
Concept recognition and the TREC Genomics tasks

J. Gregory Caporaso William A. Baumgartner, Jr. K. Bretonnel Cohen
Helen L. Johnson Jesse Paquette Lawrence Hunter

larry.hunter@uchsc.edu

Center for Computational Pharmacology
University of Colorado Health Sciences Center

Abstract

We applied concept recognition techniques to the
Genomics track primary and secondary tasks. For
the primary task, we developed a foundational infor-
mation retrieval system which incorporated Entrez
Gene entries and UMLS concepts for query expan-
sion via phrasal and term boosting representations
of synonyms. For the secondary task, we evaluated
three conceptual features—mouse strain names, in-
dexed MeSH terms, and normalized citations—in ad-
dition to two surface linguistic features—BOW and
bigrams. Our final feature set yielded consistently
high F-measures.

Introduction

The Center for Computational Pharmacology at the
University of Colorado Health Sciences Center par-
ticipated in the ad hoc retrieval and document classi-
fication tasks of the Genomics track. Our approaches
to both tasks were based on applying concept recogni-
tion techniques wherever possible. For some elements
of the secondary task, this yielded high F-measures—
above the median in all cases, and the highest F-
measure reported for the E task.

Early work in biomedical information extraction
systems relied on either direct pattern matching (e.g.
[8], [23]) or on machine learning techniques applied
directly to the input text (e.g. [12]). However, there
is a growing awareness ([16], [11]) that text data

mining in the molecular biology domain can bene-
fit from transformations that map from text to more
semantically oriented intermediates. In fact, recog-
nizing semantic concepts when they appear in nat-
ural language texts has become a major focus of
current work in biomedical NLP. Examples of this
phenomenon include the entity normalization task in
BioCreative ([18]) and the protein-to-Gene-Ontology
task in BioCreative ([9], [14]). The goal of con-
cept recognition is to move beyond the named entity
recognition task—locating strings in text that refer
to some entity—and extend it by mapping the text
string to a representation of the entity to which it
refers. For example, in the case of BioCreative’s en-
tity normalization task, the entities were Entrez Gene
entries, and the required mapping specified the En-
trez Gene ID. In the case of BioCreative’s Task 2,
there were two types of entities to be recognized—
PDB entries, and Gene Ontology terms. Entries had
to map to the appropriate PDB database identifier
and a specific Gene Ontology concept. Cohen and
Hersh suggest that better concept recognition can im-
prove performance on other tasks ([11]:62,67); here
we demonstrate increases in F-measure on document
classification tasks when concept recognition is incor-
porated into our system.

The specific conceptual types with which we ex-
perimented were UMLS concepts in the case of the
primary task, and mouse strain identifiers in the case
of the secondary task. We discuss the details of the
concept recognition approaches in the Methods sec-
tions below.
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Ad Hoc Retrieval Task

Methods

Framework Lucene [1] was used as the backbone
for our system. Query generation centered around
the seven template component classes—method or
protocol, gene, mutant gene, disease, biological pro-
cess, organ function, and biological impact—found in
the five topic templates. A query generation pro-
cedure was created for each of the five topic tem-
plates. These procedures included query expansion
where applicable. Figure 1 gives an overview of our
retrieval system.

Figure 1: IR System Framework

Entity Identification An entity identification
(EI) system developed in-house for the BioCreative
competition [20] was used to search for gene names
within the text for the method or protocol topic.
Query Expansion A variety of query expansion
methods were tried in our IR system. They can
be loosely classified into three categories—template-
dependent, gene-dependent, and disease-dependent.
Template-specific terms were added to each query as
depicted in Table 1.

Query expansion on gene names involved the use
of a search index of the Entrez Gene [2] database
built using Lucene. This search index encompassed
gene name synonyms and associated protein product

Table 1: Template-specific query expansion terms
Template Template-specific terms

1 method, protocol
2, 3 role
4 interact, promote, suppress, inhibit
5 mutate, mutant, single nucleotide poly-

morphism, missense, nonsense, inser-
tion, deletion

name synonyms of all Entrez Gene entries. When the
EI system found a gene name in the query, we con-
ducted a search for synonyms by querying the En-
trez Gene index. We automatically removed these
words when they were part of a synonym: putative,
hypothetical, probable, unspecified, unclassified, un-
spec, disease, nos, disorder, specification, and family.

