
DIMACS AT THE TREC 2005 GENOMICS TRACK

Aynur Dayanik, Alex Genkin, Paul Kantor, David D. Lewis†, David Madigan
{aynur,agenkin,paul.kantor,dmadigan}@rutgers.edu

davelewis@daviddlewis.com

DIMACS, Rutgers University

David D. Lewis Consulting†

ABSTRACT
This report describes DIMACS work on the text categoriza-
tion task of the TREC 2005 Genomics track. Our approach
to this task was similar to the triage subtask studied in the
TREC 2004 Genomics track. We applied Bayesian logistic
regression and achieved good effectiveness on all categories.

1. TEXT CATEGORIZATION TASK
The Mouse Genome Informatics (MGI) project of the

Jackson Laboratory1 provides data on the genetics, genomics,
and biology of the laboratory mouse. In particular, the
Mouse Genome Database (MGD) contains information for
the mouse system annotated from literature.

To find information on mouse genomics biology, MGI first
automatically scans new scientific literature for records con-
taining one or more of the words “mouse”, “mice”, and
“murine”. In a triage step, MGI personnel then check each
article to see if it contains information appropriate for inclu-
sion in MGD. The goal of this triage process is to limit the
number of articles sent to human curators for more detailed
analysis. The TREC 2005 Genomics track [4] defined a cat-
egorization task based on simplified versions of the MGI
triage process. It consists of the triage subtask from the
TREC 2004 Genomics track [3], which aims to identify ar-
ticles for Gene Ontology annotation, as well as three other
major topics of interest to MGI. This year’s categorization
task includes the following four categories:

• Alleles of mutant types,

• Embryologic gene expresession,

• Gene Ontology (from TREC 2004),

• Tumor biology.

For the TREC 2004, full text articles published in 2002
and 2003 by three major journals were obtained. Those ar-
ticles containing “mouse”, “mice”, or “murine” were identi-
fied and separated into a training set (5,837 documents from
2002) and a test set (6,043 documents from 2003). The same
data were used for the TREC 2005 categorization task.

The goal for task participants was to identify which of
the articles from the test set had, during MGI’s operational
manual triage process, been chosen for furhter consideration
by MGI curators for the four categories listed above. We can
view this, for each category, as a binary text classification

1http://www.informatics.jax.org

Task Data #Positives #Negatives %Positives
A (alelle) train 338 5499 6.15
A (alelle) test 332 5711 5.81
E (exp.) train 81 5756 1.41
E (exp.) test 105 5938 1.77
G (GO) train 462 5375 8.59
G (GO) test 518 5525 9.37
T (tumor) train 36 5801 0.62
T (tumor) test 20 6023 0.33

Table 1: Proportion of positive/negative examples
in the train/test sets.

problem, with articles chosen for curation during the triage
process being positive examples, and those rejected during
triage being negative examples. Logs from MGI were used
to produce relevance judgments for the task data. Table 1
shows the number of positive and negative examples in the
train/test sets. Note that, for each category, the proportion
of positive examples in the test set is similar to that of the
training set.

The official effectiveness measure for the categorization
task was the normalized utility measure. Since the number
of positive and negative examples varies for the four cate-
gorization problems (Table 1), different utility coefficients
were used for the utility measure for each category.

The normalized linear utility was computed as

Normalized Utility =
UtilityRaw

UtilityMax

where

UtilityRaw = Ur ·TP−FP,

UtilityMax = Ur ·(TP +FN).

Here TP, FP, and FN are defined in the contingency table
in Table 2, and different utility coefficients, Ur, were used
for each category:

Ur =


17, for A (allele),

64, for E (expression),

11, for G (GO),

231, for T (tumor).

(1)

These utility coefficients (Ur values) were determined based
on MGI’s current operation of triaging everything, see [4] for



Relevant Not relevant
Retrieved True positive (TP) False positive (FP)
Not retrieved False negative (FN) True negative (TN)

Table 2: Contingency table.

Categories
Situation A E G T
Perfect prediction 1.0 1.0 1.0 1.0
Predict with MeSH “Mice” 0.60 0.60 0.55 0.46
Best submitted run 0.87 0.87 0.58 0.94
Triage everything -0.01 0.11 0.03 -0.30
Triage nothing 0 0 0 0
Imperfect prediction -1.01 -0.88 -0.96 -1.30

Table 3: Boundary cases for the normalized utilities
on the test set.

details. Note that the number of positive examples for the
GO category is different from the 2004 data because MGI
has updated its database since then. Therefore, its utility
coefficient is also different from the one used last year, which
was 20.

