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Abstract: As part of the TREC 2005 Terabyte
track, we conducted a range of experiments inves-
tigating the effects of larger collections. Our main
findings can be summarized as follows. First, we
tested whether our retrieval system scales up to
terabyte-scale collections. We found that our re-
trieval system can handle 25 million documents,
although in terms of indexing time we are ap-
proaching the limits of a non-distributed retrieval
system. Second, we hoped to find out whether re-
sults from earlier Web Tracks carry over to this
task. For known-item search we found that, on
the one hand, indegree and URL priors did not
promote retrieval effectiveness, but that, on the
other hand, the combination of different document
representations improved retrieval effectiveness.
Third, we investigated the role of smoothing for
collections of this size. We found that larger col-
lections require far less smoothing, especially for
the adhoc task using very little smoothing leads to
substantial gains in retrieval effectiveness.

1 Introduction

As part of the TREC 2005 Terabyte track, we conducted a
range of experiments investigating the effects of larger col-
lections. First, we want to test whether our retrieval system
scales up to 25 million documents. Second, we hope to find
our whether results from earlier Web Tracks carry over to
this task. Third, we want to investigate the role of smooth-
ing for collections of this size.

We submitted runs for two of the Terabyte track’s tasks:
the adhoc task, and the named page finding task. In addi-
tion to the submitted runs, we also discuss post-submission
results for the efficiency task. Furthermore, we discuss a
range of post-submission experiments that further clarify the
role of smoothing, especially for adhoc retrieval on terabyte-
scale collections..

The rest of this paper is organized as follows. In Section2,
we detail the experimental set-up for the three tasks in the
Terabyte track. In Section3, we discuss our results, broken
down over the efficiency task (§3.1); the adhoc task (§3.2);

and the named page finding task (§3.3). In Section4, we
zoom in on a set of experiments on the amount of smoothing
for terabyte-sized collections. Finally, we summarize our
findings in Section5.

2 Experiments

Our retrieval system is based on the Lucene engine with a
number of home-grown extensions [2, 6].

2.1 Indexes

The Terabyte track uses theGOV2 test collection, contain-
ing 25,205,178 documents (426 Gb uncompressed). We cre-
ated three separate indexes for (1) the full documents, (2) the
text in the title tags, (3) the anchor-texts pointing toward the
document. For the anchor-texts index, we ignored relative
links and only extracted full links. We normalized URLs,
and did not index repeated occurrences of the same anchor-
text. This is similar to our earlier experiments in the TREC
Web track [4, 5]. As to tokenization, we removed HTML-
tags, punctuation marks, applied case-folding, and mapped
marked characters into the unmarked tokens. We used the
Snowball stemming algorithm [7].

We created a single, non-distributed index for the collec-
tion. The size of our full-text index is 61 Gb. Building the
full-text index (including all further processing) took a mas-
sive 15 days, 6 hours, and 21 minutes.

2.2 Retrieval models

For our ranking, we use either a vector-space retrieval model
or a language model. Our vector space model is the default
similarity measure in Lucene [6], i.e., for a collectionD,
documentd and queryq:

sim(q,d) =

∑
t∈q

tft,q · idft
normq

·
tft,d · idft
normd

·coordq,d ·weightt,

where

tft,X =
√

freq(t,X)
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idft = 1+ log
|D|

freq(t,D)

normq =
√

∑
t∈q

tft,q · idft2

normd =
√

|d|

coordq,d =
|q∩d|
|q|

Our language model is an extension to Lucene [2], i.e., for a
collectionD, documentd and queryq:

P(d|q) = P(d) ·∏
t∈q

((1−λ) ·P(t|D)+λ ·P(t|d)) ,

where

P(t|d) =
tft,d
|d|

P(t|D) =
doc freq(t,D)

∑t ′∈D doc freq(t ′,D)

P(d) =
|d|

∑d′∈D |d′|

The standard value for the smoothing parameterλ is 0.15.

2.3 Official runs

We submitted six runs in total, using only the short topic
statement in the title. For the adhoc task, we submitted the
following two runs:

UAmsT05aTeVS Vector space model on the full-text in-
dex.

UAmsT05aTeLM Language model (λ = 0.15) on the full-
text index.

