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Abstract: For TREC 2006, the CRM114 team considered several different hypothesis on the topic of
spam filtering. The hypothesis were that:

Spammers were changing tactics to successfully evade content-based spam filters;

A pretrained database of known spam and nonspam improves overall accuracy;

Repeated training methods are more effective than single-pass Train Only Errors training
KNN/Hyperspace classifiers are more effective than classical Bayesian or Markovian classifiers

Delaying feedback learning results in degraded filter accuracy

S U AW NN

Bit-entropy filters are as good or better than tokenizing filters
and after-the-fact:
7 1-ROCA% is the best figure of merit for spam filters

Of these hypothesis, we found that spammers were not significantly able to evade content based spam
filters, that pretraining is probably not helpful, that repeated-pass training is not significantly helpful,
that KNNs are of roughly equal accuracy to computationally and storage-equivalent Markov classifiers,
that delayed feedback is only marginal in impacting filter accuracy, and that despite their highly
counterintuitive design, bit-entropic filters are capable of similar or better accuracy to tokenizing
filters. We also found a fascinating counter-correllation between 1-ROCA% and the final accuracy of
a filter (the accuracy of the filter for the final 10% of the corpus).

Introduction

This year, the CRM114 team was in the unique position of being able to test a number of hypotheses
that have been of interest to the spam filtering and text categorization communities, in an “apples to
apples” comparison. Because of CRM114’s architecture, it is easy to change classifier designs without
needing to revisit any of the backing mechanics of spam filtering, and a fairly reasonable library of
inter-changeble (though generally incompatible) classifiers has built up. Since last year’s TREC,

CRM1 14 has added two new classifiers (a KNN / Hyperspace classifier and a bit-entropy classifier).
Because these new classifiers use the same CRM114 “wrapper” we can isolate changes in the classifier
versus changes in the training methods, with other variables (including, to significant extent, designer
and programmer skill) held relatively constant.



Additionally, the full CRM114 system is available to anyone as a free, open-source, GPLed download;
other researchers who want to further experiment with new corpora, new training methods, or even
wholly new classifiers may download and modify the source code.

Rather than submit four completely new classifiers, we chose to submit one of our runs as a duplicate
to last year’s work, so as to be able to directly compare the “old” Mr. X corpora (prior to 2005) versus
a the most recent corpus from the same source. The first configuration we submitted to TREC 2006 is
essentially identical to our high performance thick-threshold-trained OSB classifier from TREC 2005
[Assis 2005] and provides an apples-to-apples benchmark of the multiple TREC Mr. X corpora.
Specifically, this run deals with the question of whether spammers had indeed evolved their techniques
to successfully evade content-based filters; if so, the performance of the filter should drop between the
Mr. X 2005 and Mr X 2006 corpora.

For the second CRM114 run, we submitted a hopefully-improved learning algorithm. This included a
tighter training tolerance and a complete, real life, up-to-date pretrained database containing about
200,000 example multi-word tokens. This database was the current, active filter database of one of the
authors. Our goal in this run is to determine if pretrained databases are actually of any help, both in the
initial high-error regime of the learning process, and if the initial learning is any aid or impediment to
long term accuracy.

For the third CRM114 run, we considered the TREC 2005 curve set and noted that the CRM114 OSB
classifier exhibited a strange dip in the curve, where the accuracy became very good, and then seemed
to deteriorate, as though the filter was becoming overconfident. To prevent this loss of accuracy, we
considered a very aggressive learning protocol where prior known texts are reexamined repeatedly and
retrained if within the error bound. This required the filter to repeatedly access the prior texts; on
average two old texts (of known category) were reexamined for each new text classified.

The fourth CRM114 run was intended to test a classifier based on KNN (K-Nearest-Neighbor)
classification called “Hyperspace”. [Yerazunis 2005]. The Hyperspace classifier is equivalent to a
KNN classifier with an infinitely large neighborhood; the weight contribution of each neighbor is
defined in terms of the weighted distance in a 4-billion-dimension hyperspace (this is also equivalent to
a Parzen window of size equal to the learned corpus).