For topics from the second and fourth templates,
disease names were expanded with synonyms found in
the UMLS. We found disease synonyms by searching
the UMLS MetaThesaurus [4]. We did some hand-
filtering of the UMLS synonyms.

We tried two ways of incorporating gene and dis-
ease synonyms into the queries, either as phrases or
as a set of boosted individual words. Boosting of the
individual terms reflected the frequency with which
they were found in the synonym set: if a term was
seen more frequently in the set, then it was weighted
higher than a term that was observed less frequently.
Query Generation Queries were formulated by
concatenating the query expansion output with a
pre-processed version of the original topic text. The
pre-processing of the original topic text consisted of
whitespace tokenization and stop word removal.
Search and Ranking A search index of the
supplied MEDLINE collection encompassing the
stemmed text from all document titles and abstracts
was created using Lucene. Stemming was done with
the Snowball implementation [3] of the Porter stem-
ming algorithm [24]. Results were ranked using the
Lucene modified tf*idf scheme. Terms found in
the document title were weighted more heavily than
those found in the abstract.
Output We submitted two runs from our IR sys-
tem, labeled CCP0 and CCP1. Generation of the
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result sets differed in gene and disease synonym rep-
resentation and the degree of disease synonym filter-
ing. Result set CCP0 used the synonym phrases as
they were returned from our synonym search engine.
Result set CCP1 used the boosted term representa-
tion for both gene and disease synonyms.

Results

Judging from the preliminary results released by
TREC, our IR system generally performed below the
median. The overall Mean Average Precision (MAP)
scores for CCP0 and CCP1 were 0.1078 and 0.0554,
respectively. A comparison of our precision after ten
(P10) documents and precision after one hundred
(P100) documents with the other manual/interactive
entries is shown in Figure 2.

Figure 2: Comparison of the P10 (A) and P100 (B)
scores for CCP0 over all manual/interactive entries.
For a given query, our score matched the highest (H,
black), fell between the highest and median (H-M,
dark gray), matched the median (M, gray), fell be-
tween the median and lowest (M-L, light gray), or
matched the lowest (L, white) score.

Document Classification Task

Methods

We developed five different feature extractors, de-
scribed below. We then did feature selection on a
per-task basis to select the features with the largest
information gain. High-information-gain features

were used to train document classifiers. We identi-
fied the top-performing classifiers using 10-fold cross-
validation, optimizing for normalized utility score.
All feature selection and document classification al-
gorithms were implemented within the Weka 3 data
mining software package [26].

Feature Extraction

The features were Bag-of-Words (BoW), bigrams, ci-
tations, MeSH headings, and strain names. For some
features (detailed below) we experimented with ex-
tracting features only from specific document sec-
tions, and we compared binary and weighted values
for some features. Comparing the performance of
classification using differing features and groups of
features led us to include some of these and exclude
others in our final submissions.

Our final classifiers were trained on a combination
of bigrams extracted from article titles and captions,
MeSH terms associated with documents, and mouse
strains identified in the article body.
Bag-of-Words Extractor During construction of
the BoW, stop words from the 133-word NCBI list
[5] were omitted. Remaining words were stemmed
with a Python implementation of the Porter Stem-
ming Algorithm [6]. The text input to the BoW ex-
tractor was varied between article bodies, abstracts
only, and figure captions only. Feature values were
varied between word frequency1 and binary presence
vs. absence.
Bigram Extractor The bigram feature extractor
retrieves all of the two-word sequences from a block of
text. We stemmed bigrams before counting, so each
bigram is actually a two-stem sequence. Bigrams con-
taining stop words were discarded. For example, the
filtered bigrams contained within the first clause of
this self-referential sentence are: ‘filt bigram’, ‘bi-
gram contain’, ‘first claus’, and ‘self-referenti sen-
tenc’. The text input to the bigram extractor was
varied between article bodies, abstracts only, figure
captions only, article titles only, and figure captions
plus article titles. Feature values were tested as bi-

