
apply some combining formulas to compute the document score given the term weigths and
the query tree. But these extensions are not compatible with the near operator. So some
works defined models that attempt to directly score the documents by taking into account
the proximity of the query terms within them.

2 Other uses of proximity

Three methods were proposed to score the documents by taking into account some set of
intervals containing the query terms. These methods differ in the set of intervalls that are
selected in a first step, and then in the formulas used to compute a score for a given interval.
The method of Clarke and al. [2] selects the shortest intervals that contains all the query terms
(This constraint is relaxed if there are not enough retrieved documents), so the intervals can
not be nested. In the methods of Hawking and al. [4], for each query term occurence, the
shortest interval containing all the query terms is selected, thus the selected intervals can nest.
Rasolofo and al. [8] chose to select intervals only containing two terms of the query, but with
the additionnal constraint that the interval is shorter than five words. Monz [7] experiments
in the domain of question-answering a method based on the minimal interval and a classical
cosine measure to take account of term proximity. In an other approach, interval contribution
stands for the tf in Okapi formula [10]. Moreover, the passage retrieval methods use indirectly
the notion of proximity. In fact, in several methods, document ranking is doing by selecting
documents which have passages with high density of query terms that-is-to-say documents
where the query terms are closed [12, 3, 6]. The next section presents our method based on
term proximity to score the documents.

3 Fuzzy proximity with boolean query based model

To address the problem of scoring the documents by taking into account the relative order
of the words in the document, we have defined a new method based on a fuzzy proximity
between each position in the document text and a query. First, given a document d and
a term t, we define a term proximity function wd,t. We can use different types of kernel



d1 A B
0 1 2 3 4 5 6 7 8 9 10

0

1

0 3 6 9

0

1

0 3 6 9

0

1

0 3 6 9

0

1

0 3 6 9

Figure 1: Document 1 – In order, we show wd1
A , wd1

B , wd1
A OR B and wd1

A AND B .

d2 A A
0 1 2 3 4 5 6 7 8 9 10

0

1

0 3 6 9

0

1

0 3 6 9

0

1

0 3 6 9

0

1

0 3 6 9

Figure 2: Document 2 – In order, we show wd2
A , wd2

B , wd2
A OR B and wd2

A AND B .

(hamming, rectangular, gaussian) for the function but a triangular one is computed. A k

constant controls the support of the function and this support represents the extent of each
term occurence influence. This function reaches its maximum (value 1) at each occurence
of the term t in the document d and linearly decreases on each side down to 0. So for each
query term t, we determine the fuzzy proximity at each position of the document d retrieved.
When the zone of influence of two terms occurrences overlaps in a document position x the
value of the nearest term occurrence is taken so:

wd
t (x) = max

i∈Occ(t,d)
f(x − i)

where Occ(t, d) is the set of occurrence positions of term t in the document d and f the
influence function kernel.

The figures 1 and 2 show the fuzzy proximity function wA (resp. wB) for the term A
(resp. B) in the document d0 and d1.

The query model is that of the classical Boolean model: A tree with terms on the leaves
an OR or AND operators on the internal nodes. Given a query q, the term proximity
functions located on the query tree leaves are combined in the query tree with usual formulas
pertaining to the fuzzy set theory. We compute here the fuzzy proximity of the query. So the
fuzzy proximity is computed by :

w
q OR q′

= max(wq, wq′)

for a disjunctive node and by

w
qAND q′

= min(wq, wq′).

for a conjunctive node.



So we obtain a function wd,q from the set of positions in the document text to the interval
[0, 1]. The result of the integration of this function is used as the score of the document :

s(q, d) =

length(d)+ k

2∑

0

wd
q (x) dx,

Finally, the computed score s(q, d) depends on fuzzy proximity function and allows to rank
document according to query term proximity.

4 Experiments at the Terabyte Track

We carried out experiments on the Terabyte Track TREC 2006 evaluation campaign 1. In a
first step, we use the retrieval tool Lucy that which is based on the Okapi BM-25 information
retrieval model [9] to index this collection. This tool is adapted to our method because it keeps
in the index the terms positions of the documents. We extend lucy to compute similarity
values according to our fuzzy proximity method. We can index all the terms of the collection
with lucy but the vocabulary map can not be loaded at run time this is the reason why we
only index termes of topic file. In a second step, we use the default method of zettair search
engines to obtain documents from a classical method in ordre to improve recall. By this way,
we use our method to re-ranking documents, a final script build the run by copying first the
fuzzy proximity run and then by adding new documents from dirichlet corresponding run.

For this track, we use the .gov2 collection, which is an image of a part of the Web. We
remove all the specific text (HTML tags) and we only keep the text. Finally, we obtain about
40Go distibuted in 26 directories with 1000 compressed files. This treatment took about two
weeks.

4.1 Building the queries

Each topic has three parts: <title>, <desc>, <narr>. We built two set of queries for our
experiments. Queries are either manually or automatically built from the textual contents of
the ”title” tags. For topics 701-800, we build only automatics queries and for topics 801 to
850, we add manuel queries.

For automatic built queries, a query is made of terms from the ”title” field where the stop
words are removed.

For automatic runs, we use only conjonctive queries.
Manual built queries are made of terms from the ”title” field and additionnaly terms

from the ”description” field. Moreover, we add the plurial form of the terms and the terms
derivation to compensate the Lucy tool lack of stemming. We thus obtain queries that are
conjunction of disjunctions of the different derivations of the terms. But, we restrict the terms
to the indexed terms that is to say the words appearing in the topics file, we can not use
semantics variation of words because queries were built after indexation time. On the other
hand, the evaluation by the zettair tool uses flat queries that are of different derivations of
the terms.