We also obtained an informal run of a bit-entropy classifier based on the overall concepts of Andrej
Bratko et al of the Institut Josef Stefan, as described and tested in TREC 2005 [Bratko 2005]. Note that
this bit-entropy classifier is wholly new code and was written based only on the published descriptions
of the DMC algorithm (Cormack and Horspool, 1987) [ Cormack 1987]. It does not contain any of the
IJS code. This code also includes a novel method of growing the entropy-prediction model that does
not yet include DMC-style node splitting, and with modifications to produce a system that can run with
relatively small memory (less than 64 megabytes per class, without resetting) and O(constant) time for
both classification and learning. This classifier is still under development and shouldn’t be considered



“the last word” in bit-entropy classification by any means.

Hypothesis 1: Spammers are Successfully Adapting to Statistical Filters

This is probably false. It appears that spammers have not yet figured out how to penetrate user-taught
statistical learning filters.

The evidence to support this negative result is that the "classic" CRM114 OSB-Markov model with
only non-behavior-altering bugfixes from the TREC 2005 best practices runs, and shows undiminished
effectiveness versus the "old" MrX1 and "new" MrX2 test sets. Assuming that the MrX2 test set
covers the “recent” past sufficiently, there is no statistical evidence that spammers have adapted to
successfully circumvent statistical filters. More explicitly, the 1-ROCA%s is 0.177 (90% confidence
interval 0.128 to 0.246) for the old (TREC 2005) MrX test set versus the TREC 2006 Run 1 with 1-
ROCA% of 0.1498 (confidence interval of 0.1051 to 0.2134).

It should be noted that the OSB-Markov model used for this test is a rather “advanced” model; in
particular it does not use single-word tokens at all. Instead, adjacent words and short phrases with
interior words omitted of lengths up to five words are the basic features used for this classifier. Such
longer-phrase systems have now been adapted as default by other spam filters such as dSpam, and as
an option on other systems, so the conclusion of immunity to adaptation by spammers is not a
CRM114-only claim. This claim does not extend to simple single-word classifiers; although CRM114
has a single-word Bayesian mode, we didn’t run that experiment and hence have no useful data.

Hypothesis 2: Training Information is Portable from One User To Another

Unfortunately, this hypothesis is also probably false. Copying a baseline of learned statistics from one
user to be used as initial state for a second user does not seem to improve final accuracy. However, the
number of errors in the initial training phase can be decreased by about a factor of two by supplying
pretraining based on the corpus of another user. Whether this is valuable in the marketing sense is not
clear, but it seems that long-term accuracy is not improved, and in fact, it may be slightly damaged.

The evidence for dismissal of this hypothesis is a comparison of CRM114 Run 2 with CRM114 Run 1.
CRM114 run 2 is the same executable as run 1 (a "classic" OSB-Markov configuration), but Run 2
carries an initial preload of one author’s personal statistical filtering criteria ( plus a wider learning
band and more storage to accomodate this preload). This preload contained approximately 200,000
multi-word features; about two-thirds of them are hapaxes (seen only once in the training set).
Unfortunately, Run 2 is not statistically significantly better on any test set than Run 1; hence the
preload did not help.

On the B2 test corpus, the untrained Run 1 (no pretrain) had a total of 99 errors, with a 1-ROCA% of
0.38 (confidence interval 0.2350 to 0.6309) while the pretrained Run 2 had 87 errors and a 1-ROCA%



of 0.4196 (confidence interval 0.2822 to 0.6235). This difference is insignificant.

On the X2 testset, Run 1 (no pretrain) had 430 total errors and a 1-ROCA% of 0.1498 (confidence
interval 0.1051 to 0.2134), while the Run 2 (pretrained) had only 188 total errors but the 1-ROCA%
was still insignificantly different at 0.1592 (confidence interval 0.1115 to 0.2271). The interesting
result that the total errors fell significantly, but the I-ROCA% was essentially constant, implying that
the initial pretraining did not affect overall accuracy in either direction.