1For a specific feature type, feature frequency was defined
as: (Number of times a feature occurs in document) / (Total
number of features in document)
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gram frequencies and binary values.
Citation Extractor For each citation in an arti-
cle, we created an identifier based on year of pub-
lication, volume number of journal, and first page
of article. These identifiers normalized minor differ-
ences in author names (Smith, V. vs. Smith, V.M.
vs. Smith, VM ), journal abbreviations (J. Mol. Bio.
vs. Jour. Mol. Bio. vs. JMB), etc. The input to
the citation extractor was article bibliographies.
MeSH Term Extractor Since indexed MeSH
terms are not listed within the SGML file supplied
for each article, the MeSH term extractor is given
the PubMed identifier (PMID) for an article as in-
put. The associated MeSH terms are then retrieved
from our local installation of MEDLINE.
Strain Name Extractor The strain name feature
extractor retrieves mentions of mouse strain names
from input text. The strain names searched for are
obtained from MGI’s ‘Official Strain Nomenclature’
[7]. Matched terms from this list are mapped onto
corresponding MGI identifiers. Feature values were
varied between term frequencies and binary values,
and input text was varied between full text of arti-
cles, and Methods sections2 only.

Feature Selection

To reduce the dimensionality of our feature sets, we
experimented with two feature selection algorithms:
Information Gain (IG) and ReliefF. A threshold was
set to determine the size of the reduced feature set.
For IG, the threshold defines a minimum information
gain. For ReliefF, the threshold defines a maximum
number of features. In addition to greatly reducing
training and testing time, feature selection increased
classifier performance in all cases (see Results).

To determine the optimal feature set for training
classifiers, we varied the feature selection algorithm
and the selection threshold. Selection thresholds were
varied between 1E-7 and 1E-1 for IG, and between
20,000 and 2,000 features for ReliefF.

2We defined ‘Methods sections’ as any section having a sec-
tion title of ‘Materials’, ‘Methods’, ‘Materials and Methods’,
or ‘Experimental Procedures’.

Document Classification

We experimented with Naive Bayes (NB) and Sup-
port Vector Machine (SVM) classifiers. The NB clas-
sifier was used with kernel estimation activated. SVM
classifiers employed the RBF kernel. To find the best
performing SVM classifier, a grid search was done on
the RBF kernel parameter space, varying gamma be-
tween 1E-15 and 1E6, and varying complexity factor
between 1E-3 and 1E15 [19].

Classifier Selection

Parameters were selected based on the normalized
utility from 10-fold cross validation analyses of train-
ing data. We submitted twelve runs, three per task,
generated with twelve different classifiers.

Results

Comparison of precision, recall, F-measure, and nor-
malized utility values obtained from 10-fold cross-
validation on the training data using different combi-
nations of feature types, feature selection techniques,
and classification algorithms led us to select what we
expect to be our top-performing classifiers.
Comparison of Feature Types We compared
the contribution of the various features using NB clas-
sifiers, after IG feature selection with a threshold of
1E-3. For the bigram, BoW, and strain name ex-
tractors, the input text was varied across different
sections of the articles.

Figure 3a shows that classifiers built using BoW
representations of the text performed poorly; the
highest normalized utility achieved was 0.144. As a
consequence, we did not incorporate these features in
our master feature set. The section of the article for
which BoW representations were generated seemed
to matter little in overall performance.

The bigram representations of the text yielded sig-
nificantly better performing classifiers than the BoW
representations (Figure 3b). We contrasted bigram
extraction from article abstracts, titles, captions, and
bodies. Normalized utility varied highly depend-
ing on the section from which the bigrams were ex-
tracted. The best performance was achieved with
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bigrams extracted from the article bodies (0.916 for
task T), but due to an oversight, in our master fea-
ture set we used the next-best performer, which was
bigrams from captions.

The citation feature generally achieved low nor-
malized utility scores (Figure 3c). The highest nor-
malized utility achieved, 0.233, was for the A task.
However, the precision achieved in each of the tasks
with these classifiers was very high. The lowest pre-
cision achieved was 0.800 (also for the A task), and a
precision of 1.000 was achieved for the E and T tasks.
Citation features were not included in the master fea-
ture set (see below).

The MeSH term feature yielded good classifiers
(Figure 3d). The highest normalized utility score
(0.820) was achieved for the A task with this feature
set. For all other tasks, normalized utility scores were
close to, although lower than, those achieved with the
classifiers built from bigram feature sets. We included
MeSH terms in our master feature set.