Table 3 shows the values of normalized utilities for the
boundary cases on the test data set.

Although the official effectiveness measure was the nor-
malized utility measure, we also considered the F1 measure
(F-measure with equal weight on recall and precision) [9, 5]
where

Precision (p) = TP /(TP +FP),

Recall (r) = TP /(TP +FN),

F1 =
2 ∗ r ∗ p

r + p
=

2 ∗ TP

2 ∗ TP + FP+ FN
.

2. BAYESIAN LOGISTIC REGRESSION
Logistic regression models estimate the probability that

an example belongs to a class using this formula:

p(yi = +1|β, xi) =
exp(βT xi)

1 + exp(βT xi)
=

exp(
∑

j βjxi,j)

1 + exp(
∑

j βjxi,j)

where yi encodes the class of example i (positive/relevant
= +1, negative/nonrelevant = −1) and xi,j is the value of
feature j for example i. The model parameters β are chosen
by supervised learning, i.e. by optimizing some function de-
fined on a set of examples for which manually judged values
of yi are known.

In our work, we adopt a Bayesian framework and choose
the β that maximizes the posterior loglikelihood of the data,

l(β) = (−
n∑

i=1

ln(1 + exp(−βT xiyi)) + ln p(β),

where p(β) is, for each β, the prior probability that β is the
correct parameter vector. The prior p(β) encodes what we
believe are likely values of β before seeing the training data.

We trained and applied all logistic regression models us-
ing Version 2.04 of the BBR (Bayesian Binary Regression)

package [2]2. BBR supports two forms of priors: a separate
Gaussian prior for each βj or a separate Laplace prior for
each βj . (The overall prior is the product of the individ-
ual priors for feature parameters.) The key difference be-
tween the two is that Gaussian priors produce dense param-
eter vectors with many small but nonzero coefficients, while
Laplace priors produce sparse feature vectors with most co-
efficients identically equal to 0.

2.1 Choice of Hyperparameter
The Gaussian and Laplace priors have two hyperparam-

eters for each model parameter βj : a modal value µj (the
most likely prior value of βj), and a regularization hyperpa-
rameter (σ2

j for Gaussian and λj for Laplace) that indicates
how close to µj we expect βj to be. For simplicity, our
TREC work assumes all µj ’s are 0, and that the regulariza-
tion hyperparameter is the same for all features. This leaves
a single regularization hyperparameter to be chosen for the
whole model.

We consider a fixed set of hyperparameter values, and
choose the one that maximizes the cross-validated posterior
predictive log-likelihood for each training set. The prior
variances considered were

0.5, 1, 4, 9, 16, 25, 36, 49, 64, 100, 10000, 1000000,
100000000

for both Laplace and Gaussian.

2.2 Threshold Selection
Logistic regression models estimate the probability that

the example is a positive/relevant example. We then must
convert this probability to a binary class label by choosing a
threshold. We tested two approaches to choosing a threshold
for a categorization problem:

• MEE (Maximum Expected Effectiveness): Choose the
threshold that maximizes the expected value of the ef-
fectiveness measure on the test set, under the assump-
tion that the estimated class membership probabilities
are correct and that the corresponding binary random
variables are independent [5].

• TROT (Training set Optimization of Threshold): Choose
the threshold that maximizes the effectiveness measure
on the training set.

Both TROT and MEE were tested by cross-validation on
the training data. MEE was found consistently better and so
was used for all our runs. The MEE thresholds for the nor-
malized utility effectiveness measure are different for each
category:

p(yi = +1) >=


1/18 = 0.0555, for A (allele),

1/65 = 0.0153, for E (expression),

1/12 = 0.0833, for G (GO),

1/232 = 0.0043, for T (tumor),

(2)

on a probability scale. We should note that these are very
low thresholds by the standards of most text classification
research.

2http://www.stat.rutgers.edu/∼madigan/BBR/



3. TEXT REPRESENTATION
The track provided the full text of the journal articles

in both SGML and XML form. We used the XML ver-
sions from train.xml.zip and test.xml.zip. We also made
use of additional descriptions of each article. The track
files train.crosswalk.txt and test.crosswalk.txt specified the
PubMed ID for each article. We used these IDs to obtain
the MEDLINE record for each article either from the ad
hoc track data from TREC 2004, or by downloading from
PubMed.3

We used two representations for the training and test ar-
ticles:

• Full Text: The union of text from the title (<atl>),
subject (<docsubj>), abstract (<abs>), and body (<bdy>)
XML elements of the article.