For the named page finding task, we submitted four runs.
We submitted a plain language model run:

UAmsT05nTeLM Language model (λ = 0.70) on the full-
text index.

We also experimented with web-centric priors [3]. First, we
assumed that pages with more inlinks are more likely to be
relevant. Since our implementation of the language model
calculates the logs of the probabilities, we took the expo-
nent of the retrieval score, and multiplied it with the root of
the indegree. We used the incomplete indegree scores we
obtained from the anchor-text index. Second, we assumed
that pages with shorter URLs are more likely to be relevant.
We calculated the number of components in the domain and
file path of the URL, e.g,trec.nist.gov/act_part/act_
part.html has 3 (domain) plus 2 (file path) components.
Again, we took the exponent of the retrieval score, and mul-
tiplied it with the reciprocal of the length of the URL.

UAmsT05nTind Language model (λ = 0.70) on the full-
text index, with an indegree prior.

UAmsT05nTurl Language model (λ = 0.70) on the full-
text index, with a URL prior.

Finally, we have not yet implemented a proper mixture lan-
guage model incorporating different document representa-
tions. Instead, we combined separate runs made on the dif-
ferent full-text, anchor-text, and titles indexes.

UAmsT05n3SUMCombSUM of language model (λ = 0.70)
runs on the full-text index (relative weight 0.8), anchor-
text index (relative weight 0.8), and titles index (relative
weight 0.8).

3 Results

3.1 Efficiency task

We created a run for the efficiency task as a post-submission
experiment. Table1 shows the total and average query pro-
cessing times for the 50,000 efficiency task topics. We used

Task #Topics Model Total Avg.Q
Efficiency 50,000 VS 23,976 (6h39m36s) 0.480
Adhoc 50 VS 43 (43s) 0.862
Adhoc 50 LM 798 (13m18s) 15.962
Named Page 272 VS 594 (9m54s) 2.184
Named Page 272 LM 12,180 (3h23m) 44.781

Table 1: Performance measurements in seconds for max. 20
results per topic using the full-text index.

a non-dedicated, dual processor machine running Linux with
the retrieval system running as a single Java process with a
heap size of 1 Gb. For the efficiency task we used the vector-
space model. Total processing time for the 50,000 queries
was 6 hours and 39 minutes. On average, it took 0.480
seconds to produce the top 20 results for a single query.
For comparison, we also list the system performance for the
other Terabyte tasks. In terms of effectiveness, the efficiency
task run is identical to ad hoc task runUAmsT05aTeVS dis-
cussed below. Its precision at rank 20 is 0.3710.

3.2 Adhoc task

There are in total 50 adhoc task topics. The number of rel-
evant documents per topics varies from 4 to 559, with an
average of 208 and a median 171. Table2 shows the re-
sults for the adhoc task. We see an interesting compari-

UAmsT05 #rel ret map bpref reciprank P@10 P@20
. . .aTeVS 5717 0.1996 0.2596 0.4437 0.3800 0.3710
. . .aTeLM 4180 0.1685 0.2083 0.6023 0.38000.3460

Table 2: Results for the adhoc task.
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son between the two retrieval models. First, we see that
the vector-space model is superior on the overall measures
(map and bpref). Second, we see that the language model
is superior at early precision (reciprank), but that this wa-
ters down quickly (precision is equal at rank 10, and less at
rank 20). The outcome deviates from results on the training
data—the Terabyte track 2004 adhoc task topics—, where
the language model outperformed the vector space model
with a map score of 0.1562 versus 0.1413. Below, we will
further zoom in on the language model and experiment with
the amount of smoothing.

3.3 Named page finding task

In total there are 252 named page finding topics (20 top-
ics have been deemed adhoc topics, and have been retracted
from the qrels). The minimal number of relevant documents
per topic is 1 and the maximum is 4,525. For 187 topics
there is a unique relevant page, the few topics with thou-
sands of relevant pages are caused by page-duplicates in the
collection. This leads to a skewed distribution with a mean
of 47 and a median of 1 relevant page. Table3 shows the
results for the named page finding task. We make a number

UAmsT05 recip rank top 10 not found
. . .TeLM 0.3364 112 44.44% 58 23.02%
. . .Tind 0.2649 99 39.29% 58 23.02%
. . .Turl 0.3251 115 45.63% 58 23.02%
. . .3SUM 0.3653 12348.81% 57 22.62%

Table 3: Results for the named page finding task.

of observations. First, the indegree prior results in a loss of
performance. Second, the URL prior leads to mixed results:
a loss of mean reciprocal rank, but a gain in the number of
topics with the relevant page in the top 10. Third, the combi-
nation run leads to improved performance on all measures.