The strain name feature achieved similar results to
the citation feature (Figure 3e). The strain name
extractor was run over full article texts, and over
Methods sections only. Better classifier performance
was observed for all tasks when strain names were ex-
tracted from the full article bodies rather than Meth-
ods sections only. Strain name features were included
in the master feature set (see below for explanation).

The combination of bigram and MeSH term fea-
tures into one set constituted our ‘base feature set.’
To evaluate whether to include the citation and strain
name features, we compared their performances when
added to the base feature set. (Figure 3f)

When our citation feature set was combined with
our base feature set and (following IG feature selec-
tion) used to train NB classifiers, we observed very
slight increases in performance for the A and G tasks,
but large decreases in performance in the E and T
tasks. We therefore excluded citation features from
our master feature set3.

When classifiers were trained with our base feature

3It is interesting to note that in all tasks, inclusion of the
citation data improved precision—quite significantly, in some
cases. For example, in the T task, our base feature set led
to a precision of 0.711; when citation data was included, the
precision went up to 1.000 while maintaining a recall of 0.583.

sets plus strain name features, we observed increased
classifier performance for all tasks4 when compared
to our base feature set alone. This result informed
our decision to combine our base feature set with the
strain name feature for our master feature set.

Feature Selection To decide on a good feature
selection algorithm and threshold, we experimented
with Information Gain (IG) and ReliefF feature
selection algorithms and varied the size of the
feature sets generated with each.

To determine the optimal selection threshold for
the IG algorithm, we filtered the master feature set
on a per-task basis with varied selection thresholds.
Each filtered feature set was then used to train a
NB and an SVM classifier. Performance of each
was judged based on normalized utility from 10-fold
cross validation on the training data. As illustrated
in Figure (4), the feature set sizes which yielded
the best document classifiers were achieved with
selection thresholds of 1E-3 or 1E-4, depending on
the task and classifier type. The ReliefF algorithm
generated feature sets whose classifiers performed
very poorly in comparison to those generated from
the IG-selected feature sets. Since we had good
results with IG for feature selection, we set our
selection thresholds for ReliefF to generate feature
sets of comparable size to those generated with our
top performing IG feature sets. For each of the tasks,
we saw normalized utilities under 0.288 (and often
below 0.1) with selection thresholds set between
2,000 and 20,000. We therefore focused the rest of
our efforts on using IG with selection thresholds of
1E-3 and 1E-4.

The higher selection threshold (1E-3) yields fea-
ture sets with fewer features than the lower selection
threshold (1E-4). We therefore refer to the feature
sets generated with selection threshold of 1E-3 as
the smaller feature sets, and those generated with
selection threshold of 1E-4 as the larger feature sets.

4For the G task, although no increase in normalized utility
was observed, a slight increase in recall, at the expense of a
slight decrease in precision, was observed. Since the normal-
ized utility score is more related to recall than precision, we
considered this to be an increase in performance that might
translate to a higher normalized utility when run on test data.
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Figure 3: Comparison of performance of document classifiers trained on varied feature sets.
(a-e) For each feature extractor, classifiers trained for each task are compared on normalized utility from
10-fold cross validation of training data (y-axis). Where applicable, (a,b,e), the article section provided
to the information extractor is varied. (f) The base feature set was used to generate a classifier for each
task, and the normalized utility achieved with these classifiers is compared with those achieved by training
classifiers with the base feature set combined with the strain name feature set or the citation feature set.

Table 2 presents the ten feature values with the
highest information gain for each task. The MeSH
terms and mouse strains are by definition concep-
tual. Many of the lexical features, ie. stemmed bi-
grams, are suggestive of concepts as well. Recogni-
tion of these concepts from additional ontologies and
semantic classes might therefore improve our classi-
fier performance even further. For example, an ‘ex-
perimental technique’ ontology might allow mapping
saggit[al] section and transvers[e] section to a single
sectional anatomy concept. This would yield a fea-
ture value with higher information gain (as well as
reducing the size of the feature space overall).