• MEDLINE: The MeSH terms, Medical Subject Head-
ings, from the MEDLINE record (lines starting with
“MH - ” in ASCII text format), plus the union of text
from the title (<ArticleTitle>) and abstract (<Abstract>)
elements of that record. MeSH terms were converted
to single tokens (Section 3.1) and so were kept distinct
from the two text fields.

3.1 Text processing
For the full text articles, we extracted the contents of

the specified XML elements for the particular representa-
tion (see above), concatenated those contents, and deleted
all the internal XML tags. For <ArticleTitle>, we tokenized
text at white space, deleted punctuation at the start and end
of tokens, replaced token-internal punctuation with ”xxx”,
and used the prefix “titlexxx” to distinguish the title fea-
tures. For instance, title word “3-phosphatases” became
titlexxx3xxxphosphatases. The rest of the text processing
was done using the Lemur4 utility ParseToFile, in combina-
tion with the Porter stemmer [6] supplied by Lemur and the
SMART [7] stoplist.5 This parser performed case-folding,
replaced punctuation with whitespace, and tokenized text
at whitespace boundaries. The Lemur utility BuildBasicIn-
dex was used to construct Lemur index files, which we then
converted to document vectors in BBR’s format.

MEDLINE records were handled the same way, except
that MeSH terms were converted to single tokens (e.g. re-
placing “Mice, Knockout” with “MHxxxMicexxxKnockout”)
before Lemur processing to force them to have a separate
term ID than words.

3.2 Term Weighting
BBR requires text to be represented as vectors of numeric

feature values. We used TFxIDF (term frequency times in-
verse document frequency) weighting [8], with IDF weights
computed on the training instances only. We computed the
weight of term tj in document di, wij , by

wij =

{
(1 + loge(fij))loge

N+1
nj+1

, if tj is present in di,

0, otherwise.

3http://eutils.ncbi.nlm.nih.gov/entrez/query.fcgi
4http://www-2.cs.cmu.edu/∼lemur
5ftp://ftp.cs.cornell.edu/pub/smart/english.stop or
http://jmlr.csail.mit.edu/papers/volume5/lewis04a/
lyrl2004 rcv1v2 README.htm

Here N is the number of documents from which IDF weights
are computed (the categorization training set, so N = 5837
for our official runs), fij is the frequency of term tj in docu-
ment di, and nj is the number of documents containing term
tj . The way we computed IDF weights, called Lookahead
IDF, is a version of IDF weighting that defines a value even
for terms that do not occur in the training corpus. It can
be viewed as including a future document being weighted in
the set of documents used to define term weights for it, thus
the name “lookahead”. We applied cosine normalization to
the resulting document vectors.

4. EXPERIMENTS
For each of our text categorization runs we trained four

thresholded logistic regression classifiers, one for each of the
four categories. Our runs used the following techniques:

• {a,e,g,t}DIMACSg9md: Representation: MEDLINE.
Weighting: TFxIDF with cosine normalization. Prior:
Gaussian. Hyperparameter Variance: 49, 16, 9, 49 for
the categories A, E, G, and T, respectively.

• {a,e,g,t}DIMACSl9md: Representation: MEDLINE.
Weighting: TFxIDF with cosine normalization. Prior:
Laplace. Hyperparameter Variance: 36, 16, 16, 64 for
the categories A, E, G, and T, respectively.

• {a,e,g,t}DIMACSg9w: Representation: Full text. Weight-
ing: TFxIDF with cosine normalization. Prior: Gaus-
sian. Hyperparameter Variance: 49, 25, 9, 64 for the
categories A, E, G, and T, respectively.

• {a,e,g,t}DIMACSl9w: Representation: Full text. Weight-
ing: TFxIDF with cosine normalization. Prior: Laplace.
Hyperparameter Variance: 49, 49, 16, 100 for the cat-
egories A, E, G, and T, respectively.

All of the submitted runs used MEE thresholding (see
Section 2.2 for the thresholds used on a probability scale).
All runs used full 5-fold cross-validation on the training set
to choose a hyperparameter (shown above for each run) from
the values listed in Section 2.1.

The combinations of techniques submitted were chosen by
cross-validation experiments on the training data. Not all
combinations were exhaustively tried.

4.1 Official Results
Our official results, along with NIST-supplied statistics,

are summarized in Table 4. The detailed results of our offi-
cial runs are shown in Table 5.