Therefore, we conclude that a preload of someone else’s corpus does not help final accuracy, but may
yield a faster “startup” in the learning process.

Hypothesis 3: Intensive Training on the Same Corpus Improves Accuracy

It is probably not the case that repeated training significantly improve accuracy. The evidence for this
is that the CRM114 Run 3 is statistically not differentiated from CRM114 Run 1; Run 3 uses repeat
training while Run 1 does not; both are identical OSB-Markov systems.

The tested protocol for repeat training as used in Run 3 is to behave identically to the thick threshold
training from Run 1 up until corpus element 100 (out of the 45,000 elements of the MrX2 corpus),
when the system switches to repeat training. At this point, after each “new” corpus element is tested
and then considered for training, two previously known corpus elements are reconsidered for training
as well. This “one new, then two old” training process repeats for the remainder of the corpus.

The actual comparison values for Run 3 (repeat training) on the X2 corpus were 279 total errors and a
1-ROCA% of 0.1393 (confidence interval 0.0973 to 0.1995) versus Run 1 (control) at 430 total errors
and a 1-ROCA% of 0.1498 (confidence interval of 0.1051 to 0.2134). Against the B2 corpus Run 3
(repeat training) got 98 total errors and a 1-ROCA% of 0.2983 (confidence interval 0.1742 to 0.5105)
while Run 1 (control) got 99 errors and a I-ROCA% of 0.3852 (confidence interval 0.2350 to 0.6309)
This is not significantly different; therefore we dismiss the hypothesis as unproven.

Hypothesis 4: KNN/Hyperspace Classification is Superior to Bayesian
Classification

Sadly, this hypothesis is not supported by the evidence. CRM114 Run 4 did not show a statistically
significant improvement in filtering, nor did an informal resubmit to correct the weighting formula to a
more complicated but accurate one.

The algorithm used in the official Run 4 is a modified KNN with the neighborhood set to the entire
previous corpus, and two different weightings. The first weighting is “similarity only”, and uses the
number of shared features as the inverse distance of the known and unknown texts; this was the
officially submitted Run 4. Additionally, we obtained an “informal” second test run. The second test



weighting uses an inverse distance equal to the number of shared features squared, divided by the
product of features seen in the known but not in the unknown times the number of features seen in the
unknown but not the known (this is the recommended and default configuration for CRM114’s
Hyperspace classifier). In either weighting method, the inverse distance is used in a 1/R?>summation to
obtain the total weight for each class on the unknown text; the text is assigned to the class with the
largest 1/R?sum.

The actual results for this are that the similarity-only inverse distance metric (official Run 4) on the
MrX2 corpus yielded 667 errors and a 1-ROCA% of 0.3056 (confidence interval 0.2428 to 0.3846),
and 387 errors and a 1-ROCA% of 0.9653 (confidence interval 0.7767 to 1.1992) on the B2 corpus.
The similarity-squared over difference metric (informal run) yielded just 241 errors and a 1-ROCA%
of 0.2217 (confidence interval 0.1682 to 0.2923), a far better showing. This is competitive with the
CRM114 official Run 1 (OSB) with 420 errors and an overall 1-ROCA% of 0.1498 (confidence
interval of 0.1051 to 0.2134).

Thus, we can feel relatively safe concluding that a similarity-squared over difference metric used in an
infinite neighborhood KNN is probably competitive with other statistical methods, but not distinctly
superior to it. Choice of the KNN versus a Bayesian or other filter should probably be made on the
basis of experimentation against the live data being classified.

Hypothesis 5: Delaying Feedback Degrades Learning Filter Accuracy

Finally, some good news: it seems that delaying feedback to the filters degrades accuracy to a “barely
significant” extent on some corpora but does not degrade accuracy significantly on others.

The evidence for this is based on the delayed corpora such as the MrX2 corpus; for Run 1 (classic
CRM114 OSB) the relevant numbers are (undelayed) 420 errors and an overall 1-ROCA% of 0.1498
(confidence interval of 0.1051 to 0.2134). Adding a delay to the error feedback loop changes this to
972 total errors but I-ROCA% only changes to 0.1341 (confidence interval 0.0953 to 0.1887);
paradoxically the total errors increased but the 1-ROCA% figure of merit decreased.