Document Classifiers We were interested in
experimenting with NB and SVM classifiers. Last
year it was reported [10] that SVMs with a linear
kernel were outperformed by NB classifiers. Since
the SVM with the RBF kernel (SVM/RBF) is typi-
cally held to outperform SVM with the linear kernel,
we were curious to see how SVM/RBF would com-
pare to NB.

In building each of these classifiers, we began with
our master feature set, and performed IG feature se-
lection twice per task to generate two sizes of feature
sets for each. This yielded a total of eight feature sets.
(Note that the selected feature sets will be different
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Table 2: Feature values with highest information gain by task. Values beginning with ‘MGI:’ are
mouse strain names, normalized to their MGI identifiers. Italicised values are MeSH terms, and the remaining
values are bigrams.

A E G T

Mice, Knockout mous embryo Mice Mice
Mice Mice Mice, Knockout Mice Knockout

MGI:2160041 situ hybrid MGI:2160041 MGI:2160041
MGI:2160085 neural tube Animals MGI:2160085

Gene Expression
southern blot Regulation, MGI:2160085 southern blot

Developmental
target vector yolk sac mous tissu tumor incid

Animals embryo b southern blot histolog analys
mutant mice sagitt section MGI:2159769 apc mice

Mice, Mice,
Inbred C57BL

transvers section MGI:2161069
Transgenic
Intestinalwild-typ mice branchial arch b southern
Neoplasms

Figure 4: Effect of feature selection threshold
on classifier performance. The varied Informa-
tion Gain selection thresholds (x-axis) are plotted
versus their effect on normalized utility (y-axis) in
10-fold cross validation on the training data. NB clas-
sifiers are represented with solid lines, SVM classifiers
with dashed lines.

for each task since different features will be impor-
tant in discriminating between positive and negative
examples of that category.)

To determine the optimal values of the SVM/RBF
parameters, we varied the gamma/complexity factor
(G/CF) parameters as suggested by [19]. A coarse
grid search was performed for the A task using the
smaller feature set (Figure 5), and regions of G/CF
space which produced optimal classifiers were then
investigated with a finer grid search on all four tasks.
When SVM/RBF classifiers were compared across
the different tasks and parameters, we found that
classifiers performed best with a gamma value of
2.5E-2 and a complexity factor value of 2.5E3.

We compared our best-performing SVM classifiers
to our NB classifiers (Table 3) for both feature set
sizes, and found that in almost all cases NB outper-
formed the SVM classifiers when compared on nor-
malized utility. The one exception was the G task,
when the opposite was true. Additionally, in almost
all cases, the smaller feature sets produced better
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Table 3: Comparison of Support Vector Machine and Naive Bayes Classifiers. Precision, Recall,
F-measure and Normalized Utility (U-norm) for NB and SVM classifiers trained with two different sized
selections of our master feature set for each task. The ‘Threshold’ column provides the feature selection
threshold used in generating the selected feature set for each run.

Naive Bayes Support Vector Machine
Task Threshold Precision Recall F-measure U-norm Precision Recall F-measure U-norm
A 1.0E-3 0.633 0.893 0.741 0.863 0.888 0.731 0.802 0.725
A 1.0E-4 0.729 0.837 0.780 0.819 0.913 0.559 0.694 0.556
E 1.0E-3 0.681 0.580 0.627 0.576 0.973 0.444 0.610 0.444
E 1.0E-4 0.634 0.642 0.638 0.636 0.923 0.444 0.600 0.444
G 1.0E-3 0.539 0.519 0.529 0.479 0.797 0.593 0.680 0.579
G 1.0E-4 0.725 0.297 0.421 0.286 0.939 0.335 0.494 0.334
T 1.0E-3 0.651 0.778 0.709 0.776 1.000 0.472 0.642 0.472
T 1.0E-4 0.870 0.556 0.678 0.555 1.000 0.639 0,780 0.639

Figure 5: Grid search of gamma and complexity
factor space for SVM/RBF classifier. For var-
ied values of Gamma (x-axis) and Complexity Factor
(y-axis), the normalized utility achieved from 10-fold
cross-validation on training data is plotted for the A
task. Similar results were observed for the E, G, and
T tasks.