Our run tDIMACSg9w achieved the best score for the
“tumor” task among all submitted runs. We obtained very
good results (very close to the best scores) on the “allele”
and “expression” tasks, and slightly above median results
on the “GO” task.

Our results indicated that full text representation was bet-
ter than MEDLINE representation. With full text represen-
tation, the results with Laplace and Gaussian priors were
very close. Gaussian priors usually gave better precision
than Laplace priors, but worse recall. MEE thresholding
was considerably more effective than TROT thresholding,
which suggests a benefit to this approach when the desired
tradeoff between false positives and false negatives is ex-
treme.



Our official runs Statistics of submissions
TASK g9md l9md g9w l9w Best Median Worst No of Runs
allele 0.8221 0.8212 0.8168 0.8292 0.8710 0.7785 0.2009 48
expression 0.6720 0.6278 0.7976 0.8491 0.8711 0.6548 -0.007 46
GO 0.4603 0.4700 0.4538 0.4809 0.5870 0.4575 -0.034 47
tumor 0.9264 0.8268 0.9433 0.9069 0.9433 0.7610 0.0413 51

Table 4: Comparison of our official results and NIST-supplied statistics on effectiveness of official catego-
rization task submissions in terms of normalized utility scores. Our official runs are shown with their run
suffixes.

Category: A (allele)
Run TP FP FN TN Precision Recall F1 Raw Utility Max Utility Norm Utility
aDIMACSg9md 294 358 38 5353 0.4509 0.8855 0.5976 4640 5644 0.8221
aDIMACSl9md 301 482 31 5229 0.3844 0.9066 0.5399 4635 5644 0.8212
aDIMACSg9w 289 303 43 5408 0.4882 0.8705 0.6255 4610 5644 0.8168
aDIMACSl9w 298 386 34 5325 0.4357 0.8976 0.5866 4680 5644 0.8292

Category: E (expression)
Run TP FP FN TN Precision Recall F1 Raw Utility Max Utility Norm Utility
eDIMACSg9md 77 412 28 5526 0.1575 0.7333 0.2593 4516 6720 0.6720
eDIMACSl9md 76 645 29 5293 0.1054 0.7238 0.1840 4219 6720 0.6278
eDIMACSg9w 88 272 17 5666 0.2444 0.8381 0.3785 5360 6720 0.7976
eDIMACSl9w 95 374 10 5564 0.2026 0.9048 0.3310 5706 6720 0.8491

Category: G (GO)
Run TP FP FN TN Precision Recall F1 Raw Utility Max Utility Norm Utility
gDIMACSg9md 326 963 192 4562 0.2529 0.6293 0.3608 2623 5698 0.4603
gDIMACSl9md 340 1062 178 4463 0.2425 0.6564 0.3542 2678 5698 0.4700
gDIMACSg9w 309 813 209 4712 0.2754 0.5965 0.3768 2586 5698 0.4538
gDIMACSl9w 346 1066 172 4459 0.2450 0.6680 0.3585 2740 5698 0.4809

Category: T (tumor)
Run TP FP FN TN Precision Recall F1 Raw Utility Max Utility Norm Utility
tDIMACSg9md 20 340 0 5683 0.0556 1.0000 0.1053 4280 4620 0.9264
tDIMACSl9md 19 569 1 5454 0.0323 0.9500 0.0625 3820 4620 0.8268
tDIMACSg9w 20 262 0 5761 0.0709 1.0000 0.1325 4358 4620 0.9433
tDIMACSl9w 20 430 0 5593 0.0444 1.0000 0.0851 4190 4620 0.9069

Table 5: Details of our official text categorization task results for each category.

4.2 Two-Stage Classifiers
We reported the importance of the MeSH term “Mice” on

the Gene Ontology category in our TREC 2004 genomics
track experiments [1]. In addition to one-stage thresholded
logistic regression models, we had also tested the following
two-stage classifier on the triage task last year:

1. IF a document does NOT contain the MeSH term
“Mice” classify it as negative.

2. ELSE classify it using a thresholded logistic regression
model.

We did not have time to repeat this work for our official
submissions this year. However, we followed this up after the
submissions by training the logistic regression models only
on training examples containing the MeSH term “Mice”.
Table 6 shows the post-submission runs corresponding to
official runs but using two-stage classifiers.

The results show that the run configuration we used last
year, which had given the best score then, still gives the best
score this year, see Table 6. When we compare with our offi-
cial results, two stage classifiers show improvement only for
the “GO” category, but does not decrease the effectiveness
much for the other categories. However, running two-stage
classifiers are much faster.