Similarly, Run 2 (pretraining) changed only to 269 total errors and a I-ROCA% of 0.1143 (confidence
interval 0.0837 to 0.1561) which is not statistically significant. Run 3 (repeat training) moved to 465
total errors and a 1-ROCA% of 0.1129 (confidence interval 0.0873 to 0.1460) which is not statistically
significant, and Run 4 ( KNN/Hyperspace similarity-only metric) moved to 891 total errors and 1-
ROCA% of 0.4898 (0.4230 to 0.5671). This final degradation is actually significant, but this is against
the similarity-only metric which is known to be weak. Against the informal improved hyperspace, the
values were 388 total errors and 1-ROCA% of 0.3518 (confidence interval 0.2962 — 0.4177), also
barely significant.

Against the B2 corpus, Run 1 (no pretrain) had a total of 99 errors, with a 1-ROCA% of 0.38



(confidence interval 0.2350 to 0.6309) which moved to a delayed 145 errors and 1-ROCA% of 0.6346
(confidence interval 0.4395 to 0.9155). This move is moderately significant. Run 2 (pretraining,
without delay) had 87 errors and a 1-ROCA% of 0.4196 (confidence interval 0.2822 to 0.6235); adding
delay to the error feedback loop changes this to 191 total errors and 1-ROCA% of 0.6006 (0.4366 to
0.8257). This difference is at the edge of significance but not quite at the 90% level. Run 3
(agressive retraining) on the undelayed B2 corpus gives got 98 total errors and a 1-ROCA% of 0.2983
(confidence interval 0.1742 to 0.5105); adding delay to the error feedback loop yields 187 total errors
and a I-ROCA% of 0.4584 (0.3205 to 0.6551); another result on the edge of 90% significance.
Against the known-weak similarity-only KNN of Run 4 the change was 387 total errors and a 1-
ROCA% of 0.9653 (0.7767 to 1.1992) without delay, and 567 total errors and 1-ROCA% of 2.009
(1.7386 to 2.3018) with delay (a strongly significant result).

As a rough generalization, it seems that the better the classifier works to start with against a corpus, the
better the classifier does when a delayed error feedback is imposed. It may also be that the effect of
delay in training errors is magnified by small corpora (corpus B2 is only 12,000 elements versus X2

at 45,000 elements)

Hypothesis 6: Bit-Entropy Works Better than Statistical Filtering

Our final hypothesis was to test a bit-entropy filter against the corpora. As this would put us “over
limit”, for the official limit of four runs, we obtained informal runs after the official submissions had
all completed (and thank the the Spam Track Chair for making this possible).

The bit-entropy classifier is based on Cormack-Horspool DMC compression, as adapted by Andre;j
Bratko of the Institut Josef Stefan (TREC 2005). However, the code tested was developed completely
independently of the Cormack-Horspool and Bratko code. Additionally, the code does not use the
DMC node-splitting nor David Young-Lai’s node merging algorithm [ Young-Lai 1999]. The basic
principle is still the same — use an optimal compression algorithm as the kernel of a classifier. Each
known corpus is used to dynamically build a compression model; the model which compresses the
unknown text to the smallest number of bits is the model that best fits the unknown text. Unlike the
Bratko algorithm, the CRM114 bit-entropy classifier does not actually calculate the best such
encoding; it merely calculates the length of that best encoding.

The CRM1 14 bit-entropy classifier produces the compression model by starting from a single node,
and then allocating and linking in a new node on each new bit of known text. The algorithm also an
arithmetical-coded local prior history on each node already allocated; when the actual prior history of
the bit pattern being encoded is within a very small threshold of a node already allocated, instead of a
new node allocation, the current transition is linked to the already-existing node (this saves tremendous
amounts of space; sensitivity testing confirms that it does not affect accuracy by more than 20% but
brings the memory requirement down to about 64 megabytes at the “flat part” of the performance



curve; adding more memory does not seem to help past that limit, at least against our corpora). By
arithmetical prior history coding and by maintaining a lookaside table to get very close to the correct
coded node in a single lookup, the CRM114 bit-entropy classifier is able to run almost as fast as the
classic CRM114 OSB-Markov classifier.