The success of the combination run shows the value of
different document representations. On the Web Track data,
mixture language models proved far more effective than
straightforward run combination [4, 5]. This may also ex-
plain, in part, the mixed results for the link and URL priors.
Other factors such as the incompleteness of the extracted
links may also play an important role.

4 Smoothing experiments

In the language modeling framework, smoothing plays an
important role: it helps to overcome data-sparseness, it in-
troduces an inverted document frequency effect, and it ex-
presses the relative importance of query terms [8]. In prac-
tice, smoothing is also a handle to tune a run toward re-
call (much smoothing) or precision (little smoothing). It is
known that collection size is a factor influencing precision
measures [1]. Hence, collection size may also be a factor
influencing the amount of smoothing needed in the language

modeling framework. Here, we focus on linear or Jelinek-
Mercer smoothing, and investigate the effect of varying the
smoothing parameter.

4.1 Named page finding task

First, we focus on the named page finding task. Since find-
ing a ‘unique’ page requires precision rather than recall, we
choose a relatively high value for the smoothing parame-
ter (i.e.,λ = 0.7). Table4 shows the results while varying
the smoothing parameter over the interval between 0 and
1. We make a few observations. As expected, we see that

λ recip rank top 10 not found
0.0 0.0000 0 0.00% 252 100.00%
0.1 0.1684 57 22.62% 135 53.57%
0.2 0.2124 78 30.95% 107 42.46%
0.3 0.2417 83 32.94% 90 35.71%
0.4 0.2753 98 38.89% 79 31.35%
0.5 0.3046 103 40.87% 70 27.78%
0.6 0.3158 110 43.65% 64 25.40%
0.7 0.3364 112 44.44% 58 23.02%
0.8 0.3447 115 45.63% 57 22.62%
0.9 0.3557 11846.83% 54 21.43%
1.0 0.3436 117 46.43% 61 24.21%

Table 4: Smoothing for the named page finding task using
the full-text index.

the named page finding topics do not require much smooth-
ing. In fact, as long as we put some weight on the collection
model, the less smoothing the better. This is in contrast with
results on the Web Track data, where performance actually
drops at the highest values of the smoothing parameter.

4.2 Adhoc task

Next, we focus on the adhoc task. Since adhoc topics require
a delicate balance between precision and recall, we choose
the standard relatively low value for the smoothing parame-
ter (i.e.,λ = 0.15). Table5 shows the results while varying
the smoothing parameter over the interval between 0 and 1.
A few observations present themselves. We see that perfor-
mance increases if we apply less smoothing. In fact, the gain
is substantial; already the improvement forλ = 0.2 is statis-
tically significant (99.9%, one tailed) overλ = 0.15. In sum,
the adhoc task evaluated by mean average precision behaves
like an early precision task.

4.3 On Collection Size and Smoothing

We conduct an initial, exploratory experiment to study the
effect of collection size on smoothing. First, we took the list
of documents-ids randomly removed 50% of the documents.
By doing this repeatedly, we obtained six samples containing
100%, 50%, 25%, 12.5%, 6.25% and 3.125% of the original
collection, where documents are always also contained in



λ MAP B-Pref Prec@10 Prec@20
0.0 0.0002 0.0045 0.0020 0.0010
0.1 0.1467 0.1847 0.3620 0.3210
0.2 0.1856 0.2272 0.4120 0.3650
0.3 0.2138 0.2576 0.4600 0.4050
0.4 0.2355 0.2783 0.4900 0.4490
0.5 0.2540 0.2943 0.5060 0.4830
0.6 0.2707 0.3101 0.5380 0.5110
0.7 0.2863 0.3243 0.5420 0.5320
0.8 0.2998 0.3366 0.5620 0.5420
0.9 0.3107 0.3460 0.5680 0.5530
1.0 0.2972 0.3437 0.5840 0.5600