1http://trec.nist.gov



0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

pr
ec

is
io

n

recall

comparison automatic runs to baseline 2004

fuzzyprox200
fuzzyprox50

dirichlet

Figure 3: Terabyte 2004 automatic queries and the baseline with Zettair

4.2 Building the result lists

We compare the zettair default method and our fuzzy method with two different values of
k (50, 200). If one of the proximity based method does not retrieve enough documents, then
its results list is supplemented by the documents from the Okapi results list that have not yet
been retrieved by proximity based methods; the maximum number of documents retrieved is
10, 000.

4.3 Differents runs

In the officials runs, the queries are constructed :

1. automatically with terms conjunction of title field and test with k = 50 (run AM-
RIMtp5006) and k = 200 (run AMRIMtp2006),

2. manually with terms of three fields and test with k = 50 (run AMRIMtpm5006).

For the runs ZettairTitlePorter and ZettairManPorter, the queries are flat (bag of terms)
and these runs provide two baselines produced by using basic Zettair search engine. We get
a baseline Zettair search engines for each type of queries :

1. ZettairTitlePorter for automatically built with title field, and,

2. ZettairManPorter for manually built.

The recall precision results are provided in the figure 3 and 4 for the automatic runs and
in the figure 5 for manual runs.

We can note that our method gives better result with the largest value of k at the first
level of recall but doesn’t give better result than ’dirichlet’. We use zettair with Porter



0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

pr
ec

is
io

n

recall

comparison automatic runs to baseline 2005

fuzzyprox200
fuzzyprox50

dirichlet

Figure 4: Terabyte 2004 automatic queries and the baseline with Zettair

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

pr
ec

is
io

n

recall

comparison automatic runs to manual one 2006

fuzzyprox200
fuzzyprox50

manualfuzzyprox50

Figure 5: All runs submitted automatic and manual queries (Terabyte 2006)



0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

pr
ec

is
io

n

recall

terabyte 2004 no stemming

fuzzyprox200
fuzzyprox50

okapi
cosinus

Figure 6: Comparison between Okapi and cosine method with no stemming and runs with
automatic queries (Terabyte 2004)

stemming option because it minimize the size of the index but our fuzzy proximity method is
implemented in Lucy search engine which haven’t stemming treatment. The following results
show a comparison between runs with no stemming built with zettair. As our method do not
use stemming and the baseline from zettair use it, we show in figure 6 and 7 a comparison
between our fuzzy proximity method and okapi (resp. cosine) without a stemming treatment
on the collection. In this case, we note that our method is better or equal at the Okapi one.

5 Conclusion

We have presented and experimented our information retrieval model which takes into account
the position of the term occurences in the document to compute a relevance score on the TREC
2006 Terabyte Track test collection. We notice that the higher the area of influence of term is
the better the results are. After the comparison between the runs, we think that the results
can be improved by using a stemming step before indexing but our pseudo-stemming by using
boolean query can also improve the quality of the response. Consequently, we plan to help
the user at the step of query built by propose new words for queries based on a thesaurus or
a relevance feedback process.

References

[1] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. ACM
Press / Addison-Wesley, 1999.



0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

pr
ec

is
io

n

recall

terabyte 2005 no stemming

fuzzyprox200
fuzzyprox50

okapi
cosinus

Figure 7: Comparison between Okapi and cosine method with no stemming and runs with
automatic queries (Terabyte 2005)

[2] Charles L. A. Clarke, Gordon V. Cormack, and Elizabeth A. Tudhope. Relevance ranking
for one to three term queries. Information Processing and Management, 36(2):291–311,
2000.

[3] Owen de Kretser and Alistair Moffat. Effective document presentation with a locality-
based similarity heuristic. In SIGIR ’99: Proceedings of the 22nd Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages
113–120. ACM, 9 1999.

[4] D. Hawking and P. Thistlewaite. Proximity operators - so near and yet so far. In D. K.
Harman, editor, The Fourth Text REtrieval Conference (TREC-4), number 500-236.
Department of Commerce, National Institute of Standards and Technology, 1995.

[5] E. M. Keen. Some aspects of proximity searching in text retrieval systems. Journal of
Information Science, 18:89–98, 1992.

[6] Koichi Kise, Markus Junker, Andreas Dengel, and Keinosuke Matsumoto. Passage re-
trieval based on density distributions of terms and its applications to document retrieval
and question answering. In Andreas Dengel, Markus Junker, and Anette Weisbecker,
editors, Reading and Learning: Adaptive Content Recognition, volume 2956 of Lecture
Notes in Computer Science, pages 306–327. Springer, 2004. No electronic version.

[7] Christof Monz. Minimal span weighting retrieval for question answering. In Rob
Gaizauskas, Mark Greenwood, and Mark Hepple, editors, SIGIR Workshop on Infor-
mation Retrieval for Question Answering, pages 23–30, 2004.



[8] Yves Rasolofo and Jacques Savoy. Term proximity scoring for keyword-based retrieval
systems. In 25th European Conference on Information Retrieval Research, number 2633
in LNCS, pages 207–218. Springer, 2003.

[9] S. E. Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, and M. Gatford. Okapi
at trec-3. In D. K. Harman, editor, Overview of the Third Text REtrieval Conference
(TREC-3), number PB95-216883, pages 109–. Department of Commerce, National In-
stitute of Standards and Technology, 1994.

[10] Wei-Ying Ma Ruihua Song, Ji-Rong Wen. Viewing term proximity from a different
perspective. Technical report, 2005.

[11] Gerard Salton and M. J. McGill. Introduction to Modern Information Retrieval. McGraw-
Hill Book Company, 1983.

[12] Ross Wilkinson. Effective retrieval of structured documents. In SIGIR 94 proceedings,
pages 311–317. Springer-Verlag New York, 1994.