During classification we measure the information in each actual transition according to:
entropy = - log2 (Ptransition)

The entropy of the entire text is merely the sum of the entropies of the individual bits. Note that this is
not the average entropy of the source (that being the sum over all transitions of -P log2 P; the initial -P
being the weighted probability of the transition ever occurring; we’re posteriori in this case).

The bit-per-node runtime allocation does not guarantee closed bit-transition models, so unknown texts
will often “run off the edge” of the model. In this case, the classifier needs to resume the model at an
appropriate place; this node is located via the arithmetical-coding prior history system. In the case of
an “off the edge” transition, we need to encode only the signal that the model was forced to jump to the
best appropriate place; since both the encoder and decoder can calculate the identity of this best node
trivially (at the point of the jump, both the encoder and decoder know the full prior history of the text),
the number of bits required to encode this transition is only —log2 ( 1 / (Ntotal+1)).

The results of this run are an independent confirmation of the 1JS filter presented last year by Andre;j
Bratko as a viable classification system; despite it’s highly counter-intuitive mode of operation (being
completely blind to the concept of a “token”, and always operating at the bit-at-a-time level), the filter
works quite well. Additionally, this code operates well with less than 64 megabytes per class, which is
a significant advance on the 2005 1JS code.

The actual results for the bit-entropy filter are 849 total errors and a I-ROCA% of 0.1610 (confidence
interval of 0.1215 to 0.2131) for the MrX2 corpus, and with delayed feedback this accuracy drops to

1887 errors and a I-ROCA% of 0.4099 (0.3580 to 0.4693). This compares well against the CRM114

Run 1 of 430 total errors 1-ROCA% of 0.1498 (confidence interval of 0.1051 to 0.2134).

Additionally, against the public test corpora, the CRM114 bit-entropy classifier displays the same “flat-
curve” ROC response that the 1JS filter shows. This suggests that the “flat ROC” curve of the 2005
IJS filter may be an intrinsic effect of bit-entropic classifiers; thus, for situations where the cost of one
kind or another is very large, the bit-entropy classifier may well perform better than a Bayesian
classifier.

Other Metrics - Terminal Error Rate

There are other possible metrics for ranking filter accuracy beyond the error transfer matrix and the 1-



ROCA%. Of particular interest is the terminal error rate — the TER - that is, the error rate as seen by

end user of an already-deployed system, which is defined as the error rate in the last 10% of the test

corpus. As we hadn’t set out to test this, it’s not really a “testable hypothesis™; it’s more of an

“interesting observation of Nature” which warrants further critical examination.

Comparing TER versus 1-ROCA% yields the following interesting results for the 2006 TREC “public”
test set of about 92,000 messages:

CLASSIFIER 1-ROCA% | RaANk By | TeERMINAL| RANK By | DISCREPANCY OF RANK
ROCA% | Error TERMINAL (ROCA Rrank
Rate | ERror RATE — TER RANK)
OSB 0.1498 1 (tied 4 5 6 -5
(Run 1) (.1051-.2134 ways)
OSB Retraining 0.1353 1 (tied 4 4 4 (tied 2 ways -3
(Run 3) (.0973 - .1995) ways)
OSB-Pretrain 0.1592 1 (tied 4 4 4 (tied 2 ways) -3
(Run 2) (.1115-.2271) ways)
Bit-Entropy 0.1610 1 (tied 4 2 3 2
(Informal run 2) |(.1215-.2131) ways)
Hyperspace 0.2277 5 1 1 (tied 2 4
Similar/Difference | (.1682-.2923) ways)
(Informal run 1)
Hyperspace 0.3056 6 1 1 (tied 2 5
Similarity (.2428-.3846) ways)
(Run 4)

The worst classifiers according to 1-ROCA% were the Hyperspace classifiers, but Hyperspace had
only a single error in the last 9219 messages (the actual value was one error in the last 10,000
messages, for a TER of less than 0.01% and a terminal accuracy of better than 99.99%), while the
“best” filters according to 1-ROCA% had five times as many errors.