classifiers than the larger feature sets5.
We submitted the maximum of twelve runs (three

per task). Our master feature set consisted of bi-
grams extracted from article titles and figure cap-
tions6, MeSH terms, and strain names extracted from
full article bodies. We used IG to construct two fil-
tered feature sets per task, using cut-off thresholds
of 1E-3 and 1E-4. We built two sets of NB classifiers
(one set per feature selection threshold), and one set
of classifiers using SVMs (generated with the smaller
feature sets and G and CF values of 2.5E-2 and 2.5E3
respectively) per task.
Performance on the test data Our top-
performing classifiers were the NB classifiers with the
smaller feature sets for the A, G, and T task, and the
NB classifier with the larger feature sets for the E
task. Our NB classifiers outperformed our SVM clas-
sifiers. Our best normalized utility score, 0.7215, was

5It should be noted here that the observed result of NB clas-
sifiers outperforming SVM classifiers is only valid when com-
pared on the basis of normalized utility. SVM classifiers always
achieved higher precision than NB classifiers, and NB classi-
fiers almost always achieved higher recall. An SVM classifier
achieved the top F-measure for three out of the four tasks.

6We found that including article title bigrams with article
caption bigrams provided a slight but consistent increase in
classifier performance, and thus decided to include them in
our master feature sets.
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Figure 6: Comparison of our results with the Best, Median, and Worst overall results. For
each task (a-d) precision, recall, F-measure, and normalized utility achieved by each of our classifiers are
compared to the best, median, and worst scores on the test data. For each performance metric, from left
to right, the bars illustrate: overall best, overall median, overall worst, our NB classifier with the smaller
feature set, our NB classifier with the larger feature set, and our SVM classifier.

achieved in the A task with an NB classifier. With
respect to normalized utility, our scores fell below
the median for all tasks, but examination of other
metrics reveals some of the strengths of our system.
For example, we achieved the maximum precision for
each task. Our F-measures were generally among the
best, and for the E task we achieved the maximum.
However, our recall scores were low, leading to low
normalized utilities (Figure 6).

Discussion

The reported performance of concept recognition in
the TREC Genomics track has varied in interesting
ways. In the first year of the track, the track direc-
tor found that searching in the MeSH and substance

name fields, along with filtering for species, accounted
for the best performance ([17]:19). In the second year
of the track, the track director noted the opposite:
“Approaches that attempted to map to controlled vo-
cabulary terms did not fare as well” ([15]:137). (The
systems to which they refer are described in [25], [22]
and [13].) The second-year observation seems to con-
tradict the idea that concept-based techniques are
helpful in this domain, so we examine the specific ap-
proaches more closely here. There are at least three
distinct explanations for the observation, all of which
are consistent with our hypothesis. One possibility is
that these approaches may simply have made a poor
choice of concepts. Another is that the systems may
have done a poor job of concept recognition. Finally,
[15] may be overstating the role that controlled vo-
cabularies played in the poorly performing systems.
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It is difficult to evaluate the question of the role
that the choice of a specific controlled vocabulary
played in performance for these systems; they all used
the same set of concepts, so we cannot contrast its
performance contribution with that of some other set
of concepts. Nonetheless, it seems prima facie odd to
suggest that the choice of concepts was at fault, since
the shared choice for concepts was MeSH, which was
in fact designed precisely to facilitate information re-
trieval. However, [21] review a number of studies that
suggest problems with the use of MeSH in IR tasks.
In our own work reported here, we had considerable
difficulty using UMLS as a concept source in the pri-
mary task.

Another possible cause of [15]’s observation is that
the three systems might not have done well at con-
cept recognition. [13] note problems with recognition
of MeSH terms related to synonymy relations. Nei-
ther [22] nor [25] describe their method for matching
MeSH concepts, so presumably it was not a focus of
their work. In our own work, we had much greater
success in the case where the concept recognition task
was easier, i.e. strain name identification for the sec-
ondary task, than in the case where it was more dif-
ficult, i.e. using the UMLS in the primary task.

Finally, we suggest that [15] do, in fact, overstate
the role that concept recognition played in these sys-
tems. In the case of [22], MeSH terms were only one
of several features. In the case of [25], they were used
only as a source of synonyms, and there is no data
available on how often these were even applied.

In summary, our work here suggests a role for con-
cept recognition in tasks of uncontested relevance to
biologists. It seems likely that this role will become
even stronger as concept recognition improves.
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