Table 5: Smoothing for the adhoc task using the full-text
index.

larger samples. Table6 shows the resulting sample sizes,
in number of documents, as well as the number of relevant
documents (for any of the Adhoc topics) remaining. For all

Percentage Size in Docs Relevant Docs
100.000% 25,205,179 45,291
50.000% 12,602,589 22,539
25.000% 6,301,294 11,356
12.500% 3,150,647 5,641
6.250% 1,575,323 2,778
3.125% 787,661 1,375

Table 6: Samples of theGOV2 collection.

50 Adhoc topics, there is at least one relevant document in
all samples. Second, we retrieved the top 10,000 documents
for each of the topics, and for eleven values ofλ in the range
[0,1]. Then, for each of the samples, we restricted both the
run and the qrels by removing document no longer present
in the sample. This allows us to evaluate the performance on
each of the samples of the total collection.

Figure1(top) shows precision at 10 scores of the six sam-
ples for all values of the smoothing parameter. We see a solid
decline in the scores when the samples get smaller. This in
line with the expectation that early precision scores increase
with collection size [1]. The scores over different values
of the smoothing parameter gets less steep when the sam-
ple sizes decrease, but the optimal value ofλ remains high.
What about mean average precision? Figure1(middle) has
the MAP scores of the six samples, again over all values
of the smoothing parameter. Here, we see almost the same
performance over the smoothing parameter for the four sam-
ples larger than 10% of the whole collection. For smaller
samples, the scores are somewhat higher, but this may be
due to a favorable choice of our sampling strategy. As for
the smoothing, the optimal values stay markedly in the high-
est region. As similar picture arises for the binary prefer-
ence measure, shown in Figure1(bottom). Here values seem
largely indifferent to the sampling, except for the smallest
sample of just over 3% of the whole collection. Again, the
optimal value ofλ is in the high end of the scale.
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Figure 1: Scores over samples of the collection: (top) pre-
cision at 10; (middle) mean average precision; and (bottom)
binary preference.



The results of our experiment with down-sampling the col-
lection do not show a reversal in the amount of smooth-
ing leading to optimal performance. Just as for the whole
collection, smaller samples tend to favor high values of the
smoothing parameter. There are two important qualification
to make by the sampling strategy employed in this section.
Firstly, we used only a single sample, rather than averaged
over a large number of samples. Even though we took ran-
dom samples, this may introduce accidental features espe-
cially when samples are small. Secondly, we only sampled a
fixed retrieval run, hence the (relative) retrieval scores were
determined by the collection as a whole. That is, the statis-
tics from which the scores are estimated, and in particular
the data-sparseness that smoothing methods address, do not
change by the sampling method we applied in this section.
Hence, a more thorough investigation is needed to study the
effect of collection size on the amount of smoothing.

5 Conclusions

Our participation in the Terabyte track was inspired by a
number of aims related to the size of the Terabyte track col-
lection, we now draw some initial conclusions.

Our retrieval system did scale up to the 25 million docu-
ments in theGOV2 collection. Performance at query time is
impressive, especially for the optimized implementation of
the vector space model. With respect to indexing time, with
over two week to build a full-text index we seem to have
reached the limits of building a non-distributed index.

For the adhoc task, we saw that standard IR techniques on
a full-text index lead to good performance. We found that,
on the 2005 topics, the vector space model outperformed the
language model, although the language model can be sub-
stantially improved by using less smoothing.

For the named page finding task, we found that, on the one
hand, indegree and URL priors did not promote retrieval ef-
fectiveness, but that, on the other hand, the combination of
different document representations improved retrieval effec-
tiveness.

Last, but not least, we zoomed in on the role of smooth-
ing and found that less smoothing leads to the best perfor-
mance. Whereas this is roughly according to expectation for
the named page finding topics, it is unexpected for the ad-
hoc topics. In addition to known relations between retrieval
effectiveness and collection size [1], there also seems to be
a relationship between collection size and the appropriate
amount of smoothing in the language modeling framework.
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