It seems that good behavior in terms of 1-ROCA% may be correllated to a weak terminal error rate.

If so, that means the filter gives a poor end-user experience when compared to a high I-ROCA%, but
otherwise very TER-accurate classifier (which would have 1/5" the error rate once trained).

Conclusions

We can express our TREC 2006 conclusions concisely in the following table, assuming that 1-ROCA%
is a good figure of merit (we don’t have TER values for the private MrX1, MrX2, or B2 corpora).



CRMI114 TREC

2006 Conclusion Summary

EXPERIMENTAL ConNTrOL
HvyPorHESIS ConcLusIon
SAMPLE SAMPLE
2006 Runl: MrX2
Spammers have o Y 2005 Run 3 MrX1 N O

adapted to
statistical filters

430 total errors
1-ROCA% 0.1498

1-ROCA% 0.177
(0.128 — 0.246)

No significant difference between the
old and new MrX corpora results.

(.1051-.2134
Training is Run 2 MrX2 Run 1 MrX2 N O
portable from 183 total errors 430 total errors
one userto | | ROCA%0.1592 | 1-ROCA% 0.1498 Total errors are lowe, but
another (1115 - 2271) (.1051-.2134) I-ROCA% is worse
Intensive, Run 3 MrX2 Run 1 MrX2 N O
repeated trainin 279 total errors 430 total errors
P improves 9 1.-ROCA% 0.1353 | 1-ROCA% 0.1498 Total c?rrors a.re l.o.wer, but 1-ROCA%
accuracy (0973 - .1995) (1051-2134) is not significantly better
Run 4 MrX2
667 total errors MAYBE
1-ROCA% 0.3056 Run 1 MrX2 The 1-ROCA% is not quite as good,
KNN/Hyperspace
is superior to (.2428-.3846) 430 total errors but the lower total error count and
Bayes/Markov Informal 1 MrX2 | 1-ROCA% 0.1498 |  much lower terminal error rate are
241 total errors (.1051-.2134) “very interesting”
1-ROCA% 0.2277
(.1682-.2923)
MAYBE
Delaying Run T MrX2 Delay Run 1 Mrx2 The MrX2 corpus doesn’t show
feedback 972 total errors 430 total errors o )
degrades 1.ROCA% 0.1341 | 1-ROCA% 0.1498 significant degradation, l')ut‘tl‘le B2
accuracy (.0953-.1887) (.1051-2134) corpus shows a barely s1gn1'flcant
degradation at 90% certainty
Bit-entropy Informal 2 MrX?2 Run 1 MrX2 CONFIRMED

classification
actually works

849 total errors
1-ROCA% 0.1610

430 total errors
1-ROCA% 0.1498

Overall 1-ROCA% is within the 90%
statistical certainty bounds

(.1215 - 2131 (.1051-.2134)
. Al red b MAYBE NOT
1;5;?99/;': Ll';e e r:.maslr:noe atZ All runs ranked by | TER anti-correlated with 1-ROCA%
rminal error r.
1-ROCA% but positively correllated with the

merit for filters

(TER)

enduser experience




Thanks and Acknowledgements

The reader should note that to some extent or another, a very large group of people have submitted
quality reports, anecdotal evidence, optimizations, bugfixes, and improvements to the CRM114
classification engines; to a person, they all decline to take public credit for it as “their part was too
small to warrant credit or authorship”. Among them are Fidelis Assis, Christian Seifkes, Paolo
Pazzoli, and numerous others known only to the Correspondence Author as online identities.

In any case, the Correspondence Author wishes to publicly acknowledge their help. In whatever form
or way they might have helped, the help was invaluable.

The Correspondence Author also wishes to specifically thank Gordon Cormack (the Track Chair) for
great assistance in both the formal runs and the additional informal runs.
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