Acknowledgements
The work was partially supported under funds provided by
the KD-D group for a project at DIMACS on Monitoring
Message Streams, funded through National Science Foun-
dation grant EIA-0087022 to Rutgers University. The views
expressed in this article are those of the authors, and do not
necessarily represent the views of the sponsoring agency.



Category: A (allele)
Corresponding Run TP FP FN TN Precision Recall F1 Raw Utility Max Utility Norm Utility
aDIMACSg9md 303 515 29 5196 0.3704 0.9127 0.5270 4636 5644 0.8214
aDIMACSl9md 314 677 18 5034 0.3169 0.9458 0.4747 4661 5644 0.8258
aDIMACSg9w 297 372 35 5339 0.4439 0.8946 0.5934 4677 5644 0.8287
aDIMACSl9w 298 417 34 5294 0.4168 0.8976 0.5692 4649 5644 0.8237

Category: E (expression)
Corresponding Run TP FP FN TN Precision Recall F1 Raw Utility Max Utility Norm Utility
eDIMACSg9md 92 856 13 5082 0.0970 0.8762 0.1747 5032 6720 0.7488
eDIMACSl9md 86 1008 19 4930 0.0786 0.8190 0.1435 4496 6720 0.6690
eDIMACSg9w 94 428 11 5510 0.1801 0.8952 0.2998 5588 6720 0.8315
eDIMACSl9w 93 372 12 5566 0.2000 0.8857 0.3263 5580 6720 0.8304

Category: G (GO)
Corresponding Run TP FP FN TN Precision Recall F1 Raw Utility Max Utility Norm Utility
gDIMACSg9md 408 1331 110 4194 0.2346 0.7876 0.3615 3157 5698 0.5541
gDIMACSl9md 449 1600 69 3925 0.2191 0.8668 0.3498 3339 5698 0.5860
gDIMACSg9w 410 1309 108 4216 0.2385 0.7915 0.3666 3201 5698 0.5618
gDIMACSl9w 442 1581 76 3944 0.2185 0.8533 0.3479 3281 5698 0.5758

Category: T (tumor)
Corresponding Run TP FP FN TN Precision Recall F1 Raw Utility Max Utility Norm Utility
tDIMACSg9md 20 724 0 5299 0.0269 1.0000 0.0524 3896 4620 0.8433
tDIMACSl9md 19 695 1 5328 0.0266 0.9500 0.0518 3694 4620 0.7996
tDIMACSg9w 20 348 0 5675 0.0543 1.0000 0.1031 4272 4620 0.9247
tDIMACSl9w 20 586 0 5437 0.0330 1.0000 0.0639 4034 4620 0.8732

Table 6: Results of post-submission runs corresponding to our official runs with two-stage classifiers.

5. REFERENCES
[1] A. Dayanik, D. Fradkin, A. Genkin, P. Kantor,

D. Lewis, D. Madigan, and V. Menkov. DIMACS at the
TREC 2004 genomics track. In TREC ’04, 2005.

[2] Alexander Genkin, David D. Lewis, and David
Madigan. Large-scale bayesian logistic regression for
text categorization. Technical report, DIMACS, 2004.

[3] W.R. Hersh, R.T. Bhuptiraju, L. Ross, A.M. Cohen,
D.F. Kraemer, and P. Johnson. TREC 2004 genomics
track overview. In 13th Text Retrieval Conference, 2004.

[4] W.R. Hersh, A.M. Cohen, J. Yang, R.T. Bhuptiraju,
P. Roberts, and M. Hearst. TREC 2005 genomics track
overview. In 14th Text Retrieval Conference, 2005.

[5] David D. Lewis. Evaluating and optimizing
autonomous text classification systems. In Edward A.
Fox, Peter Ingwersen, and Raya Fidel, editors, SIGIR
’95: Proceedings of the 18th Annual International ACM
SIGIR Conference on Research and Development in
Information Retrieval, pages 246–254, New York, 1995.
Association for Computing Machinery.

[6] M. F. Porter. An algorithm for suffix stripping.
Program, 14(3):130–137, July 1980.

[7] G. Salton, editor. The SMART Retrieval System:
Experiments in Automatic Document Processing.
Prentice-Hall, 1971.

[8] Gerard Salton and Christopher Buckley.
Term-weighting approaches in automatic text retrieval.
Information Processing and Management,
24(5):513–523, 1988.

[9] C. J. van Rijsbergen. Information Retrieval.
Butterworths, London, second edition, 1979.


